
Phys 326 Discussion 12 – GR, SR, & The Global Positioning System
In lecture we introduced General Relativity (GR), Einstein’s geometric theory of gravity.  GR has been 
extremely successful in describing 100 years worth of experimental tests and reveals that Newtonian gravity, 
F = –GM/r2, is an approximation for the case of weak gravitational fields = situations where the dimensionless 
combination GM/(c2 r) ≪ 1.  GR also incorporates Special Relativity (SR) in its very fabric. This overcomes 
the other limitation of Newtonian mechanics: that F = ma, KE = ½ mv2 , and the other formulae of traditional 
mechanics are approximations for slow speeds = situations where the dimensionless combination v/c ≪ 1. 

At the heart of GR are proper time, τ, and its close cousin, proper distance, σ.  The significance of these 
quantities as “watch time” and “ruler distance” comes from SR, and was explored in PHYS 225.  If you would 
like a refresher, see the Appendix.  In lecture, we traced the development of GR via a series of thought 
experiments, starting with the Equivalence Principle.  The result is a set of axioms that summarize the 
principal content of GR; we haven’t talked about them all yet, but here they are: 

(1)  The effect of mass on the universe is to create a curvature in the spacetime surrounding the mass.  
This curvature is summarized by the spacetime metric for dτ.  

(2)  The metric in the region of spacetime outside a non-rotating spherical mass M is the Schwarzschild metric:

 dτ = dt 2 1− 2M / r( ) − dr2

1− 2M / r( ) − r
2 dθ 2 + sin2θ dφ 2( )

This expression is written in natural units where both M and t are expressed in meters, just like r, using the 
physical constants c and G: M ≡ Mkg G/c2 and t ≡ tsec c.  NOTE: The Schwarzschild metric is not an axiom of 
GR, it is a result of the Einstein field equations, which are addressed in a graduate GR class.  The metric and 
the field equations are analogous to Coulomb’s Law and Maxwell’s equations in E&M:  Coulomb’s Law for the 
E-field of a static charge is a solution of Maxwell’s equations, but you learn Coulomb’s Law first to understand 
what an electric field E actually is (!) and how it behaves. 

(3)  The dynamics of GR are summarized by this elegant axiom: 

The paths of particles due to gravity are geodesics of the metric, i.e. the “straight lines” 
that extremize the proper time interval dτ∫  – the distance – between two fixed spacetime endpoints.  

Geodesics in 3D space extremize the spatial distance dl∫  between two fixed endpoints.  To get unique 
geodesics in 3D space we must find the minimum distance, hence: “a straight line is the path of shortest distance 
between two points”.  In 4D spacetime, it turns out that unique geodesics are obtained by maximizing total 
proper time.  This is sometimes called the Principle of Maximal Aging: the path taken by a particle to get from 
one fixed event to another is the one that maximizes the total proper time along the path.  Thus:

☞ Gravity isn’t a force at all; mass warps spacetime, and everything just travels in straight lines.

Problem 1 : The GPS System and the Weak-Field, Slow-Speed Schwarzschild Metric

Today we will explore a famous example where both GR and SR are required in an engineering situation: the 
Global Positioning System (GPS).  The GPS consists of a network of 32 satellites that orbit the earth in 12-hour 
orbits (see wikipedia: GPS for a lovely animated picture of this satellite network.)  Each satellite regularly sends 
out radio signals that record the satellite’s current time and position.  A GPS receiver on earth collects signals 
from 3-4 satellites.  Knowing the time and position at which each signal was sent, the local time on earth, and 
the fact that the signals travelled at the speed of light, the receiver can figure out roughly where it is: it is 
somewhere on a spherical surface of radius c(t♁– tS) around the satellite’s location.  Here t♁ is time on earth 
(when the signals were received) and tS is time at each satellite (when the signal was sent).  The receiver finally 
uses some overlapping-sphere geometry to determine its exact location.



The Problem: time on earth and time at the satellite cannot be directly compared!  	 Checkpoints 1
The satellite is moving relative to the earth’s surface and it is at a different gravitational potential than the 
earth’s surface.  Any comparison between t♁ and tS thus requires corrections for both Lorentz time dilation 
and gravitational time dilation.  We must calculate the size of these corrections!  We will need some earth 
data: as usual, 
	 ● the radius of the earth is R♁ = 6.4 × 106 m
	 ● all appearances of the earth’s mass M♁ will be in the combination GM♁, which is equal to gR⊕

2 . 
We learned in class how gravitational time dilation works qualitatively: “lower is slower”.  Local time elapses 
more slowly when you are lower in a gravitational field than when you are higher up.  If you look up to the top 
of a very tall mountain, you see the people / plants / birds above you moving and aging at a faster rate than is 
normal; if you look down, everything at the bottom of a valley seems to be moving and aging at a slower rate 
than is normal.  As our first exercise in using the Schwarzschild metric, 

	 	 dτ = dt 2 1− 2M / r( ) − dr2

1− 2M / r( ) − r
2 dθ 2 + sin2θ dφ 2( ) 	    	  in natural

   units:   M ≡ M kgG / c
2

t ≡ tsec c

we will use it to obtain the gravitational time correction.  Here is how to read the metric to reproduce the effect:  

● t is faraway time.  We will also call it Bookkeeper time by inventing a mythical observer, “The 
Bookkeeper”, who is located infinitely far from all gravitational fields and records the coordinates of 
events without taking any space-time distortions into account. 
● τ is local time.  It is proper time, of course, and we know from SR that proper time is the wristwatch time 

recorded by an observer who is at the events being measured (thus, local time).  

(a)  Take the Schwarzschild metric and factor out dt; the result will be an expression for dτ in terms of dt and 
the time-derivatives  !r,  !θ,  !φ .  Further, this entire calculation will take place in a single plane (we will work with
one satellite at a time), so take θ = 90° for simplicity.  That will kill off one term from your metric.	

(b)  Next switch from natural units to SI units: inject factors of G and c into your metric so that t and τ are in 
seconds and M is in kg.  Shuffle your constants so that they are all on the right-hand side, giving dτ = …
Your metric now looks like this:  dτ = dt 1− A − !r2C − r2 !φ 2 B .  We will be comparing local time intervals dτ⊕

measured by the receiver’s clock at the earth’s surface to the intervals dτ S  measured by the satellite’s clocks. 
Both clocks are sitting at fixed radii, so  !r = 0 ; the metric we need for this problem therefore simplifies to 

 dτ = dt 1− A − r2 !φ 2 B .   What are A and B when all quantities are expressed in SI units?	

(c)  As advertised, GR and SR are both going to make an appearance, but the effects are not huge ... we must 
estimate how big these effects are for the GPS system so that we can make some reasonable approximations.  
First, evaluate the dimensionless term A numerically for the two relevant radii: at r = R♁ (earth’s surface) and at 
r = RS (satellite’s orbit).  Start by finding RS in terms of R♁ using the fact that the GPS satellites are in circular 
orbits with 12-hour periods. 

(d)  Before we get to the next term, let’s decide to neglect the rotation of the earth.  (We must if we are going to 
use the Schwarzschild metric, because it only applies in the vicinity of non-rotating spherical masses M.)  Make 
a quick check that this is a reasonable approximation: calculate the orbital velocity vS of the satellite and the 
rotational speed v♁ of the earth’s surface.  Hopefully you will find that vS ≫ v♁ is a decent approximation. 

1 (b) A = 2GM⊕ / rc
2 = 2gR⊕

2 / rc2  & B = 1 / c2  (c) RS = 4.2 R⊕ →  A = 1.4 × 10–9 (earth) & 3.3 × 10–10 (sat) 

  (d)  vS ≈ 3,900 m/s,  v⊕ ≈ 500 m/s  (e)  1.7 × 10–10  (f) ☺  (g) –0.84 × 10–10  (h) +5.3 × 10–10  (i) look at upper (gravity) &
  lower (speed) curves at RS = 27,000 km  (j) δt ≈ δd / c = 6.7 nsec  (k) 15 sec!  (l,m,n) next question answers previous one



(e)  Now evaluate the term  r
2 !φ 2B  numerically for the satellite using the speed vS  you found in (d). 

(f)  I hope you found that both A and  r
2 !φ 2B are very small numbers at the two radii where we need them!  

A Taylor approximation is most certainly in order: apply a 1st-order Taylor approximation to the metric to get 
rid of that annoying square root in  dτ = dt 1− A − r2 !φ 2 B  . 

(g)  Our metric is now in the form of two nice additive corrections that we must apply to the “Bookkeeper time”  
dt to obtain earth-surface time dτ♁ and satellite time dτS.  The “A” term is due to gravity (gravitational time 
dilation) while the “B” term is due to speed (the familiar Lorentz time dilation from special relativity).  Since 
they are additive corrections, we can treat them one at a time.  Let’s do the special relativity correction first: 
calculate the fractional time-difference (dτS – dτ♁) / dτ♁ caused by “B” term.  Also, make sure you can recover 
the familiar form of Lorentz time-dilation from your expressions: that a moving clock ticks slower than a 
stationary one by a factor of γ = 1 / 1− β 2 .

(h)  Now we come to the gravitational correction.  Calculate the fractional time-difference (dτS – dτ♁) / dτ♁ 
caused by “A” term.  How does it compare to the Lorentz correction?  Everyone expects that the exotic theory 
of General Relativity couldn’t possibly have significant consequences for any engineering applications … you 
may be surprised by what you find!  Bonus: for practice, show that dτS / dτ♁ = 1+ (ΦS – Φ♁)/c2 where Φ is 
gravitational potential.  This is the weak-gravity result ΔτTOP / ΔτBOT ≈ 1 + ΔΦ/c2 that we obtained from our 
Alice / Bob / photon-emitter thought experiment using the Doppler shift; you can now get it straight from the 
Schwarzschild metric. ☺︎ 

(i)  The plot at right comes from Wikipedia and shows 
“picoseconds gained [on the satellite clocks] per earth second” 
as a function of the satellite’s orbital radius.  Check your work 
against this plot: use your two (dτS – dτ♁) / dτ♁ values and the 
orbital radius of the GPS satellites to compare your findings to 
the values on this graph.  Pay close attention to the signs of the 
two corrections: they are of opposite sign!  If you didn’t find 
that, please go back and debug!

(j)  These are tiny corrections … are they really needed to make 
the GPS system work?  Let’s find out.  GPS specifications quote 
a position accuracy of 2 m for military applications.  (It is about 
15 m for civilian GPS receivers.)  To achieve a position error of 
at most δd = 2 m, what is the maximum error δt that we can 
make in our time measurements?  Hints: Remember how the 
GPS receiver calculates positions: each satellite i reports its 
current location (xi, yi, zi) and time ti ... the receiver knows its own current time t ... so the receiver can deduce its 
own position (x, y, z) by figuring out how far it is from each satellite.  The satellite signals travel at the speed of 
light, so the approximate relation between δt and δd is … <something really simple> (don’t over-think it!).  So: 
δd = 2 m requires a time accuracy of δt = what?  If you’re really stuck,  jump to parts (l,m,n), then come back. 

(k)  That is some serious time accuracy!  The combined (dτS – dτ♁) / dτ♁ value you got from SR & GR is the 
fractional correction the earth receiver must make to the satellite times it receives to translate them into its own 
frame.  Suppose the GPS system did not make these tiny corrections.  Pick some moment when we reset all 
clocks in the system to zero.  How much time must pass on earth before the time-error exceeds δt and the GPS 
system drifts out of spec?  

➔ Message: the GR & SR corrections are ESSENTIAL for this system to work at all!  



(l)  How the GPS system actually works is quite interesting.  The equations the receiver must solve to determine 
its own position (x, y, z) based on its own time t and the satellite data (ti, xi, yi, zi) it receives are
	 c2 (t − ti )

2 = (x − xi )
2 + (y − yi )

2 + (z − zi )
2    for each satellite signal i received.

I put a bar over the satellite times ti  to clarify that the GR & SR corrections have been applied to translate them 
into earth-surface times.  How many such equations — i.e. how many satellite signals — are needed to solve for 
(x, y, z)? 

(m)  I bet you said three: 3 equations for 3 unknowns.  That makes perfect sense ... except that all those 
(x − xi )

2  terms are squared, meaning we lose sign information.  It turns out you can solve this problem exactly 
with four satellites.  To understand this, sketch the problem: the info from each satellite restricts the receiver’s 
location to a spherical surface of radius c(t − ti )  around the satellite’s position (xi , yi , zi ) .  How many such 
spherical surfaces do you need for their intersection to be exactly one point? 

(n)  Your sketching hopefully showed that three satellite signals will restrict the receiver’s position to two 
possible points.  Here, the GPS system takes a clever approach: when it has figured out the position down to two 
possible points, it assumes that the receiver is somewhere near the earth’s surface and picks the point closest to 
the earth’s surface.  (The other solution is usually way off.)   That brings us back down to only three satellites 
needed …  and now the final subtlety.  As it happens, the needed time accuracy δt ≈ 7 nsec is much better than 
can be achieved by the clock on a handheld receiver of reasonable price.  To solve this issue, the system adds 
back in a fourth satellite reading and this time solves the equations 
	 c2 (t − ti )

2 = (x − xi )
2 + (y − yi )

2 + (z − zi )
2    with i = 1, 2, 3, 4

for four unknowns: the desired position (x, y, z) of the receiver and the inaccurately-measured time t at the 
receiver.  It again resolves the discrepancy due to the squares using the clever strategy of picking the result 
closest to the earth’s surface.  Pretty clever. ☺  And no, this is not actually a question. ☺ 

Appendix: Proper Time,  Proper Distance, and the Metric 

(1) Proper Time: We know from SR that proper time, τ, is the one and only Lorentz-invariant (Lorentz-scalar) 
measure of the spacetime-distance between two events.  When gravity is absent, 

	 	 dτ = dt 2 − (dx2 + dy2 + dz2 ) .
Here we are using natural units, where time and position are both measured in meters using the physical 
constant c  (i.e. natural t = t-in-meters = c × t-in-seconds).  As we know from our relativity studies – and can 
anyway see immediately from the definition of dτ! – the proper time interval Δτ between two events 
corresponds to the “wristwatch time” Δt on the personal clock of the one special observer who is at both events, 
i.e. for whom Δx = Δy = Δz = 0.   

(2) Proper Distance: If we have spacelike separated events, i.e. events that are so far apart in space compared 
with their time separation that even an observer traveling at c could never be at both of them, the proper time 
between them would be imaginary, so we usually switch to proper distance, σ, defined as

 	 dσ ≡ −dτ = −dt 2 + (dx2 + dy2 + dz2 ) .  
This quantity can be interpreted as “ruler distance”: Δσ is the spatial distance Δx2 + Δy2 + Δz2  that would be
measured if you laid down a ruler between two events and read off the events’ positions at the same instant in 
time, i.e in the frame where Δt = 0.   

(3) The Metric: The metric of any space is the relationship that translates changes in coordinates into changes 
in physical distance.  The “physical distance” between two points in a space depends on the space you are 
talking about.  Some examples:

• In normal “Euclidean” 3D space, physical distance is spatial distance dl.  In Cartesian coordinates,



the metric is dl = dx2 + dy2 + dz2 .  The motivation for this definition of physical distance is that it is a 
scalar, meaning that is invariant under both rotations and translations.  

• Same space, different coordinate systems: the metric of 3D space in spherical coordinates is 
dl = dr2 + r2dθ 2 + r2 sin2θ dφ 2  , while in cylindrical coordinates it is dl = ds2 + s2dφ 2 + dz2 .

• In 4D spacetime, physical distance is dτ or dσ.  Again, the reasons for these definitions are that they are 
4-scalars, i.e. invariant under all ten of the fundamental symmetries of 4D spacetime: rotations, translations,
and boosts.  In an empty region of spacetime (one free of masses),  the metric is the Minkowski metric 
dτ = dt 2 − dl2  of SR, where the spatial component dl can be expressed in any spatial coordinate system.  


