
Phys 326 Discussion 10 – Rotational Trajectories; Euler’s Equations

Problem 1 : Time-Dependence of Vectors Under Constant Rotation  
!
ω 	 Checkpoints 1

In Phys 325 we proved this crucial relation: 

	
 

d
!
B
dt

=
!
ω ×
!
B    for any constant vector  

!
B  that is fixed in a body rotating with angular velocity  

!
ω .

You have used this result many times.  A particularly common use is taking  
!
B  to be the position-vector  

!r  of a 
fixed point in the rotating body → the point’s velocity in the lab frame is then  

!v = !"r = !ω × !r .   Alternatively the 
“rotating body” might be just a point mass whizzing around some axis with angular velocity  

!
ω : mentally attach 

the mass to any point O on the axis of rotation using a massless rod, and you have created a rigid body.  If  
!r is 

the position of the mass relative to O, it’s a body-fixed vector, so  
!
ω × !r  is the mass’s velocity.  

We’ve used  
!"B =
!
ω ×
!
B  plenty of times, but we haven’t yet solved it.  By “solved”,  I mean that if you know  

!
ω ,  

 
!"B =
!
ω ×
!
B  is a first-order differential equation that can be solved to obtain the components Bi(t), i.e. the explicit 

time-dependence of the full vector  
!
B  in the lab frame.  (You will need to do this on the last problem of the 

homework due this week, for example.)  The solution is easy to find using geometric thinking in the case of 
constant angular velocity  

!
ω .  This is a very common case, so let’s study it! 

Here is the super-common situation we want to solve: we have some vector  
!
B  

that has these two properties:
    ● it is rotating with constant angular velocity  

!
ω     ● at time t=0 it is  

!
B0

So our given quantities are two constant vectors  
!
ω  and  

!
B0 ; what we want to 

figure out is the time-dependence,  
!
B(t) , of our vector .  The way to proceed 

is to decompose the initial vector,  
!
B0 , into a piece  

!
B0"  that is parallel to  

!
ω  

and a piece  
!
B0⊥  that is perpendicular to  

!
ω .  A third ingredient is also 

needed: where will the vector be after a quarter-cycle of rotational motion?  
Call that  vector  

!
B1 .  What we need is its component perpendicular to  

!
ω , 

which we call  
!
B1⊥ .  As you can see from the figure,  

!
B1⊥  is just a 90° rotation of  

 
!
B0⊥  around  

!
ω .  

(a)  The three key ingredients of our solution are  
!
B0" ,  

!
B0⊥ ,  and  

!
B1⊥ .   Using pure geometry, match them up 

with these three expressions (i.e. which is which?)  ➔ 	        ω̂ ×
!
B0 ,          

!
B0 − (

!
B0 ⋅ω̂ )ω̂ ,        (

!
B0 ⋅ω̂ )ω̂

(b)  Since  
!
ω  is constant and we know the t=0 starting-value  

!
B0  of our vector, we can immediately write down 

the general solution for  
!
B(t)  using cosines and sines: 

!
B(t) = !a +

!
b cos(ωt)+ !c sin(ωt) .  Your task is to figure out 

what  
!a,
!
b, !c  are.  Hint: each is one of our three “ingredients”  

!
B0" ,  

!
B0⊥ ,  

!
B1⊥ .

1 (a),(b) checks coming up (d) checked by (e,f)  
!v(t ) = 2ω − x̂ sin(ω t ) − ẑ cos(ω t )[ ]  
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How did you do?  The solution is                                             more checkpoints 2

 
!
B(t) =

!
B0" +

!
B0⊥ cos(ωt)+

!
B1⊥ sin(ωt)  where

 
!
B0" = (

!
B0 ⋅ω̂ )ω̂ ,        

!
B0⊥ =

!
B0 −

!
B0" ,        

!
B1⊥ = ω̂ ×

!
B0⊥ = ω̂ ×

!
B0 . 

This comes entirely from geometry.  It is much easier to sketch the figure and 
recall the general procedure than to try to remember these formulas! 

(c)  An example is urgently needed!  Consider a rigid flat right-triangle with 
perpendicular sides of length 2 and 1.  At time t=0 the triangle is in the xy-plane 
and its vertices are at these locations: (x,y) = (0,0),  (2,0),  (0,1).  
A blue dot is painted on the vertex at (2,0) and we label this vertex “point B”.
It goes without saying that you must draw this thing before going any further!

(d)  Suppose the triangle is rotating around the y-axis with angular velocity  
!
ω =ω ŷ .  Write down the complete 

trajectory of the point B (the blue dot) in the form  
!r (t) = x(t)x̂ + y(t)ŷ + z(t)ẑ .  

(e)  Did we actually solve the differential equation  
!"r (t) = !ω × !r (t) ?  Calculate the left-hand and right-hand sides 

of this expression – i.e. calculate the blue dot’s velocity  
!v(t)  in two ways – to show that we did!  (It is not hard 

to prove that our geometric solution at the top of the page does solve  
!"r (t) = !ω × !r (t) .  Try it if you like!)

(f)  If all you care about is the velocity  
!v(t)  of the blue dot, there is a faster way: apply our general solution to 

the vector  
!v  instead of the vector  

!r ! →  
!v(t) = !v0" +

!v0⊥ cos(ωt) +
!v1⊥ sin(ωt) .  Note: you must find  

!v0  first.  

(g)  Now try this: the triangle is rotating around the axis that runs through the origin and has direction 
 
!
ω  " (x̂ + 2 ŷ) .  Calculate  

!v(t)  of the blue dot in this case.  If you want more practice, also calculate  
!r (t) . 

Problem 2 : Small Oscillations of a Spinning Book	 Checkpoints 3

We used Euler’s equations in lecture to analyze the rotational stability of a book, and we checked it with a 
demo.  Your turn to analyze the demo!  A book of uniform density and dimensions (a=30 cm) × (b=20 cm) × 
(c=3 cm) is held shut with a rubber band.  You throw the book into the air spinning at 180 rpm (revolutions per 
minute) about an axis that is very close to the book’s shortest symmetry axis (i.e. the axis parallel to the shortest 
dimension of the book).  What is the frequency of small oscillations of the book’s axis of rotation in the book’s 
body-frame?  Give your answer in rpm, so you don’t have to convert this awkward unit into anything else.  

☞ Euler’s Equations :  τ1 = I1 !ω1 + (I3 − I2 )ω 2ω 3  is all you need ; just cycle the indices to get the other two! 
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 → Ω = ω1 (0.968) = 174 rpm
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