
University of Illinois  
at Urbana-Champaign 

 
 
 
 
 
 

 
Measure Of Temperature, Humidity, 
and Pressure Over a Farm Field Using 

a Drone 
 
 

 

 
 
 
 
 

 
Michael Bengston 
Michael Habisohn 

Justin Languido 
Christian Williams 

 
 
 

 



 

ABSTRACT 

 
Field diagnostics provide crucial information to farmers that can influence their 

decisions come planting season. Unfortunately, the main method to obtain important 
information (thermal imaging) is both costly and quickly becomes obsolete. To address these 
issues, we have assembled a device made up of sensors that will not only provide the farmer 
with more information than just the temperature, but at a much lower price-point. The device 
will be flown  Further testing will compare the accuracy of these sensors to more expensive 
alternatives.  
  

BACKGROUND 
 

The growth of a crop is dependent upon four major variables: solar radiation, air 
temperature, humidity, and precipitation. This work focuses on the last three variables. 
Measurement of these variables is difficult in Illinois due to the rapid changes in weather. 
Because of the rapid variations in Illinois weather, Hollinger and Angel focused on what is 
referred to as “normal” weather conditions. “Normal” weather conditions are based on 
observations of the climate of an area over a 30 year period, and provide a baseline for what 
the climate is usually like.  

Temperature has the greatest effect on both the speed at which a crop grows and its 
structural stability.  There are four temperatures that are of interest to farmers when they are 
looking at a potential area to plant crops. The first, referred to as “absolute minimum,” is the 
minimum temperature at which the crop is able to grow at all. The second, “optimum 
minimum,” is the lowest mean temperature where the crop can still grow optimally.  The third 
is the “optimum maximum,” the maximum mean temperature at which the crop can grow 
optimally. The fourth temperature is the “absolute maximum,” the hottest temperature that 
still allows the crop to grow.  Corn was planted in the field where the measurements in this 
work were taken. The values for the four temperature thresholds for corn, in order, are: 10°C,  
15.6°C, 32.8°C, and 47.2°C. The above temperatures are those of the air, but the temperature 
of the soil is also relevant. The soil temperature determines the amount of ammonia-based 
fertilizer needed. While the soil temperature can be estimated by taking an average of the air 
temperature over a seven day period, this method usually overestimates the actual 
temperature by approximately 1°C (Hollinger and Angel).  

Precipitation, more specifically the timing of the precipitation, is another important 
aspect to take into consideration when evaluating potential levels of crop production. Similar to 
temperature, there is an optimal range of precipitation volume. For instance, the combination 
of cooler temperatures and large amounts of precipitation during germination can lead to 
various diseases or soil saturation.  Too little, however,  leads to weaker roots, which will make 
the crop vulnerable if a drier-than-normal season follows (Hollinger and Angel). Precipitation 
and humidity are related, in that an area with high humidity, will oftentimes have a large 
amount of precipitation. 

 
 

 

1 



 

 
APPLICATIONS 

 
The farming communities focus, as of now, is on the thermal profile of fields. A company 

in the area who offers thermal imaging services explained that use a thermal camera which is 
strapped to a small airplane and flown over the field of interest. After all is said and done, the 
cost comes out to around $5,000 (reference) for a single flight. While the data are useful, they 
only gives the farmer an idea of the thermal profile of the field for a single day. The device 
fabricated in this work is not only cheaper (depending upon the drone chosen), it offers 
up-to-date information about the field and a level of customizability that the thermal imaging 
services do not.   

To measure the relevant quantities, we created a device utilizing the following 
components: an Arduino Mega 2650, a Bosch BME680 Breakout Board , an MLX 90614 IR 
Thermometer, a MT3339 All-in-one GPS, and an Adafruit MicroSD card breakout board. The 
BME680 measures the air pressure, humidity, and air temperature at a given point. To check 
the soil temperature against the temperature of the air, the MLX 90614 IR Thermometer was 
pointed at the soil.  In order to generate the profile of a field, the spatial coordinates at which 
each data point is taken must be known. This is the function of the MT3339 All-in-one GPS. 
After all of the measurements have been taken, they are stored on an MicroSD card using the 
Adafruit MicroSD card breakout board. The various electronics were then soldered onto a 
printed circuit board (PCB).  The PCB was placed into a roll-cage and screwed into the accessory 
bay of a 3D Robotics Solo Quadcopter Drone. The drone was then flown over a field at a height 
of approximately 25 ft (~7.62 m) at a velocity of around 0.5-1.0 m/s. 

 
HARDWARE 
 

Data collection necessarily involves utilization of specialized hardware. Choice of 
components was determined by budget and ease of use. Ultimately, this led to the 
development of a robust data acquisition unit at a fraction of the price of commercial products 
for similar applications. The electronic system consists of modular sensor packages 
communicating with a single microprocessor. In our case, we utilize the Arduino Mega 2560 
(https://store.arduino.cc/usa/arduino-mega-2560-rev3); a microcontroller board running on 
the ATmega2560 microprocessor. This package allows for “quick and easy” microcontroller 
project development. The sensor packages we utilize come in the form of breakout boards 
developed by the open-source hardware company, Adafruit Industries. The following 
sub-sections of this paper will apprise the reader of the hardware specifics for this project.  
 

COMMUNICATION 
 

As a preface to the discussion of the breakout boards, this section will explain the 
communication protocols used for our project and why we chose the one we did. 

The two most common short-distance communication protocols for electronic 
components are SPI and I2C. The former requires a wire to each and every node on the 
communication network. For example, if there were one master and three slave units, the 

2 

https://store.arduino.cc/usa/arduino-mega-2560-rev3


 

circuit would require 3 slave select lines in addition to the MOSI/MISO/SCLK lines shared 
between all nodes. Figure 1 illustrates SPI communication between master and slave nodes. 

 
Figure 1: SPI Communication Block Diagram 

 
I2C, on the other hand, is a more compact system of hardware communication, in that 

all slave nodes are connected to the master via the same two wires. In fact, I2C has the added 
benefit of allowing multiple masters on the same network. Figure 2 illustrates I2C 
communication between two masters and two slave devices. Notice, there are only two wires 
between all nodes.  

 
Figure 2: I2C Communication Protocol Block Diagram 

I2C is the ideal communication protocol for our device due to the benefits of the 2-wire 
system as well as the unnecessity for extremely high-speed communication. Conveniently, all 
our sensors are capable of using the I2C communication protocol.  
 
Bosch BME680 Breakout board: 

The BME680 breakout board provides the microcontroller with a series of 
environmental sensing capabilities. The sensor on-board is the BME680 from Bosch- as the 

3 



 

name implies. The sensor measures temperature, humidity, barometric pressure, and levels of 
VOC gas, or volatile organic compounds. The chart below describes the sensors’ operating 
parameters for the BME680. 
 

PARAMETER  

Operation Range (for full accuracy)  

Pressure  300 - 1100 hPa 

Humidity  0 - 100% 

Temperature -40 - 85°C 

Avg. Current Consumption (1 Hz refresh) 3.7μA 

Gas Sensor  

Response time < 1 s 

Sensor-to-sensor deviation +/- 15 % 

Output data processing Direct output of Index for Air Quality 

Humidity Sensor  

Response time 8 s 

Accuracy tolerance ± 3 % relative humidity 

Hysteresis ≤ 1.5 % relative humidity 

Pressure Sensor  

RMS Noise 0.12 Pa 

Sensitivity Error ± 0.25 % 

Temperature coefficient offset ± 1.3 Pa/K 

 
 
MLX 90614 IR Thermometer: 

The MLX 90614 infrared thermometer is the only sensor on our PCB that did not require 
a breakout board. In fact, the package itself contains just 4 pins and a high-resolution ADC, or 
analog to digital converter. The sensor reads the amount of incident infrared light and 
extrapolates that data to attain a temperature measurement. This measurement is an average 
over a field of view that is projected out at 45° from the sensor window. The sensor resolution 
is 0.02°C for 2-wire interfacing- which we are using. Figure 3 illustrates the block diagram of the 
internal electronics for the MLX90614 family of infrared thermometers. Notice the 
high-resolution ADC and dedicated digital signal processor. This provides extremely precise 
sensor readings to the Arduino processor. 

4 



 

 
Figure 3: IR Thermometer Block Diagram 

MT3339 All-in-one GPS: 
The MT3339 GPS is onboard the “Ultimate GPS” breakout board from Adafruit. The 

MT3339 uses its own microprocessor to collect and parse data it receives from the satellites. 
The GPS tracks up to 22 satellites and has a build in antenna. The module is capable of 10 Hz 
location update rate at a very low power usage of 20 mA. The GPS will output NMEA sentences 
of various types. The most useful for our applications was the $GPRMC sentence, or 
Recommended Minimum Specific GPS/Transit data. This allows for the tracking of our sensor 
package at precise GPS coordinates. Our sensor device was programmed to read all sensor 
values at virtually the exact moment that GPS coordinates were received every 0.5 seconds. 
This allows us the ability to track exactly where and when sensor data was taken so that we 
may utilize offline analysis tools to further extrapolate data and provide more accurate analysis 
of the tested environment, in this case a corn field. 
 
MicroSD Card reader/writer: 

After collecting our sensors’ data we need to store the information somewhere to 
examine at a later time. The MicroSD breakout board from Adafruit allows this. The breakout 
board is very simple as most of the hardware is, in fact, in the SD card itself. The board contains 
a port for the microSD card and a High Speed CMOS Logic Buffer. The SD card is written to by 
the DO and DI, or DataOut and DataIn pins of the Arduino board. Our Atmega processor is 
programmed to sequentially store lines of data containing our sensor values and pertinent 
information in a .csv format, or comma separated list. This format is very easily read by our 
offline program and parsed thereafter. The figure below is a copy of the .txt file from one of our 
runs. 
 

 
 

5 



 

As you can see, sensor data is organized in a .txt file by comma separation. Each line 
represents a half second separation between data points.  

 

THE ROLL CAGE DESIGN 

The design of the roll cage was subject to a few constraints. The design constraints 
required that the overall weight of the cage and device together weigh 1 pound at most. They 
also required the roll cage to be sturdy so as to protect the device should it be dropped, and it 
must have  easy access to the printed circuit board, namely the battery and the SD card.Most 
importantly, the constraints also required the ability to securely fasten the roll cage to both the 
device and the drone. 

To satisfy these constraints, the roll cage was designed to be open. Less material both in 
volume and surface area and more open space allowed for lighter weight and better 
measurements out in the field since the breakout boards were more exposed to the 
environment they were sampling. The crossbars on the underside of the cage protect the 
electronics should the device ever be dropped. The mounting holes on both sides of the device 
allow the user to use bolts to secure the device to the cage, and the cage to the drone. 

To manufacture the roll cage, a 3D printer, the Ultimaker 2+ was used. The material we 
chose to print the cage is polylactic acid. The benefits of using a 3D printer include the ability to 
print the cage from home or office rather than purchasing it in store or online, the ability for 
the user to alter the design, if needed, to suit the project at hand, and the ability to choose 
different materials to print with. The benefits of polylactic acid, and thus the reason we chose 
it, is its inherent durability and low density. It is also friendlier to the environment as it is 
derived from renewable resources and is biodegradable. 

 

6 



 

 

Top Orthographic View of Roll Cage 

 

 

 

Bottom Orthographic View of Roll Cage 

7 



 

 

DATA ACQUISITION 
 
The data acquisition program was written in the Arduino integrated development 

environment and was designed for use with the Arduino Mega 2560 Rev 3. This device was 
chosen because it is low in cost and because Arduino has designed their products to be user 
friendly. This is because Arduino microprocessors and the Arduino programming language are 
intended to serve as an introduction to programming and electronics for people without any 
previous experience. 

As the microprocessor, the Arduino serves as the brains of the instrument package and 
contains the data acquisition program written by each member of the team. The data 
acquisition program links the Arduino to the breakout boards. This allows the Arduino to send 
and receive information to and from itself and the boards it is connected to.It will also collect 
data from the sensors and GPS and write  the on the text file in the SD card. This collect and 
write process is done at a frequency of 2 Hz. 

The program starts by importing several libraries, one for each board attached to the 
Arduino. These libraries are what allows the Arduino to communicate with the sensors. The 
code then generates the .txt file that will store the collected data. It also configures the GPS 
forcing it to update its position at a frequency of 1 Hz.  

In order to collect data from the GPS and sensors and write that data to the .txt file, the 
code opens the .txt file for writing and begins to request readings from each sensor. For most 
sensors, this request is a single line of code that asks the sensor to return a specific 
measurement type. For example, it will ask the BME680 to return its current temperature 
reading, then later ask the BME680 to return its current air pressure reading. This is not the 
case for the GPS, however. The code must first ask if the GPS has valid data, then load only valid 
data into its memory. Only then can the Arduino receive nonzero data from the GPS. Once the 
data from each sensor and the GPS have been collected and saved, the .txt file is closed and 
reopened to begin the process again. 

 
WHAT DID WE DO?????? New section here 
 
OFFLINE ANALYSIS 
 

The purpose of this project is not just to collect useful data regarding the environmental 
characteristics of a crop field; one must also analyze this data to produce useful results. 
Hopefully, these results may be of use to those who manage the crop field. We have attained 
this by means of a proprietary offline Python script. The script will be generally explained in the 
following subsections. 
 
Parsing 

As aforementioned, the Arduino microprocessor compiles real time sensor data into a 
comma separated value, or .csv, file. The python script first reads through the .csv file from the 
micro-SD card and turns each column of the file into individual arrays. In doing this, the script 

8 



 

can now read each sensor array as a convenient 1D list of values that are separated by our 
sensor refresh/write rate of 2 Hz. Furthermore, the arrays can simply be acted upon by 
functions, or groups thereof. Now, the script passes through the arrays and finds the index of 
the GPS coordinate arrays that are null, or zero. This means that the GPS had not gotten a fix on 
a satellite yet and so was not receiving latitude and longitude information. The index of these 
elements are saved. Subsequently, elements of all the other arrays that correspond to the 
saved indices are removed. 

This is not, however, the end of the preliminary parsing operation; the Python script 
now conforms the data to standards that we can more easily extrapolate. The 1D arrays of 
sensor data are in a text format. These need to be changed into floats, numerical data that has 
a decimal place. This enables us to perform mathematical operations on the data. The first of 
these operations is the conversion of GPS coordinate data from the DDMM.MMMM format to 
feet. One might wonder how this is possible without a relative zero. We subsequently set the 
GPS.coordinates minimum to zero for both the latitude and longitude array. This provides a 
relative zero for position coordinate system in feet by feet (x by y).  
 
Plotting 

Now that parsing of the data is complete, we have the script begin plotting of the sensor 
data arrays. We have two approaches to the plots, but the terminology needs to be clarified. 
First, we have plotted the sensor data values against the GPS latitude and longitude coordinates 
(in feet at this point). In the conventional sense, this is a 2D graph. However, it is, in fact, 3D- 
the third dimension being a scaled, color coded, value of whichever sensor data value is being 
viewed. So, in reality, it is 3D but spatially 2D. See the figure below. 

 
As great as these results are, we wanted to go one step further and add an extra spatial 

dimension, resulting in 3D spatially and 4D, including colored value, plots. As we were flying a 

9 



 

drone above the field, we felt that it is important to include the altitude in the plot as this could 
significantly effect sensor data. In the future we intend on projecting the field on this 4D graph 
as well. 

 
  

As shown in some of the plots, the script is capable of interpolating data values to create a color 
coded surface plot between discrete sensor/coordinate points. This provides visual insight into 
the environmental characteristics of the field. Unfortunately it was difficult to be able to draw 
any sort of conclusion related to the fields with so few data points. Below we show how a much 
larger data set can produce results that are easy to draw conclusions from. Each of these plots 
are from a truck run to show the capabilities of the sensor package. 
 

 
 

10 



 

 

 
Using the top view of the field scatter plots we are able to tell if there are any 

abnormalities. If for some reason the humidity or temperature in one part of the field is 
inconsistent with the rest of the field then the farmer knows problems could arise from that 
area and act accordingly. Being able to see the altitude allows us to tell if the color abnormality 
comes from the field, or if the data could just be a result of the drone’s altitude.  
 

 
We are also able to create a color map on the field, mapping using the gps coordinates. 

  

11 



 

FUTURE WORK 
 

In future iterations, the group plans on creating a variety of device packages that can be 
chosen based upon the needs of the farmer. For example, if a farmer wants to know that the 
temperature profile looks like at a height of ~15ft above a field, it does not make much sense to 
provide them with a device that also measures the evolution of organic compounds from the 
field. The specificity of a device can also allow for a smaller payload. A smaller payload has two 
potential benefits: smaller (cheaper) drones, and longer flight times. Another choice left to the 
farmer is the price they wish to pay for the chosen instruments. The group also plans to 
investigate how much more accurate the data from the cheaper options is than the expensive 
options.  

These accuracy tests are going to be done in the same field where the preliminary tests 
took place. Acquisition of drone pilot licenses and the drone itself will allow for examination of 
the entire field, in a more densely-packed manner than prior tests. Data will be taken from 
various heights to determine at what altitude the data is no longer helpful.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

12 



 

References 
 
Hollinger, Steven E., and James R. Angel. Weather and Crops - Crop Sciences Department. Illinois 

 Agronomy 
Handbook,extension.cropsciences.illinois.edu/handbook/pdfs/chapter01.pdf. 

13 


