
Physics 326 – Homework #2	 due Friday, 1 pm

All solutions must clearly show the steps and/or reasoning you used to arrive at your result. You will lose points 
for poorly written solutions or incorrect reasoning.  Answers given without explanation will not be graded: 
“No Work = No Points”.  However you may always use any relation on the 1DMath, 3DMath or exam formula 
sheets or derived in lecture / discussion.  Write your NAME and DISCUSSION SECTION on your solutions.

Problem 1 : Drag Coupling 	

From PHYS 325 and MATH 285 you know how to solve a 
damped oscillator with one degree of freedom.  A quick recap: 
The EOM for such an oscillator is  !!x + 2β !x +ω 0

2x = 0 , with β being
a damping constant and ω0 being the oscillator’s undamped 
frequency.  To solve, you guess the solution form  !x(t) = !Ae

!ωt , i.e. an exponential where the frequency  !ω  in the
exponent and/or the amplitude  !A  may be complex numbers.  When you plug that form into the EOM and solve 
for  !ω , you will get quite different results if the oscillator is weakly damped (β < ω0,which produces damped 
oscillations) or strongly damped (β > ω0, which doesn’t oscillate at all).  You can review the blackboards from 
PHYS 325 lecture 14B for a reminder; they are available in a folder on the PHYS 326 website.  

In this problem, we tackle a coupled oscillator (two degrees of freedom) with damping involved.  As you will 
see, the matrix notation we have been using to write and solve the EOMs for coupled linear oscillators can be 
readily extended to a damped system, you just have to use complex exponentials instead of cosines for your 
normal-form solutions.  No problem!  ☺︎  

The two carts in the figure above have equal masses m.  They are joined by identical but separate springs of 
force constant k to separate walls.  Cart 2 rides in cart 1 as shows, and cart 1 is filled with molasses, whose 
viscous drag supplies the coupling between the two carts.  The drag force has magnitude βmv where v is the 
relative velocity of the two carts.

(a)  Write down the equations of motion of the two carts using as coordinates x1 and x2, the displacements of the 
carts to the right of their equilibrium positions.  Show that the EOM can be written in matrix form as 

 1
!""x + βD !"x +ω0

2 1 !x = 0 , where  
!x  is the column vector made up of x1 and x2, ω0 ≡ k / m , 1 is the unit matrix, 

and D is a certain 2×2 square matrix for you to determine.  

(b)  The next step is to “guess the solution form”.  Let’s try normal mode form, but with a slight variation.  
Normal mode form means a solution where all the coordinates are oscillating at the same frequency and the
same phase.  This system has damping, however, so its oscillations will decay with time.  That suggests a 
solution form  

!x(t) =
!
Ae "ωt  where we hypothesize a common frequency  !ω  that is complex instead of the usual 

purely-imaginary exponent iω that you get for an undamped oscillator system.  Assuming that the drag force is 
weak (β <ω0 ), show that you do get two solutions of this form with  !ω = iω 0  or  !ω = −β + i ω 0

2 − β 2 .  

HINT: The determinant does not require much algebra at all … a2 − b2 = (a + b)(a − b)  … 

NOTE: You may be wondering what happened to the minus option in the  !ω = ±iω 0  and  !ω = −β ± i ω 0
2 − β 2

solutions that you probably obtained.  Answer: it doesn’t matter which sign you choose in these two cases … 
but why?  That is for you to figure out! 

(c)  Describe the motions corresponding to each normal mode, using words or sketches.  Also explain physically 
why one of the modes is damped but the other is not.



If you are doing the following problems before Tuesday’s lecture or need a summary, 
please read Appendix A. 

Problem 2 : Triple Pendulum (a classic qual-exam problem)

A triple pendulum consists of masses βm, m, and m suspended to each other in a 
line by three massless rods of length a.  The whole thing is suspended from a 
stationary pivot, as shown in the figure. Throughout this problem, you may assume 
that the displacements of the masses from equilibrium are small.

(a)  Find the value of β such that one of the normal frequencies of this system will 
equal the frequency of a simple pendulum of length a/2 and mass m.  

(b)  Find the mode corresponding to this frequency and sketch it.  

Problem 3 : Bead on a Swinging Hoop

A bead of mass m is threaded on a frictionless circular wire hoop of radius R and 
the same mass m as the hoop.  The hoop is suspended at the point A and is free to 
swing in its own vertical plane as shown in the figure.  

(a)  Using the angles φ1 and φ2 as generalized coordinates, solve for the normal 
frequencies of small oscillations, and find and describe (e.g. with sketches) the 
motion in the corresponding normal modes. 

(b)  Find two sets of initial conditions that allow the system to oscillate in each of 
its two normal modes.

Problem 4 : Pendulum on a Cart 

A simple pendulum (mass M and length L) is suspended from a cart of mass m that 
moves freely along a horizontal track.  You will find it helpful to introduce the 
parameters η ≣ m / M  and ω0 = g / L .   

(a)  What are the normal frequencies of small oscillations of the system? 

(b)  Find and describe (e.g. with sketches) the corresponding normal modes of the 
system.  If you are doing this before the lecture on DC modes, please read the 
brief Appendix B. 

(c)  The cart / pendulum system is held at rest at x = 0 and φ = φ0,  where φ0 is small.  At time t = 0, the system 
is released from rest.  Write down the subsequent motion x(t) of the cart and φ(t) of the pendulum. 



Appendix A : Getting the M and K matrices from T and U

In our development of the general theory of small oscillations, we found the following: if 
	 ● all the forces acting on your system can be described by a position-dependent potential U(qi), and 
	 ● you are using natural coordinates qi (i.e. no time-dependent constraints),
then the EOMs, T, and U all take the standard forms  

	  M
!""q ≈ −K!q ,    

 
T ≈ 1

2
Mij !qi !qj ,    U ≈ 1

2
Kijqiqj        where      

 

Mij =
∂2T
∂ !qi !qj "q=0

   &   
 

Kij =
∂2U
∂qi qj !q=0

when approximated to leading non-vanishing order in the small quantities  qi , !qi  (i.e. when deviations from 
equilibrium are arbitrarily small).  Let’s call this the standard form of small-oscillation problems.  For standard 
form problems, we can now greatly simplify step 1 in our solution procedure :
	 1.  Find the EOMs, put in matrix form, and substitute a normal-mode solution  

!q(t) =
!
Aω cos(ωt −δω ) .

	 2.  Solve for the eigenfrequencies ω using “determinant = 0” for linear homogeneous equations. 
	 3.  Solve for the corresponding eigenvectors  

!
Aω .

	 4.  Write down the general solution of the system by superposing all the normal modes.
For standard form problems, we showed that step 1 will always give these equations : 

	 EOMs are  M
!""q ≈ −K!q     →    postulate  

!q(t) =
!
Aω cos(ωt −δω )    →   solve 

 
Mω 2 −K( ) !Aω = 0

Thus, all we have to do in step 1 is find the matrices M and K.  In our examples so far, we found the equations 
of motion and matched them to  M

!""q ≈ −K!q  to determine M and K.  Well, with our new relations, we don’t have 
to find the EOMs at all, 
	 ☞  we can obtain the M and K matrices directly from T and U approximated to 2nd order in  qi , !qi .

Usually this is much faster than finding the EOMs.  For example, for two degrees of freedom, you can read off 
from U the entries of the K matrix in either of these ways :

	
  approximate
U  to 2nd  order : U ≈ 1

2
Kijqiqj   →  

2U ≈ K11q1
2 + K22q2

2 + K12q1q2 + K21q2q1
= K11q1

2 + K22q2
2 + (K12 + K21)q1q2

      OR      
 

Kij =
∂2U
∂qi qj !q=0

You can either approximate U to second order in qi and read off the entries of K from the various terms (left-
hand side) OR you can take the partial derivatives of U and evaluate them at equilibrium (right-hand side).  
You obtain the M matrix from T in the same way using the corresponding standard form formulae above.  

Appendix B : DC Modes  

If you find that one of the eigenfrequencies, ω, of your system is zero then your system has a zero-frequency 
mode, a.k.a. a DC mode.  The normal-mode solution form is qi (t) = Ai cos(ωt −δ ) ; if you plug ω=0 into that, 
you get a solution of all constants: qi (t) = Ai cos(δ ) = Bi .  That’s not enough free parameters: we need two free 
parameters per coordinate, and we only have one!  What to do? → Go back to one step after we postulated 
normal mode form, when we wrote down  

!""q = −ω 2 !q .  If you have a DC mode, then  
!""q = 0  → none of the 

coordinates are accelerating at all in this mode.  Well we know the solution of  !!qi = 0  → qi (t) = Ai + Bit . 
That’s got the two free parameters we need, great.  That’s the solution form you use for a DC mode. 


