
Physics 326 – Homework #11 	 HARD DEADLINE : Monday, Nov 20, 1 pm
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You also proved several extremely useful symmetry theorems in Discussion 9; those are at your disposal too.

New stuff : the Euler angles (φ,θ,ψ) provide an excellent way of analyzing the general rotation of a rigid body 
because they can be readily interpreted.  The main formulae and the key figure are : 

	  
!
ω = "φ ẑ + "θ ˆ′e2 + "ψ ê3                                 directly from figure

	  
!
ω = − "φ sinθ ˆ′e1 + "θ ˆ′e2 + ( "ψ + "φ cosθ ) ê3     decompositn into ⊥ components

	    =            !ω12         +        !ω 3                  using ẑ = cosθ ê3 − sinθ ˆ′e1
To obtain the angular momentum and kinetic energy, we as usual work 
with body-frame components, since the inertia tensor is diagonal in the 
body frame.  That last decomposition of ω is perfect for this purpose!  
For an axisymmetric body (i.e. one with I1 = I2) we write  
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!
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as usual, then substitute in the Euler-angle expressions for  
!
ω12  and  

!
ω 3  from above.

Problem 1 : Adding a Mountain to a Spherical Planet	

Imagine that this world is a perfectly rigid uniform sphere (no equatorial bulge!) and is spinning about its usual 
axis at its usual rate.  A huge mountain of mass 10–8 earth masses is now added at colatitude 60°, where 
“colatitude” means “angle with respect to the north pole”.  (The Earth-geography latitude of this mountain 
would thus be 30° N.)   The mountain ruins the earth’s perfect symmetry and so causes the Earth to begin free 
precession, like any other axisymmetric body.  Assuming that no torques affect the Earth’s motion, how long 
will it take the rotational North Pole (the spot where  

!
ω  punches through the Earth’s surface) to move 60 km 

along the Earth’s surface from its current position?  Take the Earth’s radius to be 6400 km.  Note: the input 
values you’ve been given have been specified to at most two significant digits, so it makes no sense to obtain 
your answer to any greater level of precision than that. ☺ 

Benjamin Hooberman




Problem 2 : Spinning Top on a Table     

Euler’s angles provide us with perfect generalized coordinates for a rigid 
body, and we can use them to build a Lagrangian.  Hurray!  Let’s analyze 
the motion of an axisymmetric top spinning on a table in uniform gravity g.
Put the origin at the location of the fixed pivot point on the table, define  
ẑ  to point upwards and ê3  to point along the top’s axis of symmetry, and 
let R be the distance from the pivot to the CM of the top.  We also know the 
moments of inertia I3 and I1=I2 of the top and its total mass M.   
Our task is to figure out the top’s general motion. 

(a)  Write down the Lagrangian   L(φ,θ ,ψ , !φ, !θ , !ψ ) = T −U  for this system.

(b)  Your Lagrangian should have two cyclic coordinates: ψ and φ.  
These give constants of motion, which is great!  
First, find the constant generalized momentum   pψ ≡ ∂L / ∂ !ψ  
associated with the ψ coordinate.
(c)  Generalized momenta associated with angles are usually some form of   
angular momentum.  pψ is no exception.  Which component of angular momentum is it?   
You have a lot of choices: Lx, Ly, Lz, L1, L2, L3, L1’, L2’, … but it is one of these. ☺︎  You must prove your choice, 
of course! 

(d)  Now find the constant generalized momentum   pφ ≡ ∂L / ∂ !φ  associated with the φ coordinate.  Once you 
have your expression, simplify it a bit using the constant  ω 3 = !ψ + !φ cosθ  you obtained from (b),(c).  

(e)  What is the significance of this pφ?  Again it is one of the components of  
!
L , but it is not so easy to pick out. 

Take a guess: pφ is associated with the motion  !φ  around the z-axis ... so it is probably Lz.  Start with the general 
expression  

!
L = I1 − "φ sinθ ˆ′e1 + "θ ˆ′e2( ) + I3ω 3 ê3 , calculate  Lz =

!
L ⋅ ẑ , and show that indeed pφ = Lz . 

(f)  Our third and final EOM is the one associated with θ.  Write it down.  

(g)  This 2nd order equation is not trivial to solve.  Let’s take a special case: θ = constant.  This is a guess … try 
it and see if it works.  What conclusion do you reach for the time-dependence of  !φ  and  !ψ ? 

(h)  Let’s introduce the label Ω for the constant  !φ .  Knowing only that θ,  !φ , and  !ψ are constant, describe the 
motion of the top and the significance of Ω in that motion. 

(i)  Now consider the further special case where ω3 is very big, i.e. far larger than any other quantity with the 
same dimensions).  This is the usual situation when you spin a top : the rotation  

!
ω  you give it is as close to the  

ê3  symmetry axis as possible, so ω ≈ ω3 >> ω1,ω2.  Using your EOM from part (g), solve for  the constant 
procession frequency  Ω ≡ !φ .  You will obtain a quadratic equation with two solutions: one large, and one small. 
Use the ω3 >> everything approximation to find these two solutions.  

 
!
ω = "φ ẑ + "θ ˆ′e2 + "ψ ê3
ẑ = cosθ ê3 − sinθ ˆ′e1

 

!
ω = − "φ sinθ ˆ′e1 + "θ ˆ′e2 + ( "ψ + "φ cosθ ) ê3

=             !ω12        +          !ω 3



Problem 3 : Horizontal Spinning Top

The spinning top in the previous problem was axisymmetric, secured to a fixed pivot at exactly one point, and 
under the influence of uniform gravity g.  Let’s construct the exact same situation but raise the pivot point above 
the table.  For example, we can nail a vertical post to the table, then attach the end of the top that was previously 
on the table to a pivot at the top of the post.  In this way, we can spin the top so that its axis of symmetry is 
always horizontal.  At t = 0, we hold the top’s axis horizontal to the ground, then we spin the top around its axis 
of symmetry with angular speed  

!
ω =ω 0 ê3 .  Remarkably, no matter how slow the initial spin ω0 is, the top’s 

axis remains perfectly horizontal, even with gravity pulling it downwards.  Wow!  The only thing that changes 
is the direction of the top’s symmetry axis, which precesses.  It is amazing that this happens, but of course 
someone filmed it : https://www.youtube.com/watch?v=ty9QSiVC2g0 ; the experiment is 3:00 into the video.

Your task is to find the precession frequency of the top’s symmetry axis in the lab frame, remembering to 
specify both its magnitude and direction.  Express your answer in terms of ω0 and the given parameters of the 
top I1, I3, M, and/or R = distance from top’s pivot-point to its center-of-mass.  I would like you to find the 
solution in two different ways : 

(a)  The precession frequency can be readily determined using the Lagrangian EOMs with Euler angles as 
generalized coordinates.  This is the method you worked with in Problem 2.  Using any of the relevant results 
you obtained in problem 2 without proof (since you already proved them!), determine the lab-frame precession 
vector of the horizontal spinning top. 

(b)  Now obtain the precession vector without using a Lagrangian.  The tools you may use without proof are 
those at the top of page 1, i.e. the same formula set as for last week’s homework.  These tools are the torque-
based EOM  

!
τ = d

!
L / dt  and the results we derived from it, e.g. Euler’s equations and a couple of special-case 

results.  This time, you cannot use any results from Problem 2; you must re-solve the problem from scratch 
without using a Lagrangian, so you can only use the given facts: 
	 ● the top’s symmetry axis remains horizontal at all times
	 ● at t=0,  

!
ω =ω 0 ê3 . 

	 ● we know the values of ω0, I1, I3, M, and R
Would you like some hints?  The final page of the homework has a long essay to guide you. ☺︎ 

Problem 4 : Vertical Spinning Top that’s Actually Stable

Take a cylindrically symmetric pencil, hold it vertically with the sharp end resting on a table, and spin it 
perfectly around its axis of symmetry with angular velocity ω0.  Will it fall over?  You cannot spin it perfectly 
around its axis of symmetry, so this is a stable-vs-unstable equilibrium question.  Suppose the angle θ between 
the pencil and the vertical direction is arbitrarily small but not quite zero.  Is it possible that a vertical rotation 
might actually be stable under tiny disturbances of θ and/or  !θ  around the equilibrium state { θ = 0, !θ = 0}?  
If we don’t give the pencil any spin ω0, this equilibrium state is for sure completely unstable (!) … but 
amazingly, if ω0 is large enough, you can get a stable vertical rotation.  

(a)  Calculate the minimum value of ω0 needed to achieve such stable equilibrium in terms of these given 
parameters: I1=I2, I3, M, g, and/or d = distance from the end of the pencil to its center of mass. 

(b)  Calculate the minimum ω0 in revolutions per second needed for the stable vertical rotation of :
	 (b1) a solid cylindrical pencil of length 16 cm and radius 0.5 cm
	 (b2) a hollow basketball of regulation radius 12 cm
on a table.  Note : only 2 significant digits given therefore only 2 needed ☺︎ Also, you can lift whatever 
moments of inertia you like from Wikipedia’s “List of Moments of Inertia” article. 

https://www.youtube.com/watch?v=ty9QSiVC2g0
https://www.youtube.com/watch?v=ty9QSiVC2g0


_________________________________________________________________________________________

GUIDANCE for Problem 3:  Euler’s equations are actually not the best way to go here.  Unlike in the case of
the Free Symmetric Top (FST), this problem has a non-zero torque.  You can certainly solve Euler’s equations
with the torque to get all three components ω1(t), ω2(t), ω3(t) in the body-fixed {ê1, ê2, ê3}  coordinate system … 
but then what?  You are looking for the precession frequency of the top’s axis in the LAB frame, so you must 
find some way to translate your ω1,2,3 solution into a lab-based motion.  The way we did this for the FST was to 
rely heavily on  

!
L , because in a torque-free situation, it is a constant.  Well, this is not a torque-free situation.  

The problem is not finding  
!
ω (t)  from Euler’s equations, the problem is interpreting it.  Hmm.  

The best procedure is to go back to the source of Euler’s equations,  
!
τ = d

!
L / dt  and  

!
L = Ii

!
ω i , and before you do 

anything else, build an  
!
ω  that you can interpret.  To do so, consider all possible motions of the object in this 

problem (they are actually fairly limited), then use the angular-velocity addition theorem  
!
ω a,c =

!
ω a,b +

!
ωb,c  to 

express  
!
ω  in terms of the precession vector you want and the other possible rotations.  Remember that a, b, c 

are FRAMES, namely measuring environments where a given pair of vectors are considered fixed (see 
footnote1).  To inspire your thinking, here are some examples we have already seen of the ω-addition theorem in 
use; the FRAMES involved are in CAPS:

	 In all cases, 	 	 	 	 	 	 	  
!
ω  = BODY { ê3, ê1} with respect to LAB { ẑ, x̂ }

	 Free Symmetric Top :  
!
ω =
!
Ω−
!
Ω*    −

!
Ω*  = BODY { ê3, ê1} with respect to PLANE { ω̂ , ê3, L̂}

	 	 	 	 	 	 	 	 	 	 	  
!
Ω  = PLANE {ω̂ , ê3, L̂ } with respect to LAB { x̂, ẑ ≡ L̂ }

	 Euler Angles :  
!
ω = "φ ẑ + "θ ˆ′e2 + "ψ ê3 	  !ψ ê3  = BODY { ê3, ê1} with respect to NODELINE-e3 { ê3, N̂ ≡ ˆ′e2 }

	 	 	 	 	 	 	 	 	 	 	  
!θ ˆ′e2  = NODELINE-e3 { ê3, N̂ } w.r.t. NODELINE-z { ẑ, N̂ }

	 	 	 	 	 	 	 	 	 	 	  
!φ ẑ  = NODELINE-z { ẑ, N̂ } with respect to LAB { ẑ, x̂ }

(Notice how in each “A with respect to B” statement, the frames A and B always share a vector in common?  
They must: that common vector is the direction of  

!
ωA,B , which is necessarily stationary in both frames.  

Think about it and play with objects for a minute ... it will be clear ☺︎.)  Once you have expressed  
!
ω  as the sum 

of <unknown precession vector that you want> + <other possible rotation vectors> in this fashion, build  
!
L  

using the given principal moments I1=I2 and I3, then evaluate both sides of the torque-based EOM  
!
τ = d

!
L / dt .  

Euler’s equations are nothing more than 
	

 
   !τ =

!"L =
!
ω ×
!
L +

!"L
within body

,

you are just doing that “by hand”, and using a form for  
!
ω that is simplified by the constraints of the problem 

and can be readily interpreted.  

1  When I say a frame is a measuring environment where two given vectors are considered fixed, I mean “vector” as in “a physical 
arrow with a certain magnitude, direction, AND LOCATION”.  I am being careless here since a vector like x̂  doesn’t actually 
have a LOCATION, only a magnitude and a direction.  That means I can create two frames where a given set  of unit vectors {x̂, ŷ}  
(and therefore their cross-product ẑ ) are fixed …  and, OOPS, these two frames might be moving at different speeds relative to 
each other.  To avoid this, we must define a frame as “an environment where two given vectors AND A GIVEN POINT are fixed”.  
That will distinguish all rotating and boosted frames from each other.  Nice.  In the context of rigid body rotations (what we are doing 
now), no boosting is going on at all, so there is no need to keep mentioning that the frames in question also include a defining fixed 
point.  All of our frames and coordinate systems are assumed to share a common origin.  I just wanted to clarify that that is implied.


