
Phys 326 Discussion 13 – GR: Curvature and Reduced Circumference
Discussion 12 summarized the essential principles of General Relativity, including the (non-axiomatic) 
Schwarzschild metric that we are using as our one example of curved spacetime.  It is the metric describing the 
spacetime curvature around a spherically-symmetric non-rotating mass M.  

	 dτ 2 = dt 2 1− 2M
r

⎛
⎝⎜

⎞
⎠⎟  − 

dr2

1− 2M
r

⎛
⎝⎜

⎞
⎠⎟
 − r2dθ 2 − r2 sin2θ dφ 2          where M =

G
c2
M kg  and t = c tsec. 

One of the two main challenges of GR is figuring out how to use the metric to calculate interesting quantities.  
(The other challenge is how to find the metric for different mass distributions from Einstein’s field equations … 
but that is an advanced topic treated in graduate-level courses.  Einstein himself found it challenging: 
Schwarzschild, not Einstein, was the first one to come up with such a solution. ☺)

Problem 1 : Gaussian Curvature of a Spherical Surface  	 Checkpoint on next page

To get any feeling at all for what the bizarre notion of “curved spacetime” means, we must first explore some 
simple curved geometries that we understand.  The geometries of curved surfaces are perfect: we can picture 
them and check our calculations against intuitive sketches.  Every feature of a space’s geometry flows from the 
metric, as the metric is the relation that translates changes in our chosen coordinates into physical distances.  In 
spatial geometries (no time coordinate), physical distance is just spatial distance, dl.  (I’ll avoid the more 
common symbol “ds” as it conflicts with our use of “s” as the cylindrical-radial coordinate.)  

The surface of a sphere of radius a is the most familiar example of all of a curved geometry since we live on
such a surface ☺.  For our coordinates, let’s pick the spherical-polar angles θ and φ; in terms of these
coordinates, the metric is dl2 = adθ( )2 + asinθ dφ( )2 .  One way to characterize the curvature of a space is to
evaluate its Gaussian curvature at one or more points.  This quantity compares the circumference of a circle
with its radius to see if they satisfy the flat-space relation C = 2π R.  The exact definition of Gaussian curvature
is K = lim

R→0
 (2πR − C) ⋅ 3

πR3
.  Your task is to evaluate the Gaussian curvature at the “North Pole”, i.e. at 

(θ, φ) = (0, irrelevant).  Your task requires two path integrals.  Here are the steps:

• Parametrize the path of your circle.  A circle around the north pole is defined by a constant value of θ and a
full sweep of φ, so the path for our circle will be {θ = θ0 ,  φ : 0→ 2π}  for some arbitrary constant θ0 
describing the size of the circle. 

• Calculate the circumference C of the circle: C = dl∫  along the path we just described. 

• Calculate the radius R of the circle: R = dl∫  along a geodesic path – i.e. a path of shortest distance – from the
center-point of your circle to any point on the circle.  REMEMBER REMEMBER: the most common problem 
people have with path integrals is not parametrizing the PATH of integration! You have to specify a path 
before you can do a path integral!  We did it above for the circumference-path; you provide the simple path 
for the radial integral.  Note that this path, just like the other one, will necessarily depend on the constant θ0 
we introduced to describe the size of our circle in coordinate space. 

OK off you go!  Calculate the Gaussian curvature K = lim
R→0
 (2πR − C) ⋅ 3

πR3
 at the North Pole of a sphere using

the metric dl2 = adθ( )2 + asinθ dφ( )2 .  

☞ The purpose of taking the limit R→ 0  is to determine the curvature right at the North Pole.  To take this
small-circle limit, please note that you cannot change the parameter a: it is the radius of the sphere and so an 
unchangeable property of the geometry. 



Problem 2 : Circles around a Black Hole	 Checkpoints 1,2

On to spacetime!  Let’s explore only the spatial part of the Schwarzschild metric: if we always make 
measurements at the same times (as we do when measuring purely spatial distances like the radii and 
circumferences of circles), the dt term in the metric is zero, leaving only the dr and dφ terms.  Since all such 
same-time measurements are spacelike, we switch to from proper time to proper distance as our metric:

dσ 2 ≡ −dτ 2 =  dr2

1− 2M / r( )  + r
2dφ 2

The only reason for this sign change is to avoid getting an imaginary result, which you do when you calculate 
dτ for spacelike separated events.  With this change, dσ exactly plays the role of dl = ruler distance.  Let’s check 
out what circles look like near black holes!  Note: we are just using “black hole” here as cool-sounding 
shorthand for “something that produces a gravitational field strong enough to require General Relativity”.)  

(a)  Let’s measure a circle of coordinate-radius r0 around the origin (r,φ) = (0, irrelevant), which is the center of 
the mass M.  First, calculate/“measure” the circumference C by integrating dσ∫  around the circle.  Your result 
will depend on r0 of course. 

(b)  Set up — but don’t integrate! — the dσ∫  integral you would need to measure the radius R of the circle. 

(c)  Uh oh, we have a problem: you undoubtedly used 0 and r0 as your lower and upper bounds of integration … 
but look at what happens to the integrand at r = 0: it becomes imaginary!  From lecture, we know that 2M is 
called the Schwarzschild radius, and when r goes down to 2M, the dr2 / (1− 2M / r)  term blows up, indicating 
that we have reached the limits of applicability of this metric.  We can’t use the Schwarzschild metric to explore 
radii inside the Schwarzschild radius.  (This is exactly analogous to a familiar situation in Special Relativity: the 
collapse of the Lorentz transformation at speeds greater than c; for boost speeds β > 1 the gamma factors 
become imaginary, so the equations have officially broken down.)   Oh boy … we cannot measure the radius of 
our circles, so we cannot investigate the curvature k = (2πR − C) , how disappointing!  But wait: we can do 
something else, we can investigate how this curvature varies with coordinate-radius r0 ➔ calculate the 

“differential” curvature dk
dr0

= 2π dR
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dr0

 and see if it is positive, negative, or zero.  NOTE: at no point do you 

1  Q1  K = 1 / a2   Q2 (a)  C = 2π r0   (c)  
dk

dr0
= 2π

1

1− 2M / r0
− 1

⎛
⎝⎜

⎞
⎠⎟

   (d) You found that, for circles around a black hole, 

 2πdR ≫ dC  when you get close to the event horizon at r0 = 2M.  In words: near the event horizon, it takes a very large change in 
radius to produce a very small change in the circumference of a circle at that radius … and the discrepancy grows as you get closer to 
r = 2M.  Yow!  Such a phenomenon can never be drawn on a flat piece of paper … but it can be drawn on a flexible sheet curved into 
the shape of a funnel ... which is the famous picture. (e) Hint: Schwarzschild-r is sometimes called the reduced circumference … 
why? recall part (a) … possible measurement technique: Maintain a constant distance from the planet by e.g. bouncing a laser beam 
off its nearest surface and timing how long it takes to get back to you.  Travel around the planet in a circle by keeping that laser-
bounce-time constant, and measure the distance you travel as you go along.  Once you’ve returned to your starting point, divide your 
measured circumference by 2π → that’s your r coordinate.  (f)  Maintain a constant distance from the planet’s surface using the same 
laser-bounce technique, but make sure your circular path takes you directly over the ice cap this time.  Measure the distance you travel 
as you proceed, and stop measuring when you’re over the ice cap.  If you measured a distance d, the polar angle θ at your starting 
point was 2π (d / C) = 2π times (the fraction of a full circle you had to travel).   
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2dφ 2  … Hint 2: Compare this to the metric for 3D spherical 

   coord’s (r,θ,φ) … which is dl 2 = dr 2 + r 2dθ 2 + (r sinθ )2 dφ 2  … what constraint can you impose to turn this familiar metric

   into the strange one with the ¾ factor … Hint 3: fix θ to a constant value … the object is a cone of 60° opening angle. ☺︎



have to do the integral in part (b), you only need to remember how to take a derivative with respect to the upper 
bound of an integral.  

(d)  What did we just learn? ➔ The calculation you performed provides the explanation for one of the most 
famous plots you see “explaining” General Relativity: the “funnel picture”.  I’ve included the version from 
Taylor & Wheeler’s book “Exploring Black Holes” on the last page, as Edwin Taylor has been kind enough to 
provide a free copy of Chapter 2 on his website at http://www.eftaylor.com/download.html#general_relativity . 
Many people have seen this funnel picture, but very few know what it actually represents.  Examine the figures 
intently and make sure you understand them completely ... it takes some thought, but it is nothing more than a 
graphical depiction of the exact calculation you just performed. ☺  Check your thinking against the checkpoint, 
but if you are not 100% sure of your understanding of this famous picture, talk to your TA! 

(e)  If you were in a spaceship sitting somewhere near a massive spherical planet, what exact measurement(s) 
could you perform to figure out your location in the Schwarzschild coordinate r?  

(f)  Same spaceship, different question.  You can see the polar ice cap marking the planet’s North Pole, so you 
call that direction the +z-axis.  What measurement(s) could you perform to figure out your location in 
Schwarzschild coordinate θ?  (The polar angle, the one we keep dropping from the metric.) 

☞  We now have a thorough understanding of the Schwarzschild coordinates (t, r, θ, φ) in terms of which the
Schwarzschild metric is written.  Summary: 

● The angles θ and φ are what they always are, since there are no mass-dependent factors in the dθ or 
dφ terms of the metric. 
● t is the time recorded by imaginary clocks that are placed throughout space and are rate-adjusted to 

compensate for gravitational time dilation.  These clocks thus tick at the same rate as a clock placed at 
infinity (and they tick faster than local clocks sitting next to them that have not been tampered with). 

● r is C / 2π, where C is the circumference of a circle drawn around M and measured by actual people 
laying down actual rulers all the way around the circle. 

Problem 3 : Curvature of a Mystery Space	 Checkpoints on previous page

(a)  Here is the metric for a 2D space: dl2 = 16
3
ρ2 dρ2 + ρ4 dφ 2 .  This metric describes a rather simple surface,

but it is disguised via the use of an unusual polar coordinate system: φ is still the azimuthal angle and ρ  is the 
radial coordinate, but you can immediately see that ρ  doesn’t have units of distance.  Treat this mysterious
metric as an experimental tool: it allows you to measure distance in this mystery space, via path integrals, and
thereby figure out the nature of the space.  So let’s measure!  Calculate the quantity k = (2πR − C)  for a circle 
of coordinate-radius ρ0  around the origin (ρ,φ) = (0, irrelevant) .  Is it positive or negative?  If it’s positive, it is
“sphere-like”: it has some “bowl-like” shape around the origin that is making circles smaller than 2π × the
distance it takes to get to the circle.  If it’s negative, the reverse is true.

(b-OPTIONAL)  If you would like a challenge, or if you are dying of curiosity, you might like to try figuring 
out what surface this is. ☺︎  Here’s your first hint: replace the radial coordinate with r = 2ρ 2 / 3 , change the 
metric accordingly, and see if you can figure out what surface it describes.  Further hints are in the footnote. 

http://www.eftaylor.com/download.html%23general_relativity
http://www.eftaylor.com/download.html%23general_relativity


Figure from Taylor & Wheeler, “Exploring Black Holes” illustrating result of Problem 2


