
Phys 326 Discussion 14 – GR: Reduced Circumference and Speed of Light
Here is the Schwarzschild metric describing the spacetime curvature around a spherically-symmetric non-
rotating mass M:  
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Problem 1 : Circles around a Black Hole	 Checkpoints 1

Let’s explore the spatial part of the Schwarzschild metric on its own: if we always make measurements at the 
same times (as we do when measuring purely spatial distances like the radii and circumferences of circles), the 
dt term in the metric is zero, leaving only the dr and dφ terms.  Since all such same-time measurements are 
spacelike, we switch to from proper time to proper distance as our metric:

dσ 2 ≡ −dτ 2 =  dr2

1− 2M / r( )  + r
2dφ 2

The only reason for this sign change is to avoid getting an imaginary result, which you do when you calculate 
dτ for spacelike separated events.  With this change, dσ exactly plays the role of dl = ruler distance.  Let’s check 
out what circles look like near black holes!  Note: we are just using “black hole” here as cool-sounding 
shorthand for “something that produces a gravitational field strong enough to require General Relativity”.)  

(a)  Let’s measure a circle of coordinate-radius r0 around the origin (r,φ) = (0, irrelevant), which is the center of 
the mass M.  First, calculate/“measure” the circumference C by integrating dσ∫  around the circle.  Your result 
will depend on r0 of course. 

(b)  Set up — but don’t integrate! — the dσ∫  integral you would need to measure the radius R of the circle. 

(c)  Uh oh, we have a problem: you undoubtedly used 0 and r0 as your lower and upper bounds of integration … 
but look at what happens to the integrand at r = 0: it becomes imaginary!  From lecture, we know that 2M is 
called the Schwarzschild radius, and when r goes down to 2M, the dr2 / (1− 2M / r)  term blows up, indicating 
that we have reached the limits of applicability of this metric.  We can’t use the Schwarzschild metric to explore 
radii inside the Schwarzschild radius.  (This is exactly analogous to a familiar situation in Special Relativity: the 
collapse of the Lorentz transformation at speeds greater than c; for boost speeds β > 1 the gamma factors 
become imaginary, so the equations have officially broken down.)   Oh boy … we cannot measure the radius of 
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   (d) You found that, for circles around a black hole,  2πdR ≫ dC  when you get 

close to the event horizon at r0 = 2M.  In words: near the event horizon, it takes a very large change in radius to produce a very small 
change in the circumference of a circle at that radius … and the discrepancy grows as you get closer to r = 2M.  Yow!  Such a 
phenomenon can never be drawn on a flat piece of paper … but it can be drawn on a flexible sheet curved into the shape of a funnel ... 
which is the famous picture. (e) Hint: Schwarzschild-r is sometimes called the reduced circumference … why? recall part (a) … 
possible measurement technique: Maintain a constant distance from the planet by e.g. bouncing a laser beam off its nearest surface and 
timing how long it takes to get back to you.  Travel around the planet in a circle by keeping that laser-bounce-time constant, and 
measure the distance you travel as you go along.  Once you’ve returned to your starting point, divide your measured circumference by 
2π → that’s your r coordinate.  (f)  Maintain a constant distance from the planet’s surface using the same laser-bounce technique, but 
make sure your circular path takes you directly over the ice cap this time.  Measure the distance you travel as you proceed, and stop 
measuring when you’re over the ice cap.  If you measured a distance d, the polar angle θ at your starting point was 2π (d / C) = 2π 
times (the fraction of a full circle you had to travel).   



our circles, so we cannot investigate the curvature k = (2πR − C) , how disappointing!  But wait: we can do 
something else, we can investigate how this curvature varies with coordinate-radius r0 ➔ calculate the 

“differential” curvature dk
dr0

= 2π dR
dr0

−
dC
dr0

 and see if it is positive, negative, or zero.  NOTE: at no point do you 

have to do the integral in part (b), you only need to remember how to take a derivative with respect to the upper 
bound of an integral.  

(d)  What did we just learn? ➔ The calculation you performed provides the explanation for one of the most 
famous plots you see “explaining” General Relativity: the “funnel picture”.  I’ve included the version from 
Taylor & Wheeler’s book “Exploring Black Holes” on the last page, as Edwin Taylor has been kind enough to 
provide a free copy of Chapter 2 on his website at http://www.eftaylor.com/download.html#general_relativity . 
Many people have seen this funnel picture, but very few know what it actually represents.  Examine the figures 
intently and make sure you understand them completely ... it takes some thought, but it is nothing more than a 
graphical depiction of the exact calculation you just performed. ☺  Check your thinking against the checkpoint, 
but if you are not 100% sure of your understanding of this famous picture, talk to your TA! 

(e)  If you were in a spaceship sitting somewhere near a massive spherical planet, what exact measurement(s) 
could you perform to figure out your location in the Schwarzschild coordinate r?  

(f)  Same spaceship, different question.  You can see the polar ice cap marking the planet’s North Pole, so you 
call that direction the +z-axis.  What measurement(s) could you perform to figure out your location in 
Schwarzschild coordinate θ?  (The polar angle, the one we keep dropping from the metric.) 

☞  We now have a thorough understanding of the Schwarzschild coordinates (t, r, θ, φ) in terms of which the
Schwarzschild metric is written.  Summary: 

● The angles θ and φ are what they always are, since there are no mass-dependent factors in the dθ or 
dφ terms of the metric. 
● t is the time recorded by imaginary clocks that are placed throughout space and are rate-adjusted to 

compensate for gravitational time dilation.  These clocks thus tick at the same rate as a clock placed at 
infinity (and they tick faster than local clocks sitting next to them that have not been tampered with). 

● r is C / 2π, where C is the circumference of a circle drawn around M and measured by actual people 
laying down actual rulers all the way around the circle. 

Problem 2 : Curvature of a Mystery Space	 Checkpoints 2

(a)  Here is the metric for a 2D space: dl2 = 16
3
ρ2 dρ2 + ρ4 dφ 2 .  This metric describes a rather simple surface,

but it is disguised via the use of an unusual polar coordinate system: φ is still the azimuthal angle and ρ  is the 
radial coordinate, but you can immediately see that ρ  doesn’t have units of distance.  Treat this mysterious
metric as an experimental tool: it allows you to measure distance in this mystery space, via path integrals, and
thereby figure out the nature of the space.  So let’s measure!  Calculate the quantity k = (2πR − C)  for a circle 
of coordinate-radius ρ0  around the origin (ρ,φ) = (0, irrelevant) .  Is it positive or negative?  If it’s positive, it is
“sphere-like”: it has some “bowl-like” shape around the origin that is making circles smaller than 2π × the
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   coord’s (r,θ,φ) … which is dl 2 = dr 2 + r 2dθ 2 + (r sinθ )2 dφ 2  … what constraint can you impose to turn this familiar metric

   into the strange one with the ¾ factor … Hint 3: fix θ to a constant value … the object is a cone of 60° opening angle. ☺︎
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distance it takes to get to the circle.  If it’s negative, the reverse is true.

(b-OPTIONAL)  If you would like a challenge, or if you are dying of curiosity, you might like to try figuring 
out what surface this is. ☺︎  Here’s your first hint: replace the radial coordinate with r = 2ρ 2 / 3 , change the 
metric accordingly, and see if you can figure out what surface it describes.  Further hints are in the footnote. 

Problem 3 : The Path of Light	 Checkpoints 3

We discussed in class how how a stationary observer standing at Schwarzschild radius r from the center of a 
mass M will measure events near their location using wristwatches that measure proper time and rulers that 
measure proper distance.  We call this person a local observer because they are at (or near) the events they are 
observing.  In symbols: 

	 dtlocal = dτ const
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(a)  Light follows a very special geodesic: the null geodesic dτ = 0 .  In words, proper time is slowed down to a 
complete stop for light, compared to any observer that is not moving at the speed of light.  See if you can 
remind yourself how to show this using special relativity, i.e. in free space, when there is no mass M around.     

(b)  What about when there is a mass M present?  One way to show that dτ = 0 for a light ray is using one of the 
defining properties of light: it has zero rest mass.  On this week’s  homework, you did / will show that the 
Schwarzschild metric allows you to identify this quantity as the dimensionless energy e ≡ ETOTAL / Eat REST  of a 
particle moving radially : 
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(The expression is only slightly changed when angular motion is added, don’t worry, you just get another term 
in the brackets.)  Do you still agree that dτ = 0 for light? 

(c)  Given that dτ = 0 for light, calculate the speed of light as a function of r for a photon falling radially toward 
the center of a black hole.  Calculate two versions of this speed: the “Bookkeeper” speed dr / dt   and the local 
speed seen by stationary local observers measuring local radial distance with their rulers and local time with 
their wristwatches as the photon passes right by them.  Plot these two speeds vs r /M , being careful to label 
which is which, and to label the one important value on the horizontal axis.

3 (a) Lorentz time dilation … Derivation thereof: For a particle moving with speed u as measured in an inertial frame with coordinates 
(t, x, y, z), proper time along the particle’s path is dτ = (dt2 – dl2 / c2)½ = dt (1 – u2/c2)½ = dt / γu = Lorentz time dilation formula ... If 
the particle is light, moving at u = c, then dτ = 0 · dt = 0 always.  (b)  Eat REST = m c2 where m = rest mass.  For a photon, m = 0, so 
dτ / dt = 0 (note that the photon is never at rest so EREST = 0 is not a problem.)  (c) Bookkeeper speed = 1– 2M/r, local speed = 1 
in natural units



Figure from Taylor & Wheeler, “Exploring Black Holes” illustrating result of Problem 2


