
Physics 326 – Homework #10 	 due Friday, 1 pm
Here’s a summary of all our formulae so far related to the inertia tensor and rigid body rotation : 
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L, !ω , ê3  always coplanar

You also proved several extremely useful symmetry theorems in Discussion 9; those are at your disposal too.
The Free Symmetric Top part (last section of formulae above) starts in Lec 11A. 

Problem 1 : Practice with Euler’s Equations	

(a)  A rigid body is rotating freely, subject to zero torque.  Use Euler’s equations to prove that the magnitude of 
the angular momentum is constant.  Hint: you can just show L2 is constant, and L2 has a very nice form in the 
body-system used for Euler’s equations!  Write down its derivative, dL2/dt, then manipulate Euler’s equations 
(linear combination!) to build that dL2/dt expression … it comes out really nicely. ☺

IMPORTANT: For this and all other parts of this problem, please use Euler’s three equations to solve them, 
even if you could solve them some other way, e.g. by directly using the “master” equation  

!
τ = d

!
L / dt  on which 

Euler’s equations are based.  To be exact, please don’t use the vector equation  
!
τ = d

!
L / dt  at all : the entire point 

of this problem is to become familiar with the structure of Euler’s equations.  All parts of this problem can be 
solved by taking linear combinations of Euler’s equations (or using just one of them) to construct the quantity 
you are studying in each part. 

(b)  In much the same way, show that the kinetic energy of rotation,  Trot =
1
2

!
L ⋅ !ω , is constant under zero torque.

(c)  Consider a lamina rotating freely (no torques) about a point O that is within the lamina.  Use Euler’s 
equations to show that the component of  

!
ω  in the plane of the lamina has constant magnitude.  

(i.e. If you choose ê3 as perpendicular to the lamina, you must show that the time derivative of ω1
2 +ω2

2  is zero.)  
Hint: A pure lamina is completely flat : it has no size in the direction perpendicular to its surface.  This causes an 
additional simplification in the inertia tensor beyond certain off-diagonal elements going to zero → it imposes a 
strict relationship between the diagonal elements, i.e., one of them can be written in terms of the other two.  
You’ll need this relationship; it’s easy to figure out. 

(d)  Consider an axisymmetric object rotating freely (i.e. no torques) about a point O on its axis of symmetry.  
What do Euler’s equations tell us about the time-dependence of the component of  

!
ω  along the object’s axis of 

symmetry? 



Problem 2 : Small Oscillations of a Spinning Book	

We used Euler’s equations in lecture to analyze the rotational stability of a book, and we checked it with a 
demo.  Your turn to analyze the demo!  A book of uniform density and dimensions (a=30 cm) × (b=20 cm) × 
(c=3 cm) is held shut with a rubber band.  You throw the book into the air spinning at 180 rpm (revolutions per 
minute) about an axis that is very close to the book’s shortest symmetry axis (i.e. the axis parallel to the shortest 
dimension of the book).  What is the frequency of small oscillations of the book’s axis of rotation in the book’s 
body-frame?  Give your answer in rpm, so you don’t have to convert this awkward unit into anything else. 

FYI : The theorem we proved that an asymmetric object rotates stably around the principal axes with the largest 
and smallest moments of inertia and unstably around the PA with moment of inertia in between these extremes 
goes by various names including the “Intermediate Axis Theorem” and the “Tennis Racket Theorem”.  A tennis 
racket, like a narrow book, is a good demonstration object for this theorem because its three principal moments 
are very different.  Another outstanding demonstration object is your cellphone.  Try flipping it around its three 
principal axes … you will see that it rotates nicely around the long axis and around the axis normal to the 
screen, but if you flip it around the short axis, it will always do a funky gymnastic twist in the air before it 
returns to your hand.  Oh and don’t break your phone. 

<<< The evolving tensor-transformation problem that was here previously will appear 
next week.  If you worked on it already, hang on to your work!  >>> 

Problem 3 : Angles for a Free Symmetric Top

In our study of a torque-free symmetric top, we found the exceedingly important relation that the vectors 
 
!
L,  !ω ,  and ê3  always remain coplanar.  (Recall that ê3  is the axis of symmetry of the top.)  This coplanarity 
provides a crucial link between the body frame, where ê3  is fixed, and the lab frame, where  

!
L  is fixed.  

In addition, the angles between these three vectors  remain constant throughout the object’s motion.  

Just FYI: for basically all “free top” problems, the quantities you must be given to make the system solvable are
	 • the top’s principal moments Ii, or enough information about the top to calculate them
	 • some information about  

!
ω , e.g. the components ω3 and ω12 = ω1ê1 +ω2ê2  (which are constants of

               motion for an axisymmetric top), the magnitude ω and some angle, or some initial value  
!
ω t=0

(a)  Calculate the angle α between the vectors  
!
L  and ê3  in terms of I1, I3,ω12 ,  and/or ω 3 .

(b)  Do the same for the angle β between the vectors  
!
ω  and ê3 .

(c)  A thin, flat, uniform circular disc is thrown into the air so that it spins with angular velocity ω about an axis 
that makes an angle β with the symmetry axis of the disc.  What is the precession frequency of the disc’s 
symmetry axis around the angular momentum vector, as seen in the lab frame?  Amazingly, the answer depends 
only on ω and sin β. 

Problem 4 : The Space Station from 2001

An axially symmetric space station (e.g. the torus depicted in the movie “2001”) rotates in empty space.  It has 
rockets mounted symmetrically on opposite sides.  The rockets fire continuously so as to exert a constant torque 
 
!
τ = τ ê3  around the station’s axis of symmetry, ê3 .  The principal moments I1 and I3 of the station are known.

The station’s rotation is not aligned with its symmetry axis : at time t = 0, the rotation vector is 

 
!
ω t=0 =ω20ê2 +ω 30ê3 , where ω20 and ω30 are constants.  Solve Euler’s equations exactly for  

!
ω (t) in the body 

coordinate system using this initial condition.  If you need it, a math hint is provided at the end about how to
solve the coupled differential equations you will encounter.  



________________________________________________________________________________
Math Hint for Problem 4 : The Space Station

You will encounter coupled equations of this type: 
 

!f1(t) = −K(t) f2 (t)
!f2 (t) =   K(t) f1(t)

  .  

If that coefficient K(t) was a constant, K, you would immediately know the form of the functions: one of them is 
a sine and one of them is a cosine.  They may have some overall phase shift or some amplitudes of common 
magnitude to satisfy the boundary conditions, e.g. −6sin(ωt − 45º )  and 6cos(ωt − 45º )  … but whatever the 
details, you know f1 and f2 are sinusoidal functions of time that are 90° out of phase with each other.  There is 
no other pair of functions that will give you “derivative of f1 is –blah f2 and derivative of f2 is +blah f1”.   The 
only unfamiliar aspect of problem 3(a) is that blah is a function of time, not a constant.  Well you can still solve 
the equations by guessing well.  Will a sine and a cosine still work?  Absolutely : even when blah is time-
dependent, there is still no other pair of functions that gives you “derivative of f1 is –blah f2 and derivative of f2 
is +blah f1”.  You are accustomed to the solution forms Asin(ωt + φ)  and Acos(ωt + φ)… you just have to 
rethink them a little bit.  You need some additional time-dependence somewhere, to accommodate that K(t) 
coefficient ... where shall we put it?  How about in the argument of the sinusoidal functions? ➔ ωt is a bit too 
simple, that’s all, so try replacing it with some unknown function of time, g(t) : try Asin[g(t)]  instead of 
Asin[ωt] .  Plug forms like that for  f1 and f2 into your differential equations and you will quickly see what g(t) 
has to be. 


