
Physics 326 – Homework #3	           deadline extended further : due Wednesday 1 pm

Problem 0 : Not for points on this homework, but please do not forget to work through Discussion 3 Problem 2, 
which covers degenerate modes, if you did not manage to during discussion period. 

Problem 1 : Normal Coordinates

The normal coordinates ξi of a coupled oscillator 
problem are the coordinates that decouple the 
equations of motion.  If you could figure out what they 
are by just staring at your EOMs, these problems would 
be very simple!  Unfortunately, in practice there are very 
few cases where you can do this.  One such case is problems with two DOFs, described by the normal 
coordinates q1 and q2, where the system is symmetric under the exchange of q1 and q2.  Since the EOMs are 
unchanged when you swap q1 and q2, here’s what you do to decouple them:  
	 • Add and subtract the EOMs to give two new EOMs.
	 • Identify the single linear combination of q’s that appears in each of these two EOMs 
	    → these are the normal coordinates ξ+  and ξ– .  (For 1 "  2 symmetric systems, they will be 
	    ξ+ ≡ q1 + q2  and ξ– ≡ q1 − q2 .)
	 • Rewrite the EOMs in terms of ξ+  and ξ–  … et voilà!  You have decoupled EOMs.

(a)  The figure shows our standard 2-mass-3-spring system.  For this problem, we will only consider the highly 
symmetric case of equal masses m1=m2=m and equal springs k1=k2=k3=k.  Write down the EOMs of this simple 
system in terms of x1 and x2 then follow the bulleted procedure above to introduce coordinates  ξ+  and ξ–  that 
give you decoupled EOMs.  Finally, write your decoupled EOMs in matrix form,  M

ξ
!""ξ = −Kξ

!
ξ .  What elegant

property do the mass (M) and spring (K) matrices have when they are written in “ξ-space”, i.e. in terms of 
normal coordinates? 

(b) Now let’s subject each mass to a linear damping force  −b
!v = −2βm!v  (same β for both masses).  Use the 

method of normal coordinates to solve this problem, i.e. identify two coordinates ξ+  and ξ−  that are linear 
combinations of x1 and x2 that decouple the equations of motion.  

(c)  Using damped 1D-oscillator skills, solve your decoupled equations of motion to obtain the general solutions 
for the normal coordinates, ξ+ (t) and ξ− (t) .  Assume that β << k/m so that the oscillations are underdamped.  

(d)  Find x1(t) and x2(t) for the following initial conditions (ICs) :   x1(0) = A  and x2 (0) = v1(0) = v2 (0) = 0 .  
TACTICS: Since the general solutions are so simple in ξ-space (only one mode for each normal coordinate!) 
ξ-space is great for applying ICs to obtain a particular solution from a general one … if you work efficiently.  
You can do one of these two things to get the particular solutions x1(t) and x2(t) that you seek :
    1. Transform the general solutions from ξ-space to x-space, then apply the ICs to get the particular solutions.
    2. Transform the initial conditions from x-space to ξ-space, apply them in ξ-space, then
         transform the particular solutions from ξ-space to x-space.
As always, try both if you can, but you will find tactic #2 to be much more efficient!

(e-NOT FOR POINTS)  For your edification, re-solve the damped-oscillator system (parts b,c,d) without using 
normal coordinates at all, i.e. using the same technique you used for last week’s damped oscillator system.  
Just write the equations of motion in matrix form including a damping term,  M

!""x +D!"x +K!x = 0 , hypothesize 
normal-mode solution form,  

!x(t) = "
!
Ae "ωt  with a complex exponent and complex amplitude, and solve for the 

(complex) eigenvalues  !ω  and eigenvectors  
!"A  using standard techniques.  When you’re done, ask yourself: 



How much easier was the normal-coordinate solution?  I think you will find the answer is  “not much”.  Normal 
coordinates are conceptually important – as we will see! – but not all that much help as a solving technique.  

If you are working on this before Thursday’s lecture : you don’t have enough information yet 
to solve the last part of 2(b) or parts 3(d),(e),(f).  (We are a bit behind the posted schedule; I have 
flagged the affected parts in red and the formulae you need are in the Appendix.)  These parts 
are not long, but if your schedule makes things difficult, you can turn in the homework on 
Wednesday without penalty. 

Problem 2 : 3 Beads and Springs on a Ring	  Qual Problem

Consider a frictionless rigid horizontal hoop of radius R.  Onto this hoop we thread three beads with masses 
2m, m, and m; between the beads we thread three identical springs on the hoop, each with force constant k.  

(a)  Solve for the three normal frequencies. 

(b)  Find the three normal modes, describe them with sketches, and express them in normalized form, i.e. so that 
their amplitude vectors obey the 
orthonormality relation 
âm ân = âm

TM ân = δmn .  Take R = 1 for 
simplicity.

Problem 3 : Transverse Modes 

Two particles, of masses 2m and m, are secured to a light string of total length 4d that is stretched to tension T0 
between two fixed supports.  As shown, the masses are not evenly spaced along the string.  The masses undergo 
small transverse oscillations, where their transverse displacements from equilibrium, y1 and y2, are kept to very 
small values compared with the length-scale d of the string.  

(a)  Find the normal frequencies of transverse oscillation for this system.  You will find it useful throughout this 
problem to define the constant α ≡ T0 / dm( )  → using it will greatly simplify your expressions!   

(b)  Write down the general solution for y1(t) and y2(t).  

(c)  Is the general motion you calculated in (b) periodic?  Explain why or why not, and if it is, give the period of 
the general motion.  

(d)  Normalize the eigenvectors for the fast and slow modes to obtain an orthonormal basis âF , âS{ } .

(e)  Find the normal coordinates ξF and ξS in terms of the generalized coordinates y1 and y2, and determine the 
matrices R and R–1 that relate them via  

!
ξ = R !y  and  

!y = R−1
!
ξ .

(f)  Explicitly transform the mass matrix M and spring matrix K to ξ–space (i.e., calculate Mξ and Kξ) using the 
matrix transformation formula Mξ = R−1( )TM R−1( )  derived in class, and verify that they are diagonal.  

Problem 4 : 4-Atom Ring Molecule	 Qual Problem

To study the vibrational spectrum of a ring molecule like benzene, one can reasonably approximate the 
molecule’s atoms / sub-molecules as beads placed on a ring with springs between them.  Let’s try a 4-element 
ring molecule:  consider four identical beads of mass m placed on a ring with springs of equal strength k running 
along the ring between the beads.  Using as generalized coordinates the positions x1, x2, x3, x4 of the 4 beads 
measured along the ring relative to equilibrium, determine the four normal modes of the system.  Provide a 
small sketch of each mode so you can visualize it, and make sure your four modes are orthogonal to each other.

Hint: the 4x4 matrix Mω 2 −K  can be hugely simplified by introducing a variable α ≡ mω 2 / k − 2( ) .  



Appendix : Complete Formula Set for Inner Product Space Description of Normal Mode Solutions

	 • Space :  
!q(t) ≡  all solutions of a particular linear oscillator system

	 • Inner Product :      
!q1
!q2 ≡ !q1

TM !q2                 and associated magnitude :  
!q 2 ≡ !q !q

	 • Basis : âm  of eigenvectors defined by  K
!am =ωm

2M !am  and normalization  âm ≡ !am / |
!am |

	 • Basis is Orthonormal : ân âm = δnm
	 • Completeness for  

!q(t)      and      Normal Coordinates ξm : 

	       ξm  is the component of  
!q  along mode m :    

 

!q(t) = âm âm
!q(t)

modes m
∑ ≡ âm ξm

m
∑ (t) = âm "Am e

iωmt

m
∑    

	       ξm  is projected out of  
!q  by inner product:    ξm (t) =  âm

!q(t)   =  "Am e
iωmt = Am cos(ωmt −δm )

	 • Transformation between q-space and ξ-space :        

	 	 vectors :        
!
ξ = R !q           

!q = R−1
!
ξ           R−1 =

|
â1
|

|
â2
|
...⎛

⎝⎜
⎞
⎠⎟        R = R−1( )TM

	 	 tensors :     Mξ = R−1( )TMR–1         →    Mmn
ξ = δmn     &   Kmn

ξ =ωm
2δmn

	 	 inhomogeneous EOM :      M
!""x +K!x =

!
F  in q-space       →     

 
Mξ
!""ξ +Kξ

!
ξ = R−1( )T !F  in ξ-space


