
Physics 326 – Homework #3	          due Friday 1 pm

Problem 1 : Normal Coordinates

The normal coordinates ξi of a coupled oscillator 
problem are the coordinates that decouple the 
equations of motion.  If you could figure out what they 
are by just staring at your EOMs, these problems would 
be very simple!  Unfortunately, in practice there are very few cases where you can do this.  One such case is 
problems with two DOFs, described by the normal coordinates q1 and q2, where the system is symmetric 
under the exchange of q1 and q2.  Since the EOMs are unchanged when you swap q1 and q2, here’s what you 
do to decouple them:  
	 • Add and subtract the EOMs to give two new EOMs.
	 • Identify the single linear combination of q’s that appears in each of these two EOMs 
	    → these are the normal coordinates ξ+  and ξ– .  (For 1 ⟷ 2 symmetric systems, they will be 
	    ξ+ ≡ q1 + q2  and ξ– ≡ q1 − q2 .)
	 • Rewrite the EOMs in terms of ξ+  and ξ–  … et voilà!  You have decoupled EOMs.

(a)  The figure shows our standard 2-mass-3-spring system.  For this problem, we will only consider the highly 
symmetric case of equal masses m1=m2=m and equal springs k1=k2=k3=k.  Write down the EOMs of this simple 
system in terms of x1 and x2 then follow the bulleted procedure above to introduce coordinates  ξ+  and ξ–  that 
give you decoupled EOMs.  Finally, write your decoupled EOMs in matrix form,  M

ξ
!""ξ = −Kξ

!
ξ .  What elegant

property do the mass (M) and spring (K) matrices have when they are written in “ξ-space”, i.e. in terms of 
normal coordinates? 

(b) Now let’s subject each mass to a linear damping force  −b
!v = −2βm!v  (same β for both masses).  Use the 

method of normal coordinates to solve this problem, i.e. identify two coordinates ξ+  and ξ−  that are linear 
combinations of x1 and x2 that decouple the equations of motion.  

(c)  Using damped 1D-oscillator skills, solve your decoupled equations of motion to obtain the general solutions 
for the normal coordinates, ξ+ (t) and ξ− (t) .  Assume that β2 < k/m so that the oscillations are underdamped.  

(d)  Find x1(t) and x2(t) for the following initial conditions (ICs) :   x1(0) = A  and x2 (0) = v1(0) = v2 (0) = 0 .  
TACTICS: Since the general solutions are so simple in ξ-space (only one mode for each normal coordinate!) 
ξ-space is great for applying ICs to obtain a specific solution from a general one … if you work efficiently.  
You can do one of these two things to get the specific solutions x1(t) and x2(t) that you seek :
    1. Transform the general solutions from ξ-space to x-space, then apply the ICs to get the specific solutions.
    2. Transform the initial conditions from x-space to ξ-space, apply them in ξ-space, then
         transform the specific solutions from ξ-space to x-space.
As always, try both if you can, but you will find tactic #2 to be more efficient!  Also, applying initial conditions 
to an oscillator is usually much easier when you use the form B cos(ωt) + C sin(ωt) instead of A cos(ωt – δ).

(e-NOT FOR POINTS)  For your edification, re-solve the damped-oscillator system (parts b,c,d) without using 
normal coordinates at all, i.e. using the same technique you used for last week’s damped oscillator system.  
Just write the equations of motion in matrix form including a damping term,  M

!""x +D!"x +K!x = 0 , hypothesize 
normal-mode solution form,  

!x(t) = "
!
Ae "ωt  with a complex exponent and complex amplitude, and solve for the 

complex eigenvalues  !ω  and eigenvectors  
!"A  using standard techniques.  When you’re done, ask yourself: 

How much easier was the normal-coordinate solution?  I think you will find the answer is  “not much”.  Normal 
coordinates are conceptually important – as we will see! – but not all that much help as a solving technique.  



Problem 2 : 3 Beads and Springs on a Ring	  Qual Problem

Consider a frictionless rigid horizontal hoop of radius R.  Onto this hoop we thread three beads with masses 
2m, m, and m; between the beads we thread three identical springs on the hoop, each with force constant k.  
Find all three normal modes, along with their frequencies, and describe each mode with a sketch.

Problem 3 : Transverse Modes 

Two particles, of masses 2m and m, are secured 
to a light string of total length 4d that is stretched 
to tension T0 between two fixed supports.  As 
shown, the masses are not evenly spaced along the string.  The masses undergo small transverse oscillations, 
where their transverse displacements from equilibrium, y1 and y2, are kept to very small values compared with 
the length-scale d of the string.  (This system is roughly similar to the vibrations of a taut violin string.)

(a)  We must first obtain a formula for the potential energy U(Δy) of a string segment under tension when one of 
its ends is moved transversely by an amount Δy.  Start with this initial situation: a string of length d lies along 
the z axis and is under tension T0.  The left-hand end of the string is at the origin.  For convenience, define the 
potential energy U to be 0 when the string is in this state.  Now consider this final situation: the left end of the 
string is still at the origin but the right end has been moved “sideways” to the position (x, y, z) = (0, Δy, d).  The 
transverse displacement Δy is very small compared to the length of the string: Δy << d.  Calculate the potential 
energy U(Δy) to lowest non-vanishing order in Δy/d << 1.  Your formula must involve only the given 
parameters Δy, d, and T0.    

GUIDANCE: If you stretch a string by a very small amount, the change in the force=tension it exerts will be 
linearly proportional to the amount of stretching, simply because linear is the first term in the Taylor expansion 
of the force and there is no physical reason for this lowest-order term to be zero.  Thus, we can treat the taut 
string like a stretched linear spring, exerting a force of magnitude F = k (l – l0) along its length.  The only issue 
is that we aren’t given a spring constant k and an unstretched length l0 to characterize the string; instead we are 
given d and T0.  In brief: treat the string as a spring, just express everything in terms of d, T0, and Δy instead of 
the usual parameters k, l0 and l.  Important: d is not the unstretched length l0! The string is under tension when it 
has length d, so d must be greater than l0.  

(b)  Find the normal frequencies of transverse oscillation for this system.  You will find it useful throughout this 
problem to define the constant α ≡ T0 / dm( )  → using it will greatly simplify your expressions!   

(c)  Write down the general solution for y1(t) and y2(t).  

(d)  Is the general motion you just calculated periodic?  Explain why or why not, and if it is, give the period of 
the general motion.  

Problem 4 : 4-Atom Ring Molecule	 Qual Problem

To study the vibrational spectrum of a ring molecule like benzene, one can reasonably approximate the 
molecule’s atoms / sub-molecules as beads placed on a ring with springs between them.  Let’s try a 4-element 
ring molecule:  consider four identical beads of mass m placed on a ring with springs of equal strength k running 
along the ring between the beads.  Using as generalized coordinates the positions x1, x2, x3, x4 of the 4 beads 
measured along the ring relative to equilibrium, do the following: determine the four normal modes of the 
system, provide a small sketch of each mode so you can visualize it, and make sure your four modes are 
orthogonal to each other.  

Important guidance follows so don’t forget to turn the page. 



ORTHOGONALITY:  Two modes are orthogonal when their eigenvectors  
!
A1  and  

!
A2  are orthogonal, which

means that the inner product of the eigenvectors is zero:  
 
!
A1
!
A2 = 0 .  As [ was ‖ will-be ] shown in lecture, 

the only inner product that makes sense for the eigenvectors of a small-oscillation system is  
 
!
A1
!
A2 ≡

!
A1

TM
!
A2 .  

This operation is proportional to the familiar dot product whenever the mass matrix M is proportional to the
identity matrix 1.  (If that statement is not obvious to you, please ask!!!)  For our 4-atom ring molecule M = m1.

☞ Thus, for this problem, “two modes are orthogonal” means “the dot product of their eigenvectors is zero.” 

DEGENERATE MODES: You should find that two of this system’s normal modes are degenerate, which 
means that two eigenfrequencies are the same.  You must find the eigenvector for each mode; let’s call them 
 
!
A1  and  

!
A2 .  As you will discover, you will not have enough conditions to completely determine both  

!
A1  &  

!
A2 .

Instead you must make an arbitrary choice when building them.  Use this common tactic: set one of the free
components of  

!
A1  to zero, then figure out  

!
A2  using orthogonality.  As described in the previous paragraph, 

for this problem that means “ensure that  
!
A1 ⋅
!
A2 = 0 ”.  

HINT: The 4x4 matrix Mω 2 −K  can be hugely simplified by introducing a variable α ≡ mω 2 / k − 2( ) . 

________________________________________________________________________________________

The appendix is not needed for this homework, but it provides a structured summary of what we will develop in 
this week’s lectures … might be helpful. ☺︎ 

APPENDIX : Complete Formula Set for Inner Product Space Description of Normal Mode Solutions

	 • Space :  
!q(t) ≡  all solutions of a particular linear oscillator system

	 • Inner Product :      
!q1
!q2 ≡ !q1

TM !q2                 and associated magnitude :  
!q 2 ≡ !q !q

	 • Basis : âm  of eigenvectors defined by  K
!am =ωm

2M !am  and normalization  âm ≡ !am / |
!am |

	 • Basis is Orthonormal : ân âm = δnm
	 • Completeness for  

!q(t)      and      Normal Coordinates ξm : 

	       ξm  is the component of  
!q  along mode m :    

 

!q(t) = âm âm
!q(t)

modes m
∑ ≡ âm ξm

m
∑ (t) = âm "Am e

iωmt

m
∑    

	       ξm  is projected out of  
!q  by inner product:    ξm (t) =  âm

!q(t)   =  "Am e
iωmt = Am cos(ωmt −δm )

	 • Transformation between q-space and ξ-space :        

	 	 vectors :        
!
ξ = R !q           

!q = R−1
!
ξ           R−1 =

|
â1
|

|
â2
|
...⎛

⎝⎜
⎞
⎠⎟        R = R−1( )TM

	 	 tensors :     Mξ = R−1( )TMR–1         →    Mmn
ξ = δmn     &   Kmn

ξ =ωm
2δmn

	 	 inhomogeneous EOM :      M
!""x +K!x =

!
F  in q-space       →     

 
Mξ
!""ξ +Kξ

!
ξ = R−1( )T !F  in ξ-space


