Adaptive Pulse Oximeter

Calvin Lin, Brian Santoyo, Nathaniel Kelly

What is a Pulse Oximeter? (B)

- Medical device that can read your heart rate and blood oxygen saturation.
- First steps in diagnosis and checkups
- Used to monitor oxygen saturation for administering external oxygen supply
- Minimally invasive method

Consumer Grade Pulse Oximeter

Why do we care? (B)

- Pulse oximeters are minimally invasive
 - Blood draws are the only alternative

• Relatively cheap

• Very basic to manufacture/ Basic parts

• Very simple to use with adequate precision (exceptions)

Key Flaw in the pulse ox (B)

- Calibrated for lighter skin tones
- People with darker skin pigmentation get imprecise readings
- Gives readings that get artificially higher the darker the pigmentation
- Differences at key wavelength of 680 nm

What does this mean? (B)

• Pulse Ox used to administer external oxygen

• Overestimate in Pulse Ox means under administering external oxygen in darker skinned patients

 Many other medical uses for pulse oximeters including diagnosis is disrupted by this

• Creates racial disparities in healthcare quality

Our Idea (B)

- Calibrate the standard Pulse Ox for every patient
- Includes a color sensor to detect skin pigmentation of subject
- Use some sort of regression method to extrapolate a calibration curve to 680nm
- Use a few wavelengths at points where Hb and HbO2 are close

Methods: Goal For Data Acquisition (B)

• Sample a diverse set of people (different skin tones)

- Limitation: no reliable way to gather control data
 - Pulse oximeters are imprecise (as mentioned before)
 - Only alternative is to draw blood, we don't have that equipment

• Theoretical model of the spectra of patient solely from color data

• Proceed to build a model regardless, with only color data.

Breakdown of Sensor and Modules Used (B)

Feather M0 Microcontroller (B)

- As data logger and microcontroller
- Why we made the swap
 - Integrated SD card slot saved space
 - Small form factor compared to mega 2560
 - Support for an external lithium battery
- Difficulties
 - Not always straightforward to adapt code
 - Took time getting used to reset button
 - Required different board firmware (took us a while to figure out)
- Once difficulties were fleshed out the feather was great!

MAX30102 Pulse Oximeter (SparkFun) (B)

- Large, but similar in size to the Color Sensor
- Pulse sensor, SpO2 detection (blood oxygen)
- NOTE: this pulse ox uses reflectance
 - Clamp pulse oxes use transmittance through finger.
- BUT: our method is adaptable
 - Reflectance is inverse of transmittance
- We can apply calibration parameter to this

TFT Display (B)

• Provide a simple way to display data

• Large enough to display all sorts of things

• Colorful so it's easy on the eyes

• Not much else. We thought it'd be interesting.

AS7341 Color Sensor (B)

- By far, most important.
- We use only 3 wavelengths
- Chose this one for its flexibility
- Small form factor
- Integrated white LED (pretty good)
- Caveat: glaring green LED onboard
 - Disrupts color readings (baffling inclusion)
- We removed the green LED

Sensor on AS7341 (B)

AS7341

F1(405-425nm) F2(435-455nm) F3(470-490nm) F4(505-525nm) F5(545-565nm) F6(580-600nm) F7(620-640nm) F8(670-690nm)

Spectral Range of AS7341 (B)

Typical Light Absorption of Skin (B)

Prototype Pulse Ox

Device Design

- Two separate units
- Feather M0 and TFT in display case
- Spo2 and colorimeter in ergonomic finger holder

Display

• Contains Feather M0 and TFT Display

• Access to SD card, micro usb port, and reset button

Challenges

• Opening for usb port slightly out of place

• Opening for SD card too small to access

Finger Holder

• Based on existing pulse oximeters

 Maintains constant pressure on spo2 sensor

• Colorimeter at a distance from finger to avoid saturation

Challenges

• Opening for spo2 sensor was too small and would not sense the finger

• Colorimeter LED too bright, saturated the sensor

• Posts used to fasten pcb boards were too brittle

Data Collection

• Attempted to test front and back of finger to determine correlation between skin pigmentation and spo2 readings

• Inaccurate spo2 when testing back of finger

• Instead used select wavelengths to plot skin color absorption and compared the plots in an attempt to find a way to calibrate the pulse oximeter

• Used 590, 555, and 415 nm wavelengths to plot melanin absorption

- 590 nm and 555 nm wavelengths were the best indicators of different skin colors
- Found line of best fit for the data points
- Compared slope in an attempt to calibrate the pulse oximeter

Discussion: Calculation Method Limitations (B)

• Regression relies on extrapolation.

• Lack of control data means we can't be sure how exactly absorption of skin changes with pigmentation at different wavelengths

• Dark skin may have details we can't see or predict at lower wavelengths

• Without control (blood draws), we can't know for sure.

Code

• Pulse Oximeter

• Spectrometer

• Data Collection

• Calibration

Pulse Ox

Heart Rate - Zero Crossing

$$R=rac{rac{AC_{red}}{DC_{red}}}{rac{AC_{ir}}{DC_{ir}}}$$

$$SpO_2 = a \cdot R^2 + b \cdot R + c$$

b = -34.6596622

c = 112.6898759

Calibration Methods

CIELab colorspace and ITA

Table 2. Examples of Mean L*, a*, and b* Values for the Six Groups of Skin Color

Skin color type	ITA°	Mean values ± SEM				
		L*	a*	b*		
Very light	>55	74.5 ± 1.5	3.7 ± 0.5	14.5 ± 0.7		
Light	55-41	68.8 ± 0.5	7.0 ± 0.6	17.4 ± 0.5		
Intermediate	41-28	63.3 ± 0.4	7.4 ± 0.5	18.7 ± 0.5		
Tan	28-10	57.5 ± 0.3	10.1 ± 6.0	20.2 ± 0.5		
Brown	10 to -30	47.0 ± 0.9	10.4 ± 0.5	18.3 ± 0.6		
Dark	< -30	35.5 ± 0.7	8.8 ± 0.4	11.6 ± 0.6		

Abbreviations: CIE, Commission Internationale de l'Eclairage; ITA°, individual typology angle; SCI, specular component included; SEM, standard error of the mean.

CIE L*, a*, and b* values were measured for 135 photoprotected skin samples with variable pigmentation. The L*, a*, and b* values were classified into six skin color groups according to their ITA°. L*a*b* parameters were measured with a spectrophotometer (Datacolor Check) using D65, 10°, SCI, d/8° (Del Bino and Bernerd, 2013, and personal communication).

Table 4.2 Colour matching functions of Stiles

Colour matching functions			Colour matching functions				
WL (nm)	$\bar{\mathbf{r}}(\lambda)$	$\overline{g}(\lambda)$	$\overline{\mathbf{b}}(\lambda)$	WL (nm)	$\bar{\mathbf{r}}(\lambda)$	$\bar{g}(\lambda)$	$\overline{b}(\lambda)$
390	0.00184	-0.0004	0.01215	560	1.2283	0.93783	-0.01461
395	0.00462	-0.001	0.03111	565	1.4727	0.88039	-0.01378
400	0.00963	-0.002	0.06237	570	1.7476	0.82835	-0.01265
405	0.01898	-0.004	0.13161	575	2.0214	0.74686	-0.01136
410	0.0308	-0.007	0.2275	580	2.2724	0.6493	-0.00993
415	0.04246	-0.013	0.35897	585	2.4896	0.56317	-0.00841
420	0.05166	-0.017	0.52396	590	2.6725	0.47675	-0.00702
425	0.05284	-0.021	0.68586	595	2.8093	0.38484	-0.00574
430	0.04429	-0.02	0.79604	600	2.8717	0.30069	-0.00427
435	0.03222	-0.016	0.89459	605	2.8525	0.22853	-0.00291
440	0.01476	-0.007	0.96395	610	2.7601	0.16575	-0.00227
445	-0.00234	0.0014	0.99814	615	2.5989	0.11373	-0.002
450	-0.02913	0.0196	0.91875	620	2.3743	0.07468	-0.00151
455	-0.06068	0.0435	0.82487	625	2.1054	0.0465	-0.00094
460	-0.09622	0.071	0.78554	630	1.8145	0.02633	-0.00055
465	-0.13759	0.1102	0.66723	635	1.5247	0.01272	-0.00032
470	-0.17486	0.1509	0.61098	640	1.2543	0.0045	-0.00014
475	-0.2126	0.1979	0.48829	645	1.0076	0.00966	0
480	-0.2378	0.2404	0.36195	650	0.78642	-0.00196	0.00011
485	-0.25674	0.2799	0.26634	655	0.59659	-0.00263	0.00019
490	-0.27727	0.3335	0.19593	660	0.4432	-0.00263	0.00023
495	-0.29125	0.4052	0.1473	665	0.3241	-0.0023	0.00022
500	-0.295	0.4906	0.10749	670	0.23455	-0.00187	0.00016
505	-0.29706	0.5967	0.07671	675	0.16884	-0.00144	0.0001
510	-0.26759	0.7018	0.05025	680	0.12086	-0.00108	0.00005
515	-0.21725	0.8085	0.02878	685	0.08581	-0.00079	0.00004
520	-0.14768	0.9108	0.01331	690	0.06026	-0.00057	0.00003
525	-0.03518	0.9848	0.00212	695	0.04148	-0.00039	0.00002
530	0.10614	1.0339	0.00416	700	0.02811	-0.00026	0.00002
535	0.25981	1.0538	0.0083	705	0.01912	-0.00018	0.00001
540	0.41976	1.0512	-0.01219	710	0.01331	-0.00012	0.00001
545	0.59259	1.0498	-0.01404	715	0.00941	-0.00009	0.00001
550	0.79004	1.0368	-0.01468	720	0.00652	-0.00006	0.00001
555	1.0078	0.9983	-0.01495	725	0.00454	-0.00004	0.00001
560	1.2283	0.9378	-0.01461	730	0.00317	-0.00003	0

$$egin{aligned} X &= rac{1}{N}\sum_i ar{x}_i S_i I_i \Delta \lambda \ Y &= rac{1}{N}\sum_i ar{y}_i S_i I_i \Delta \lambda \ Z &= rac{1}{N}\sum_i ar{z}_i S_i I_i \Delta \lambda \ N &= \sum_i ar{u}_i I_i \Delta \lambda \end{aligned}$$

i

 $\overline{\mathbf{x}}(\lambda) = 0.49 \, \mathbf{r}(\overline{\lambda}) + 0.31 \, \mathbf{g}(\overline{\lambda}) + 0.20 \, \mathbf{b}(\overline{\lambda})$ $\overline{\mathbf{y}}(\lambda) = 0.17697 \, \mathbf{r}(\overline{\lambda}) + 0.8124 \, \mathbf{g}(\overline{\lambda}) + 0.01063 \, \mathbf{b}(\overline{\lambda})$ $\overline{\mathbf{z}}(\lambda) = 0.00 \, \mathbf{r}(\overline{\lambda}) + 0.01 \, \mathbf{g}(\overline{\lambda}) + 0.99 \, \mathbf{b}(\overline{\lambda})$

$$S_{
m A}\left(\lambda
ight) = 100 igg(rac{560}{\lambda}igg)^5 imes rac{\exp{rac{1,435 imes 10^7}{2,848 imes 560}} - 1}{\exp{rac{1,435 imes 10^7}{2,848 \, \lambda}} - 1}$$

$$f_x = egin{cases} & ext{if } x_r > \epsilon \ rac{\sqrt[3]{x_r}}{116} & ext{otherwise} \ \end{array} \ f_y = egin{cases} & ext{if } y_r > \epsilon \ rac{\sqrt[3]{x_r}}{116} & ext{otherwise} \ \end{array} \ f_y = egin{cases} & ext{if } x_r > \epsilon \ rac{\sqrt[3]{x_r}}{116} & ext{otherwise} \ \end{array} \ f_z = egin{cases} & ext{if } z_r > \epsilon \ rac{\sqrt[3]{x_r}}{116} & ext{otherwise} \ \end{array} \ f_z = egin{cases} & ext{if } z_r > \epsilon \ rac{\sqrt[3]{x_r}}{116} & ext{otherwise} \ \end{array} \ r = rac{X}{X_r} & L = 116f_y - 16 \ y_r = rac{Y}{Y_r} & a = 500(f_x - f_y) \ z_r = rac{Z}{Z_r} & b = 200(f_y - f_z) \ \end{array} \ \epsilon = egin{cases} 0.008856 \ 216/24389 & ext{Intent of the CIE standard} \ \end{array} \
ightarrow
i$$

 $\kappa = egin{cases} 903.3 & ext{Actual CIE standard} \ 24389/27 & ext{Intent of the CIE standard} \end{cases}$

References

Choudhury, Asim Kumar Roy. Principles of Colour and Appearance Measurement, Woodhead Publishing, 2014, Pages 144-184, ISBN 9780857092298, https://doi.org/10.1533/9780857099242.144.

Gottlieb, Eric Raphael, MD. "Assessment of Racial and Ethnic Differences in Oxygen Supplementation among Patients in the ICU." JAMA Internal Medicine, JAMA Network, 1 Aug. 2022, https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/2794196

Lindbloom, Bruce. "XYZ to Lab." 2022. http://brucelindbloom.com/index.html?Eqn_XYZ_to_Lab.html

Ly, Bao Chau K., "Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement." Journal of Investigative Dermatology, 2020. https://www.researchgate.net/publication/338303610/

Schanda, J. (2016). CIE Standard Illuminants and Sources. In: Luo, M.R. (eds) Encyclopedia of Color Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8071-7_324

Wenzhong Liu, "Photoacoustic imaging of the eye: A mini review." Elsevier GmbH, 2016. https://www.researchgate.net/publication/303358631_Photoacoustic_imaging_of_the_eye_A_mini_review

X-Rite, "A Guide to Understanding Color." X-Rite, Inc, 2016. https://www.xrite.com/-/media/xrite/files/whitepaper_pdfs/l10-001_a_guide_to_understanding_color_communication/l10-001_understand_color_en.pdf