
Physics 326 – Homework #13 	 Due FRIDAY, 1 pm
Discussion 12 summarized the axioms of General Relativity, including the (non-axiomatic) Schwarzschild 
metric that we are using as our example of curved spacetime.  It is the metric describing the spacetime 
curvature around the most familiar type of mass: a spherically-symmetric non-rotating mass M.  
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In natural units, the annoying constants G and c vanish and the r, M, t, and τ variables all come out in the same 
units : meters.  One of the two main challenges of GR is figuring out how to use the metric to solve problems! 
The other challenge is how to find the metric for different mass distributions from Einstein’s field equations … 
but that is an advanced topic treated in graduate courses.  (Note that Einstein himself found it challenging: 
Schwarzschild, not Einstein, was the first one to find a solution.)  

Problem 1 : The Schwarzschild Radius = The Event Horizon of a Black Hole

The Schwarzschild radius is defined as RS ≡ 2M.  If you have a star (or planet, or anything else) whose entire 
mass M is packed into a sphere of radius less than 2M then, you have created a black hole.  
Why does such a star get a special name?  Because only in this circumstance can you put an object at the 
location r = 2M without drilling into the star, and thereby invalidating the Schwarzschild metric.  If you do get 
an object to the location r = 2M, one term in the Schwarzschild metric goes to zero and another goes to infinity, 
so interesting things must happen!  As we did/will discuss in lecture (depending on when you are doing this 
homework), an object at r = 2M is infinitely time-dilated:  if Alice is on a ship at r = 2M and Bob is on a station 
at r > 2M, then Alice never ages at all according to Bob.  Time doesn’t pass for Alice at all, according to Bob.  
Alice is frozen in time and can no longer do anything, according to Bob, so she cannot even get a light signal to 
Bob … and so Alice’s location has gone dark to Bob.  Hence “black hole” for something that can cause infinite 
time dilation and “event horizon” for the radius RS ≡ 2M below which no events can be remotely observed. 

(a)  Here’s a small exercise that you must do at least once: show that the Schwarzschild radius RS ≡ 2M  is 
precisely the radius at which the escape velocity is c.  Astonishingly, you do not need the machinery of GR at all 
to obtain this result, a purely Newtonian calculation gives RS ≡ 2M  … which is so extraordinary that one 
wonders if it is an accident or the key to some great secret … ☺ 

(b)  The density of normal air is about 1 kg / m3.  Is it possible to create a black hole out of air?  Our “sci fi” 
image of black holes makes it seem absurd, but it’s not impossible at all.  Figure out how big a black hole’s 
radius would have to be if it were made out of air, i.e. with a uniform mass density of no more than 1 kg / m3.  
Compare your result to some astronomical scales: the sun, the solar system, the Milky Way galaxy, …   

Problem 2 : The GR Lagrangian

All aspects of GR flow from the metric.  The dynamics of gravitational systems – i.e. the motion of particles in 
a gravitational field – is determined via this supremely elegant axiom:

The paths that particles follow are the geodesics – the “straight lines” – of the spacetime geometry 
through which they are passing.  Specifically, they are the paths that maximize the amount of proper 
time dτ∫  between any two endpoints.  This is sometimes called the Principle of Maximal Aging. 

GR thus motivates the use of a variational principle for mechanics in a supremely natural way! 



	 • In GR, the paths that physical systems take through spacetime are those that maximize dτ∫ .

	 • In Lagrangian mechanics, the paths that systems take are those that minimize Ldt∫ .

Since the Euler-Lagrange equations do not care if you are maximizing or minimizing your integral, the function 
L = dτ / dt   provides an “operational Lagrangian” for GR:  if we apply the Euler-Lagrange equations to L , we 
obtain the equations of motion for an object moving in the metric dτ as a function of time. 

We can also recast the Principle of Maximal Aging into the Principle of Least Action:  in the Newtonian limit,

maximizing dτ∫       must be the same as       minimizing LSI  dt∫ = (T −U ) dt∫
The result in SI units is that the Lagrangian of GR (and SR) is  LSI = −mc2dτ / dt  .   L = dτ / dt  works just fine 

for obtaining equations of motion; LSI = −mc2dτ / dt  is the quantity that maps onto T–U in the Newtonian limit.

(a)  Let’s see if it our formula does reproduce the familiar Lagrangian L = T – U!  Working in SI units for a 
change, calculate LSI = −mc2dτ / dt  from the Schwarzschild metric, then apply Taylor approximations to restrict 
ourselves to the regime where L = T – U works: 

     • at slow speeds  v≪ c  where Newtonian mechanics works (no special relativity needed), AND 
     • in weak gravitational fields  GM / rc2 ≪1 where Newton’s F = GMm / r2  gravitational force law works.

Show that, when approximated to lowest non-vanishing order in both of the small quantities v / c  and 
GM / rc2 , the Schwarzschild metric and the Principle of Maximal Aging do indeed reproduce L = T −U .  
Remember from Phys 325 that we have some freedom in the way we write a Lagrangian: 
• Since only the derivatives of L appear in the Euler-Lagrange equations, you can add or drop constant terms 

from any Lagrangian without changing the equations of motion.  
• Since L appears in all terms of the Euler-Lagrange equations, you can also multiply any Lagrangian by a 

constant factor without changing the equations of motion.  Since a particle’s rest mass is a scalar (a frame-
independent constant), the change from L = −dτ / dt  to L = −mc2dτ / dt  doesn’t affect the equations of 
motion at all, it will just help you to recognize T–U when you find it.  

(b)  Many newcomers to GR wonder why the geodesics of spacetime maximize dτ∫  rather than minimizing it. 
The reverse is true in spatial geometries, where geodesics are the shortest paths between two points, not the 
longest ones.  There are two ways you can see that this is true.  The first one is the uniqueness of geodesics: by 
definition, the geodesic path between two points extremizes the total distance (as defined by the metric); whether 
the extremum in question is a maximum or a minimum depends on which of those choices gives you a unique 
path between two points.  In the flat spatial world, it is clear that demanding the minimum distance between two 
points gives us a unique answer = a straight line; in contrast, there are an infinite number of paths you can draw 
that have an infinite = maximal length.  In the world of spacetime, where proper time provides the metric, the 
reverse is true.  To see this, do the following: (You can fit all the diagram questions on one figure if you like.) 
(b1) Draw a Minkowski diagram with time t going upwards and some spatial coordinate x pointing to the right 
(the usual SR convention for these sketches). 
(b2) Mark on the diagram two very simple endpoints: a starting point at the origin (t,x) = (0,0), and an ending 
point at the same place (x = 0) but 10 seconds later (t = 10). 



(b3) Write down the metric for flat spacetime, i.e. the metric in the absence of gravity.   This is just the familiar 
metric of SR = the definition of proper time.  Use only terms in dt and dx (ignore dy and dz for brevity), then 
factor out dt.  You should get this in SI units:  dτ = dt 1− ( !x / c)2 = dt 1− β 2  (using the SR notation β ≡ v / c ).

(b4) First find a path or paths that maximize dτ∫  for between the two endpoints you drew.  You can make the 

particle do anything, it just has to start at (t, x) = (0,0)  and end at (t, x) = (10,0)  … and any motion it makes 

will affect its proper time via dτ = dt 1− β 2 .  If you can find more than one path that maximizes dτ∫ , draw in 

more than one to show that the result is not unique.  HINT: β can only take on certain values ... use that fact to 
first figure out the maximum & minimum possible values of Δτ.  That’s all you need to figure out the paths to 
draw, so there is NO need to perform any variational calculations.

(b5) Now find a path or paths that minimize dτ∫  between your two endpoints.  Again, if you can find more 

than one such path, draw in more than one to show non-uniqueness.
(b6) If all went well, only one of the last two bullets produced a unique extremal path.  Does this unique path 
maximize or minimize proper time? 
(b7) What is the particle doing on the unique path you found?  Does this motion (or lack thereof) correctly 
describe the physical behaviour of a particle in free space with no forces acting on it?  (Remember: the flat 
metric dτ = dt 1− β 2  you’ve been using has no gravity in it, or any other forces.) 

(b8) To complete our understanding of the Principle of Maximal Aging, we must understand that last word: 
“Aging”.  If all went well, you should have at least three paths drawn on your figure.  For each path (well, for at 
least three of them ☺), indicate on the figure how much older each particle is in seconds when it reaches the 
endpoint compared with when it left the starting point. 
I hope this exercise has cemented your intuition about the Principle of Maximal Aging … and about the 
variational way of thinking about mechanics in general!  

Problem 3 : Conserved Energy & Radial Fall

You have all the tools you need to calculate the geodesics for any metric!  It’s just variational calculus: write the 
“maximize Δτ” principle in Lagrangian form and apply the Euler-Lagrange equations.  Solving those equations 
is another matter, however.  With dτ equal to a big square root of a complicated argument, the GR equations of 
motion are quite unpleasant. An excellent alternate strategy is to find conserved quantities for the geodesics 
you seek.  How? Look for cyclic coordinates qi that do not explicitly appear in the Lagrangian.  Recap: 
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In this problem, we will study the trajectory of a particle falling into a black hole from infinity.  We will 
consider radial motion only, so we have only on generalized coordinate, r, and the metric simplifies to 
dτ 2 = dt 2 1− 2M /r( ) − dr2 / 1− 2M /r( ) .

(a)  The Schwarzschild metric (and so the associated Lagrangian) has no explicit dependence on time, so the 
Hamiltonian H is conserved.  This is also a situation in which the Hamiltonian is equal to the system’s energy, 
since we are using natural coordinates (i.e. no time-dependent constraints … no constraints of any kind in fact).  
Calculate the Hamiltonian to show that the energy of a mass m particle falling into the gravity well of a mass M 

is given by  E = mc2 1− 2GM
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☞ Note: calculation of energy via the Hamiltonian is the only place where it matters if you use L or LSI .  If you 
use the reduced version L  of the Lagrangian, you will obtain a perfectly useful constant of motion that is 
proportional to the particle’s energy, it just won’t be energy exactly.  Now that we have our full formula, we can 

shorten it to  e = dt
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energy, and we are back in natural units.  ☺  

(b)  Use the fact that energy is conserved to determine the speed dr / dt  as a function of r.  The constant of 
motion e of the particle will appear in your result (to be determined by the initial conditions). 

(c)  Suppose the particle started at rest at r = ∞.  What is the constant of motion e in this situation?  Use this 
value of e to simplify your velocity expression from (b), and also use it for part (d).  

What you’ve calculated is “coordinate speed”: dr / dt  in the (r, t) coordinate system of the Schwarzschild 
metric.  The observer who uses these coordinates is basically an observer at infinity whose coordinates are 
unaffected by mass-induced spacetime curvatures.  Taylor & Wheeler have a colorful name for this observer: 
the “Bookkeeper” = a robot accountant who provides a reference set of clocks and rulers.  The Bookkeeper, 
being at infinity, never directly observes anything.  Consider the particle from part (c) that is traveling at dr / dt  
→ once it leaves infinity, the Bookkeeper cannot observe it directly since the Bookkeeper is never there.  

Now let’s consider Local Observers = observers who are at the location of our moving particle as it passes by.  
What do they see?  The Bookkeeper robot stays at infinity, so its clock time t is never affected by gravitational 
time dilation and its radial ruler r is unaffected by reduced-radius effects.  A local observer is one who is sitting 
at radius r with their clocks and rulers and only measures things that occur at or very near their location.  This 
observer is in the curved spacetime of the gravity-well and it does affect their clocks and rulers.  When they 
measure a time interval with their wristwatch, they measure dtlocal = dτ fixed r ,φ , which is not the Bookkeeper’s dt; 

when they measure a radial distance with their ruler, they measure drlocal = dσ fixed t ,φ , which is not the 

Bookkeeper’s dr.  If you are or are not disturbed by the grammar of the last three sentences, see the footnote.1

(d)  Calculate the velocity drlocal / dtlocal  seen by local observers who only make their speed measurement when 
the particle passes right by their location.  

(e)  Make a plot of speed vs coordinate-distance r showing both of the speeds you calculated: dr / dt  and 

drlocal / dtlocal .   You may be surprised at how different they are!  Be sure to indicate where the speed of light is 
on your plot’s vertical axis.  Also, remember that our formalism breaks down below r = 2M (the event horizon), 
so your plot should not extend below that radius. 

1 English desperately needs a gender-neutral pronoun!  “He/she” is too awkward, “it” is too inanimate, and inventing something new 
will never catch on.  I have thus decided to bend English grammar slightly and employ “they” as both a singular and plural pronoun.  
It is already in fairly commonly use as such, as in “the UFO was caught on camera by an unidentified hiker; they immediately posted 
the photo on their instagram account”.  In German, the pronoun “sie” means both “she” and “they” (“er” is “he”), so the root language 
of English already offers support for a pronoun doing double-duty as singular and plural.  Anyway, there endeth the manifesto.  ☺︎ 


