FORMULAE : Inner Product Space description of normal modes, including Normal Coordinates

- Space : $|\vec{q}(t)\rangle \equiv$ all solutions of a particular linear oscillator system
- Inner Product : $\quad\left\langle\vec{q}_{1} \mid \vec{q}_{2}\right\rangle \equiv \vec{q}_{1}{ }^{T} \mathbf{M} \vec{q}_{2} \quad$ and associated magnitude : $|\vec{q}|^{2} \equiv\langle\vec{q} \mid \vec{q}\rangle$
- Basis : $\left|\hat{a}_{m}\right\rangle$ of eigenvectors defined by $\mathbf{K} \vec{a}_{m}=\omega_{m}^{2} \mathbf{M} \vec{a}_{m}$ and normalization $\hat{a}_{m} \equiv \vec{a}_{m} /\left|\vec{a}_{m}\right|$
- Basis is Orthonormal : $\left\langle\hat{a}_{n} \mid \hat{a}_{m}\right\rangle=\delta_{n m}$
- Completeness for $\vec{q}(t)$ and Normal Coordinates ξ_{m} :
ξ_{m} is the component of \vec{q} along mode $m: \quad|\vec{q}(t)\rangle=\sum_{\text {modes } m}\left|\hat{a}_{m}\right\rangle\left\langle\hat{a}_{m} \mid \vec{q}(t)\right\rangle \equiv \sum_{m} \hat{a}_{m} \xi_{m}(t)=\sum_{m} \hat{a}_{m} \tilde{A}_{m} e^{i \omega_{m} t}$
ξ_{m} is projected out of \vec{q} by inner product: $\quad \xi_{m}(t)=\left\langle\hat{a}_{m} \mid \vec{q}(t)\right\rangle=\tilde{A}_{m} e^{i \omega_{m} t}=A_{m} \cos \left(\omega_{m} t-\delta_{m}\right)$
- Transformation between q-space and ξ-space :
vectors : $\quad \vec{\xi}=\mathbf{R} \vec{q} \quad \vec{q}=\mathbf{R}^{-1} \vec{\xi} \quad \mathbf{R}^{-1}=\left(\begin{array}{lll}1 & 1 & \hat{a}_{1} \\ 1 & \hat{a}_{2} & \ldots\end{array}\right) \quad \mathbf{R}=\left(\mathbf{R}^{-1}\right)^{T} \mathbf{M}$
tensors: $\quad \mathbf{M}^{\xi}=\left(\mathbf{R}^{-1}\right)^{T} \mathbf{M} \mathbf{R}^{-1} \quad \rightarrow \quad \mathbf{M}_{m n}^{\xi}=\delta_{m n} \quad \& \quad \mathbf{K}_{m n}^{\xi}=\omega_{m}^{2} \delta_{m n}$
inhomogeneous EOM : $\quad \mathbf{M} \ddot{\vec{x}}+\mathbf{K} \vec{x}=\vec{F}$ in q-space $\quad \rightarrow \quad \mathbf{M}^{\xi} \ddot{\xi}+\mathbf{K}^{\xi} \vec{\xi}=\left(\mathbf{R}^{-1}\right)^{T} \vec{F}$ in ξ-space

TECHNIQUE : Apart from the elegance of this formalism, normal coordinates can be a useful solving technique because they decouple the problem by modes.
(1) The equations of motion are $\mathbf{M}_{k i} \ddot{x}_{i}=-\mathbf{K}_{k j} x_{j}$ in x-space, with each of the ODEs involving in general all of the coordinates x_{i}. In ξ-space, the EOMs decouple to $\ddot{\xi}_{m}=-\omega_{m}^{2} \xi_{m}$: one separated ODE for each normal coordinate ξ_{m}. If our system has damping and/or driving forces to complicate the EOMs, decoupling the EOMs may be helpful.
(2) Initial conditions are almost always much easier to deal with in ξ-space. Why? The normal coordinates decouple not only the EOMs but also their solutions by modes: each normal-coordinate solution is $\xi_{m}(t)=A_{m} \cos \left(\omega_{m} t-\delta_{m}\right)=\tilde{A}_{m} e^{i \omega_{m} t}$ or equivalently $B_{m} \cos \left(\omega_{m} t\right)+C_{m} \sin \left(\omega_{m} t\right)$, so it has $\underline{2}$ adjustable parameters that are completely independent (!!!) of all the other adjustable parameters in your n-dimensional system.

Problem 1 : Normalized Basis \& Normal Coordinates for Double Pendulum

Let's explore our new concepts using the double pendulum, where the \{upper, lower\} pendula have lengths $\left\{l_{1}, l_{2}\right\}$, attached masses $\left\{m_{1}, m_{2}\right\}$, and make angles $\left\{\phi_{1}, \phi_{2}\right\}$ with the vertical. Using ϕ_{1}, ϕ_{2} as our generalized coordinates, the mass and spring matrices for small oscillations of the general double pendulum are:

$$
\mathbf{M}=m_{1} l_{1}^{2}\left(\begin{array}{cc}
1+\alpha & \alpha \lambda \\
\alpha \lambda & \alpha \lambda^{2}
\end{array}\right) \& \quad \mathbf{K}=m_{1} l_{1} g\left(\begin{array}{cc}
1+\alpha & 0 \\
0 & \alpha \lambda
\end{array}\right) \quad \text { where } \alpha \equiv \frac{m_{2}}{m_{1}} \& \lambda \equiv \frac{l_{2}}{l_{1}}
$$

Deriving these results is great practice, but since you have already solved a triple pendulum, it's not for points.
(a) Find the normal modes (frequencies and eigenvectors) for the following double-pendulum configuration:

$$
m_{1}=3, \quad m_{2}=1, \quad l_{1}=l_{2}=\frac{1}{2} \quad \rightarrow \quad \mathbf{M}=\frac{1}{4}\left(\begin{array}{ll}
4 & 1 \\
1 & 1
\end{array}\right) \quad \text { and } \quad \mathbf{K}=\frac{1}{4}\left(\begin{array}{cc}
8 g & 0 \\
0 & 2 g
\end{array}\right)
$$

(b) Show explicitly that the eigenvectors \vec{a}_{S} (slow mode) and \vec{a}_{F} (fast mode) are not orthogonal according to the ordinary dot product, but are orthogonal using the new inner product we derived for normal-mode space. FYI: If you were very astute, you may have already used the orthogonality relation to find one of the eigenvectors; if so, bravo!
(c) Use your new skills to normalize the eigenvectors, i.e. to obtain \hat{a}_{S} and \hat{a}_{F}.

We now turn to the normal coordinates ξ_{S} and ξ_{F} for this system. Until now, we have only used normal coordinates as a trick for solving 2-DOF systems that are
 symmetric under the exchange of the two coordinates, by decoupling the equations of motion. Well, a complete set $\xi_{1, \ldots,}, \xi_{n}$ can be obtained for all linear oscillator problems, and they always decouple the n equations of motion. You can regard that as their definition: the ξ 's are the coordinates that yield n completely decoupled EOMs. Unfortunately, it is generally not possible to guess what they are in advance, so they are only useful as a trick for finding the normal modes in a few simple cases. But the normal coordinates have other useful properties, so let's explore them!
(d) As we know, the general solution for our double pendulum is the superposition of the two normal modes: $\vec{\phi}(t)=\tilde{A}_{S} e^{i \omega_{s} t} \hat{a}_{S}+\tilde{A}_{F} e^{i \omega_{F} t} \hat{a}_{F}$. Using the definition $\xi_{m}(t)=\left\langle\hat{a}_{m} \mid \vec{\phi}(t)\right\rangle$ and your normalized eigenvectors, determine the $\xi_{S}(t)$ and $\xi_{F}(t)$ as a function of time. Do you see how they are the components of $\vec{\phi}(t)$ in our \hat{a}_{n} basis? Do you see how each $\xi_{m}(t)$ gives the behaviour of a single mode m ?
(e) Now use the definition $\xi_{m}=\left\langle\hat{a}_{m} \mid \vec{\phi}\right\rangle$ in a different way: instead of dropping in the full time-dependent solution $\vec{\phi}(t)$ on the right-hand side of that inner product, just drop in the coordinate vector $\vec{\phi}=\left(\phi_{1}, \phi_{2}\right)$. This time you will obtain ξ_{S} and ξ_{F} as a function of your generalized coordinates ϕ_{1} and ϕ_{2}.
(f) You just found the transformation from the angle coordinates ϕ_{1}, ϕ_{2} to the normal coordinates ξ_{S}, ξ_{F}.

Do these new coordinates really give decoupled EOMs as advertised? Let's find out! Write down the two equations of motion in terms of angles, then transform them to normal coordinates. What new EOMs do you get? Reminder: you can read off the EOMs immediately from \mathbf{M} and \mathbf{K} (check lecture 1 if you've forgotten).
(g) We now have two coordinate systems, and so two ways of writing the general solution for our system:

$$
\binom{\phi_{1}(t)}{\phi_{2}(t)}=\tilde{A}_{S} e^{i \omega_{S} t}\binom{1 / \sqrt{3}}{2 / \sqrt{3}}+\tilde{A}_{F} e^{i \omega_{F^{t} t}}\binom{1}{-2} \quad \text { and } \quad\binom{\xi_{S}(t)}{\xi_{F}(t)}=\tilde{\alpha}_{S} e^{i \omega_{S} t}\binom{1}{0}+\tilde{\alpha}_{F} e^{i \omega_{F^{t}}}\binom{0}{1}
$$

These are important expressions \ldots to study them further, demonstrate explicitly that the $\tilde{A}_{S, F}$ and $\tilde{\alpha}_{S, F}$ coefficients are EXACTLY THE SAME. Possible strategy: use (e).
(h) Normal coordinates are the best way to deal with initial conditions. The general solution is:

$$
\binom{\xi_{S}(t)}{\xi_{F}(t)}=\binom{\tilde{A}_{S} e^{i \omega_{S} t}}{\tilde{A}_{F} e^{i \omega_{F} t}}=\binom{A_{S} \cos \left(\omega_{S} t-\delta_{S}\right)}{A_{F} \cos \left(\omega_{F} t-\delta_{S}\right)}=\binom{B_{S} \cos \left(\omega_{S} t\right)+C_{S} \sin \left(\omega_{S} t\right)}{B_{F} \cos \left(\omega_{F} t\right)+C_{F} \sin \left(\omega_{F} t\right)}
$$

That last form is ideal for initial conditions specified at $t=0$. Use it and part (e) to fit the B 's and C 's that match the following initial conditions:

$$
\text { at } t=0, \phi_{1}=\phi_{2}=2 \text { while } \dot{\phi}_{1}=0 \text { and } \dot{\phi}_{2}=1 .
$$

That gives you $\xi_{\mathrm{s}}(t)$ and $\xi_{\mathrm{F}}(t)$; transform back to ϕ-space to obtain the solutions $\phi_{1}(t)$ and $\phi_{2}(t)$ that satisfy the above initial conditions. You may use the symbols $B_{\mathrm{S}, \mathrm{F}}, C_{\mathrm{S}, \mathrm{F}}$, and $\omega_{\mathrm{S}, \mathrm{F}}$ in your final answer.

Problem 2 : Unnormalized Basis Vectors

Normalizing our eigenvectors from \vec{a}_{m} to $\hat{a}_{m} \equiv \vec{a}_{m}| | \vec{a}_{m} \mid$ makes many of the formulae in our collection elegant, specifically those that involve normal coordinates and allow us to transform between q-space and ξ-space \ldots.. but honestly, it is an annoyance as it usually introduces irritating square roots to carry around. You'll be happy to learn the we can work with unnormalized basis vectors, as long as we change some of those formulae.

Here are the defining elements of our unnormalized IPS, with the modified formulae highlighted in blue:

- Space : $|\vec{q}(t)\rangle \equiv$ all solutions of a particular linear oscillator system
- Inner Product : $\left\langle\vec{q}_{1} \mid \vec{q}_{2}\right\rangle \equiv \vec{q}_{1}{ }^{T} \mathbf{M} \vec{q}_{2} \quad$ and associated magnitude : $|\vec{q}|^{2} \equiv\langle\vec{q} \mid \vec{q}\rangle$
- Basis : $\left|\vec{a}_{m}\right\rangle$ of eigenvectors defined by $\mathbf{K} \vec{a}_{m}=\omega_{m}^{2} \mathbf{M} \vec{a}_{m}$ with no normalization
- Basis is Orthogonal : $\left\langle\vec{a}_{n} \mid \vec{a}_{m}\right\rangle=\delta_{n m}\left|\vec{a}_{n}\right|^{2}$

We have two more sections to modify. That's your job!
(a) The next section determines how we project out the normal coordinates from a solution in q-space. Remember: each normal coordinate ξ_{m} is the COMPONENT of the solution that lies along the mode $m \ldots$ but now the basis vectors \vec{a}_{m} representing these modes do not have magnitude 1 ...

- Completeness for $\vec{q}(t)$ and \quad Normal Coordinates ξ_{m} :
ξ_{m} is the component of \vec{q} along mode $m: \quad|\vec{q}(t)\rangle=\sum_{m}\left|\vec{a}_{m}\right\rangle \frac{\left\langle\vec{a}_{m} \mid \vec{q}(t)\right\rangle}{?} \equiv \sum_{m}\left|\vec{a}_{m}\right\rangle \xi_{m}(t)=\sum_{m} \vec{a}_{m} \tilde{A}_{m} e^{i \omega_{m} t}$
ξ_{m} is projected out of \vec{q} by inner product: $\quad \xi_{m}(t)=\frac{\left\langle\vec{a}_{m} \mid \vec{q}(t)\right\rangle}{?}=\tilde{A}_{m} e^{i \omega_{m} t}$
You have to figure out what the question mark is.
HINT: The defining relation for the normal coordinates is $|\vec{q}(t)\rangle \equiv \sum\left|\vec{a}_{m}\right\rangle \xi_{m}(t) \rightarrow$ that is the completeness relation and it defines the normal coordinate ξ_{m} as the COMPONENT of the solution $\vec{q}(t)$ that lies along the mode m. You need to figure out how to project each ξ_{m} out of $\vec{q}(t)$ now that the basis elements \vec{a}_{m} do not have magnitude 1. The hint: hit the completeness relation from the left with the projection operator $\left\langle\vec{a}_{n}\right|$.
INTUITION: Think ANALOGY. What we are doing is 100% equivalent to projecting a 3D-space vector \vec{q} onto an unnormalized set of basis vectors. Pick a set: $\left\{\vec{a}_{i}\right\}=\{2 \hat{x}, 3 \hat{y}, 5 \hat{z}\}$ for example. What modification of the dot-product do you need to construct any vector as a linear combination of these basis vectors? i.e. What must you put in place of the question mark in $\vec{q}=\sum_{i} \vec{a}_{i} \frac{\left(\vec{a}_{i} \cdot \vec{q}\right)}{?}$
(b) Next we address the transformation matrices that take us from q-space to ξ-space and back again.
- Transformation between q-space and ξ-space :

$$
\text { vectors: } \quad \vec{\xi}=\mathbf{R} \vec{q} \quad \vec{q}=\mathbf{R}^{-1} \vec{\xi} \quad \mathbf{R}^{-1}=\left(\begin{array}{ccc}
1 & \mid & \\
\vec{a}_{1} & \vec{a}_{2} & \ldots \\
1 & \mid &
\end{array}\right) \quad \mathbf{R}=\text { ? }
$$

Nearly everything stays the same here, except of course the transformation matrix R^{-1} has to take us from ξ-space, where each mode is of the form $(00 \ldots 010 \ldots 00)$, to q-space, where are basis elements are now the unnormalized \vec{a}_{m} eigenvectors instead of the normalized \hat{a}_{m}. But R itself has to change. The original version was

$$
\mathbf{R}=\left(\mathbf{R}^{-1}\right)^{T} \mathbf{M}
$$

(b1) First, prove that this relation is true for normalized basis vectors \hat{a}_{m} by doing the following:
(i) Write the orthonormality relation $\left\langle\hat{a}_{n} \mid \hat{a}_{m}\right\rangle=\delta_{n m}$ in matrix form. You should get a product of three matrices on the left; the convenient notation $\left(\begin{array}{cccc}1 & 1 & \\ \hat{a}_{1} & \hat{a}_{2} & \ldots \\ 1 & 1 & \end{array}\right)$ will help you to write two of them.
(ii) Spot the matrix \mathbf{R}^{-1} in your expression, then use the fact that $\mathbf{R} \mathbf{R}^{-1}=\mathbf{1}$ to identify the matrix \mathbf{R}.
(b2) Repeat this procedure with the modified orthogonality relation and modified matrix \mathbf{R}^{-1} we need for unnormalized basis vectors. What is \mathbf{R} now?
(c) Finally, the tensor transformations:

$$
\text { tensors : } \quad \mathbf{M}^{\xi}=\left(\mathbf{R}^{-1}\right)^{T} \mathbf{M} \mathbf{R}^{-1} \quad \rightarrow \quad \mathbf{M}_{m n}^{\xi}=\delta_{m n} \boldsymbol{?} \quad \& \quad \mathbf{K}_{m n}^{\xi}=\omega_{m}^{2} \boldsymbol{\delta}_{m n} ?
$$

You should check that the tensor transform formula $\mathbf{M}^{\xi}=\left(\mathbf{R}^{-1}\right)^{T} \mathbf{M} \mathbf{R}^{-1}$ is unchanged by going through the derivation from lecture; you will see that nothing needs to be altered. Given the changes we made to \mathbf{R} and \mathbf{R}^{-1}, do the forms of the $\mathbf{M} \xi$ and $\mathbf{K} \xi$ tensors in ξ-space change? Please calculate both and determine what that "?" is. (You should find it is the same for \mathbf{M} and \mathbf{K}. Also, we will do the derivation in the normalized case in the next lecture; you could wait until then if you like.)

Problem 3 : Driven 3m2s System

Qual Problem
Three identical blocks of mass $m=1$ are placed in a line on a frictionless horizontal table and connected by identical springs of spring-constant $k=1$. With the $+x$ direction pointing to the right, we number the blocks as $1,2,3$ from left to right, and define x_{1}, x_{2}, and x_{3} to be their x-positions relative to equilibrium. The blocks are initially at rest at $x_{1}=x_{2}=x_{3}=0$. At time $t=0$, an external driving force $\vec{F}=f \cos (\omega t) \hat{x}$ is applied to block 1 .
Calculate $\mathrm{x}_{3}(t)=$ the motion of block 3 for times $t \geq 0$. Tactics: do you switch to normal coordinates or not? It is a tradeoff. Here is a little summary of what will happen if you use ξ or not:

Step
(1) Find homogeneous solution
(2) Find particular solution
(3) Apply initial conditions
(4) \rightarrow final solution for $x_{3}(t)$

Not using $\xi \quad$ Using ξ
usual procedure, same in both methods
easy transformation algebra : go to ξ-space horrible algebra easy trivial
transformation algebra : return to x-space

Of course the best thing is to try both methods and see which you prefer. :-) Also remember problem 2: as long as you know what you're doing, you can save some algebra by not normalizing your basis vectors.

