
Physics 326 – Homework #4	 due Friday 1 pm

FORMULAE : Inner Product Space description of normal modes, including Normal Coordinates	   
	 • Space :  

!q(t) ≡  all solutions of a particular linear oscillator system

	 • Inner Product :      
!q1
!q2 ≡ !q1

TM !q2                 and associated magnitude :  
!q 2 ≡ !q !q

	 • Basis : âm  of eigenvectors defined by  K
!am =ωm

2M !am  and normalization  âm ≡ !am / |
!am |

	 • Basis is Orthonormal : ân âm = δnm
	 • Completeness for  

!q(t)      and      Normal Coordinates ξm : 

	       ξm  is the component of  
!q  along mode m :    

 

!q(t) = âm âm
!q(t)

modes m
∑ ≡ âm ξm

m
∑ (t) = âm "Am e

iωmt

m
∑    

	       ξm  is projected out of  
!q  by inner product:    ξm (t) =  âm

!q(t)   =  "Am e
iωmt = Am cos(ωmt −δm )

	 • Transformation between q-space and ξ-space :        

	 	 vectors :        
!
ξ = R !q           

!q = R−1
!
ξ           R−1 =

|
â1
|

|
â2
|
...⎛

⎝⎜
⎞
⎠⎟        R = R−1( )TM

	 	 tensors :     Mξ = R−1( )TMR–1         →    Mmn
ξ = δmn     &   Kmn

ξ =ωm
2δmn

	 	 inhomogeneous EOM :      M
!""x +K!x =

!
F  in q-space       →     

 
Mξ
!""ξ +Kξ

!
ξ = R−1( )T !F  in ξ-space

TECHNIQUE : Apart from the elegance of this formalism, normal coordinates can be a useful solving 
technique because they decouple the problem by modes.  
(1) The equations of motion are  Mki!!xi = −Kkj x j  in x-space, with each of the ODEs involving in general all of 
the coordinates xi.  In ξ-space, the EOMs decouple to  

!!ξm = −ωm
2ξm : one separated ODE for each normal 

coordinate ξm.  If our system has damping and/or driving forces to complicate the EOMs, decoupling the EOMs 
may be helpful.   
(2) Initial conditions are almost always much easier to deal with in ξ-space.  Why?  The normal coordinates 
decouple not only the EOMs but also their solutions by modes: each normal-coordinate solution is

 ξm (t) = Am cos(ωmt −δm ) = !Ame
iωmt  or equivalently Bm cos(ωmt)+Cm sin(ωmt) , so it has 2 adjustable parameters 

that are completely independent (!!!) of all the other adjustable parameters in your n-dimensional system.

Problem 1 : Normalized Basis & Normal Coordinates for Double Pendulum	

Let’s explore our new concepts using the double pendulum, where the {upper, lower} 
pendula have lengths {l1, l2}, attached masses {m1, m2}, and make angles {φ1, φ2} 
with the vertical.  Using φ1, φ2 as our generalized coordinates, the mass and spring 
matrices for small oscillations of the general double pendulum are:

M = m1l1
2 1+α αλ

αλ αλ2
⎛

⎝⎜
⎞

⎠⎟
  &   K = m1l1g

1+α 0
0 αλ

⎛
⎝⎜

⎞
⎠⎟

   where α ≡
m2

m1

 & λ ≡
l2
l1

 

Deriving these results is great practice, but since you have already solved a triple 
pendulum, it’s not for points. 

(a) Find the normal modes (frequencies and eigenvectors) for the following double-pendulum configuration:



m1 = 3,      m2 = 1,     l1 = l2 =
1
2

    →       M = 1
4

4 1
1 1

⎛
⎝⎜

⎞
⎠⎟

   and   K = 1
4

8g 0
0 2g

⎛

⎝
⎜

⎞

⎠
⎟

(b)  Show explicitly that the eigenvectors  
!aS  (slow mode) and  

!aF  (fast mode) are 
not orthogonal according to the ordinary dot product, but are orthogonal using the 
new inner product we derived for normal-mode space.  FYI: If you were very astute, 
you may have already used the orthogonality relation to find one of the eigenvectors; 
if so, bravo!

(c)  Use your new skills to normalize the eigenvectors, i.e. to obtain âS  and âF .

We now turn to the normal coordinates ξS and ξF for this system.  Until now, we 
have only used normal coordinates as a trick for solving 2-DOF systems that are 
symmetric under the exchange of the two coordinates, by decoupling the equations of 
motion.  Well, a complete set ξ1,…,ξn can be obtained for all linear oscillator problems, and they always 
decouple the n equations of motion.  You can regard that as their definition: the ξ’s are the coordinates that yield 
n completely decoupled EOMs.  Unfortunately, it is generally not possible to guess what they are in advance, so 
they are only useful as a trick for finding the normal modes in a few simple cases.  But the normal coordinates 
have other useful properties, so let’s explore them! 

(d)  As we know, the general solution for our double pendulum is the superposition of the two normal modes: 
 
!
φ (t) = "ASe

iωSt âS + "AFe
iωFt âF .  Using the definition 

 
ξm (t) =  âm

!
φ (t)  and your normalized eigenvectors, 

determine the ξS (t)  and ξF (t)  as a function of time.  Do you see how they are the components of  
!
φ (t)  in our 

ân  basis?  Do you see how each ξm (t)  gives the behaviour of a single mode m? 

(e)  Now use the definition 
 
ξm  =  âm

!
φ  in a different way: instead of dropping in the full time-dependent 

solution  
!
φ (t)  on the right-hand side of that inner product, just drop in the coordinate vector  

!
φ = (φ1,φ2 ) .  

This time you will obtain ξS  and ξF  as a function of your generalized coordinates φ1 and φ2.   

(f)  You just found the transformation from the angle coordinates φ1, φ2 to the normal coordinates  ξS, ξF. 
Do these new coordinates really give decoupled EOMs as advertised?  Let’s find out!  Write down the two 
equations of motion in terms of angles, then transform them to normal coordinates.  What new EOMs do you 
get?  Reminder: you can read off the EOMs immediately from M and K (check lecture 1 if you’ve forgotten).

(g)  We now have two coordinate systems, and so two ways of writing the general solution for our system:

 

φ1(t)
φ2 (t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= !AS e

iωSt 1/ 3
2 / 3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
+ !AF e

iωFt 1
−2

⎛
⎝⎜

⎞
⎠⎟

     and     
 

ξS (t)
ξF (t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= !α S e

iωSt 1
0

⎛
⎝⎜

⎞
⎠⎟
+ !αF e

iωFt 0
1

⎛
⎝⎜

⎞
⎠⎟

These are important expressions … to study them further, demonstrate explicitly that the  
!AS ,F  and  !α S ,F  

coefficients are EXACTLY THE SAME.   Possible strategy: use (e).  

(h)  Normal coordinates are the best way to deal with initial conditions.  The general solution is:  

 

ξS (t)
ξF (t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=
!AS e

iωSt

!AF e
iωFt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

AS cos(ω St −δ S )
AF cos(ω Ft −δ S )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

BS cos(ω St)+CS sin(ω St)
BF cos(ω Ft)+CF sin(ω Ft)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

That last form is ideal for initial conditions specified at t = 0.  Use it and part (e) to fit the B’s and C’s that match 
the following initial conditions: 
	 at t = 0,  φ1 = φ2 = 2  while  !φ1 = 0 and  !φ2 = 1.  



That gives you ξS(t) and ξF(t); transform back to φ-space to obtain the solutions φ1(t) and φ2(t) that satisfy the 
above initial conditions.   You may use the symbols BS,F, CS,F, and ωS,F in your final answer.  

Problem 2 : Unnormalized Basis Vectors

Normalizing our eigenvectors from  
!am  to  âm ≡ !am / |

!am |  makes many of the formulae in our collection elegant, 
specifically those that involve normal coordinates and allow us to transform between q-space and ξ-space … but 
honestly, it is an annoyance as it usually introduces irritating square roots to carry around.  You’ll be happy to 
learn the we can work with unnormalized basis vectors, as long as we change some of those formulae. 

Here are the defining elements of our unnormalized IPS, with the modified formulae highlighted in blue:
	 • Space :  

!q(t) ≡  all solutions of a particular linear oscillator system

	 • Inner Product :      
!q1
!q2 ≡ !q1

TM !q2                 and associated magnitude :  
!q 2 ≡ !q !q

	 • Basis :  
!am  of eigenvectors defined by  K

!am =ωm
2M !am  with no normalization 

	 • Basis is Orthogonal :  
!an
!am = δ nm

!an
2

We have two more sections to modify.  That’s your job!

(a)  The next section determines how we project out the normal coordinates from a solution in q-space.  
Remember: each normal coordinate ξm is the COMPONENT of the solution that lies along the mode m … 
but now the basis vectors  

!am  representing these modes do not have magnitude 1 ...

	 • Completeness for  
!q(t)      and      Normal Coordinates ξm : 

	       ξm  is the component of  
!q  along mode m :    

 

!q(t) = !am
!am
!q(t)
?m

∑   ≡ !am ξm (t)
m
∑ = !am "Ame

iωmt

m
∑    

	       ξm  is projected out of  
!q  by inner product:   

 
ξm (t) =

!am
!q(t)
?

  =  "Am e
iωmt

You have to figure out what the question mark is.  

HINT: The defining relation for the normal coordinates is  
!q(t) ≡ !am ξm (t)∑  → that is the completeness

relation and it defines the normal coordinate ξm as the COMPONENT of the solution  
!q(t)  that lies along the 

mode m.  You need to figure out how to project each ξm out of  
!q(t)  now that the basis elements  

!am  do not have

magnitude 1.  The hint: hit the completeness relation from the left with the projection operator  
!an .  

INTUITION: Think ANALOGY.  What we are doing is 100% equivalent to projecting a 3D-space vector  
!q  

onto an unnormalized set of basis vectors.  Pick a set:  {
!ai} = {2 x̂, 3ŷ, 5ẑ}  for example.  What modification of

the dot-product do you need to construct any vector as a linear combination of these basis vectors? i.e. What 

must you put in place of the question mark in  
 

!q = !ai
(!ai ⋅
!q)
?i

∑



(b) Next we address the transformation matrices that take us from q-space to ξ-space and back again.  
	 • Transformation between q-space and ξ-space :        

	 	 vectors :        
!
ξ = R !q           

!q = R−1
!
ξ           

 
R−1 =

|!a1
|

|!a2
|
...⎛

⎝⎜
⎞
⎠⎟        R = ?

Nearly everything stays the same here, except of course the transformation matrix R–1 has to take us from 
ξ-space, where each mode is of the form (0 0 …0 1 0 … 0 0 ), to q-space, where are basis elements are now 
the unnormalized  

!am  eigenvectors instead of the normalized âm .  But R itself has to change.  The original 
version was 
	 R = R−1( )TM  

(b1)  First, prove that this relation is true for normalized basis vectors âm  by doing the following: 

(i) Write the orthonormality relation ân âm = δnm  in matrix form.  You should get a product of three

    matrices on the left; the convenient notation 
|
â1
|

|
â2
|
...⎛

⎝⎜
⎞
⎠⎟   will help you to write two of them.

(ii) Spot the matrix R–1 in your expression, then use the fact that RR−1 = 1  to identify the matrix R.  

(b2)  Repeat this procedure with the modified orthogonality relation and modified matrix R–1 we need for 
unnormalized basis vectors.  What is R now? 

(c)  Finally, the tensor transformations:

	 	 tensors :     Mξ = R−1( )TMR–1         →    Mmn
ξ = δmn ?     &   Kmn

ξ =ωm
2δmn ?

You should check that the tensor transform formula Mξ = R−1( )TMR–1  is unchanged by going through the
derivation from lecture; you will see that nothing needs to be altered.  Given the changes we made to R and R–1,
do the forms of the Mξ and Kξ tensors in ξ-space change?  Please calculate both and determine what that “?” is.  
(You should find it is the same for M and K.  Also, we will do the derivation in the normalized case in the next 
lecture; you could wait until then if you like.) 

Problem 3 : Driven 3m2s System	 Qual Problem

Three identical blocks of mass m = 1 are placed in a line on a frictionless horizontal table and connected by 
identical springs of spring-constant k = 1.  With the +x direction pointing to the right, we number the blocks as 
1,2,3 from left to right, and define x1, x2, and x3 to be their x-positions relative to equilibrium.  The blocks are 
initially at rest at x1 = x2 = x3 = 0.  At time t = 0, an external driving force  

!
F = f cos(ωt) x̂  is applied to block 1.  

Calculate x3(t) = the motion of block 3 for times t ≥ 0.  Tactics: do you switch to normal coordinates or not?  
It is a tradeoff.  Here is a little summary of what will happen if you use ξ or not: 

	 Step	  	 	 	 	 Not using ξ	 	 Using ξ
	 (1) Find homogeneous solution 	 usual procedure, same in both methods
	 (2) Find particular solution	 	 easy	 	 	 transformation algebra : go to ξ-space
	 (3) Apply initial conditions	 	 horrible algebra	 easy
	 (4) → final solution for x3(t)	 	 trivial	 	 	 transformation algebra : return to x-space

Of course the best thing is to try both methods and see which you prefer. :-)  Also remember problem 2: as long 
as you know what you’re doing, you can save some algebra by not normalizing your basis vectors.  


