Drone Warriors

MICHAEL BENGSTON, MICHAEL HABISOHN, JUSTIN LANGUIDO, CHRISTIAN WILLIAMS

Background

- > 4 main variables in crop growth
 - solar radiation
 - air temperature
 - has the greatest effect on growth.
 - humidity
 - precipitation
- > This work focused on the last three

Prior Works

- Steven E. Hollinger and James R. Angel looked at a 30 year period to define "normal" weather conditions
- > From normal conditions, they defined four thresholds
 - Absolute minimum
 - Absolute maximum
 - Optimum minimum
 - Optimum maximum
- > Correlation between amount of precipitation and crop growth
 - Too little \rightarrow weak roots and talks, too much \rightarrow disease

Applications

- > Industry is currently focused on thermal imaging
 - Existing options are very expensive
 - Data quickly becomes obsolete
 - Only provides information about one of four variables
- > To measure all of the variables, we used the following
 - Bosch BME680 Breakout Board
 - MLX 90614 IR Thermometer
 - MT3339 All-in-one GPS

Data Acquisition (DAQ) Program: Setup

14 // Include Libraries 15 #include <SD.h> 16 #include <Wire.h> 17 #include <SPI.h> 18 #include <Adafruit Sensor.h> 19 #include <Adafruit_BME680.h> 20 #include <Adafruit MLX90614.h> 21 #include <Adafruit GPS.h> 22 23 // Definitions found in BME library 24 #define BME SCK 13 25 #define BME MISO 12 26 #define BME MOSI 11 27 #define BME CS 10 28 #define SEALEVELPRESSURE HPA (1013.25) // This will calibrate altitude calculations 29 30 // Global Variables 31 Adafruit MLX90614 mlx = Adafruit MLX90614(); 32 Adafruit GPS GPS(&Serial2); 33 Adafruit BME680 bme; // I2C 34 File myFile;

DAQ Program: GPS Setup and Data Retrieval

81	// Ultimate GPS	153	{
82	// 9600 NMEA is the default baud rate for MTK - some use 4800	1.5.4	is (CDC
83	GPS.begin(9600);	154	<pre>if (GPS.newNMLAreceived())</pre>
84		155	{
85	// You can adjust which sentences to have the module emit, below	150	CDS DOTES (CDS loct)WED ())
86	// uncomment this line to turn on only the "minimum recommended" data for high update rates!	120	GPS.parse(GPS.IdSUNMEA());
87	GPS.sendCommand (PMTK_SET_NMEA_OUTPUT_RMCONLY);	157	}
88		159	1
89	// Set the update rate	100	1
90	// Note you must send both commands below to change both the output rate (how often the position		
91	<pre>// is written to the serial line), and the position fix rate.</pre>		
92	// 10 Hz update rate - for 9600 baud you'll have to set the output to RMC only (see above)		
93	// Note the position can only be updated at most 5 times a second so it will lag behind serial output.		
94	//GPS.sendCommand(PMTK_SET_NMEA_UPDATE_10HZ);		
95	//GPS.sendCommand(PMTK_API_SET_FIX_CTL_5HZ);		
96			
97			
98	<pre>// Request updates on antenna status, comment out to keep quiet</pre>		
99	GPS.sendCommand (PGCMD_ANTENNA);		
100			
101	// the nice thing about this code is you can have a timer0 interrupt go off		
102	// every 1 millisecond, and read data from the GPS for you. that makes the		
103	// loop code a heck of a lot easier!		
104	useInterrupt(true);		

DAQ Program: .csv Format

```
// GPS Data
                                                            219
     // SD Card Writing
199
                                                            220
                                                                  myFile.print(GPS.latitude, 4);
200
                                                                  myFile.print(",");
                                                            221
     myFile = SD.open("50ft.txt", FILE WRITE);
201
                                                            222
                                                                  myFile.print(GPS.longitude, 4);
202
                                                                  myFile.print(",");
                                                            223
203
     // BME Data
                                                            224
     myFile.print(bme.temperature);
204
                                                            225
                                                                 // MLX Data
     myFile.print(",");
205
                                                            226
                                                                 myFile.print(mlx.readAmbientTempC());
206
                                                                  myFile.print(",");
                                                            227
     myFile.print(bme.pressure / 100.0);
207
                                                                  myFile.print(mlx.readObjectTempC());
                                                            228
     myFile.print(",");
208
                                                                  mvFile.print(",");
                                                            229
209
                                                                 myFile.print(mlx.readAmbientTempF());
                                                            230
210
     myFile.print(bme.humidity);
                                                                  myFile.print(",");
                                                            231
     myFile.print(",");
211
                                                            232
                                                                  myFile.print(mlx.readObjectTempF());
212
                                                            233
                                                                 //myFile.print(",");
     myFile.print (bme.gas resistance / 1000.0);
213
                                                            234
     myFile.print(",");
214
                                                            235
                                                                  myFile.println();
215
                                                            236
                                                                  myFile.close();
     myFile.print (bme.readAltitude (SEALEVELPRESSURE HPA));
216
                                                                  delay(500);
                                                            237
217
     myFile.print(",");
                                                            238 }
218
```

Hardware

Communication

Bosch BME680

PARAMETER	
Operation Range (for full accuracy)	
Pressure	300 - 1100 hPa
Humidity	0 - 100%
Temperature	-40 - 85°C
Avg. Current Consumption (1 Hz refresh)	3.7μΑ
Gas Sensor	
Response time	< 1 s
Sensor-to-sensor deviation	+/- 15 %
Output data processing	Direct output of Index for Air Quality
Humidity Sensor	
Response time	8 s
Accuracy tolerance	± 3 % relative humidity
Hysteresis	≤ 1.5 % relative humidity
Pressure Sensor	
RMS Noise	0.12 Pa
Sensitivity Error	± 0.25 %
Temperature coefficient offset	± 1.3 Pa/K

MLX90616 IR Thermometer

$$A = \pi (h \tan(X))^{2}$$
.

MT3339 All-in-one GPS

\$GPRMC,081836,A,3751.65,S,14507.36,E,000.0,360.0,130998,011.3,E*62

\$GPBOD - Bearing, origin to destination	\$GPBOD - Bearing, origin to destination
SGPBWC - Bearing and distance to wavpoint, great circle	SGPBWC - Bearing and distance to wavpoint, great circle
SCPCCA - Global Positioning System Fix Data	SCPCGA - Global Positioning System Fix Data
SCPCIL - Geographic position latitude / longitude	SCPCIL - Geographic position latitude / longitude
CDCCA CDC DOD and active actallites	SCPCCA CPC POP and active actalliter
SGPGSA - GPS DOP and active satellites	SGPGSA - GPS DOP and active satellites
SGPGSV - GPS Satellites in view	SGPGSV - GPS Satellites in view
\$GPHDT - Heading, True	\$GPHDT - Heading, True
\$GPR00 - List of waypoints in currently active route	\$GPR00 - List of waypoints in currently active route
\$GPRMA - Recommended minimum specific Loran-C data	\$GPRMA - Recommended minimum specific Loran-C data
\$GPRMB - Recommended minimum navigation info	\$GPRMB - Recommended minimum navigation info
\$GPRMC - Recommended minimum specific GPS/Transit data	\$GPRMC - Recommended minimum specific GPS/Transit data
\$GPRTE - Routes	\$GPRTE - Routes
\$GPTRF - Transit Fix Data	\$GPTRF - Transit Fix Data
\$GPSTN - Multiple Data ID	\$GPSTN - Multiple Data ID
<pre>\$GPVBW - Dual Ground / Water Speed</pre>	\$GPVBW - Dual Ground / Water Speed
\$GPVTG - Track made good and ground speed	\$GPVTG - Track made good and ground speed
SGPWPL - Wavpoint location	SGPWPL - Waypoint location
SGPXTE - Cross-track error, Measured	SCPXTE - Cross-track error, Measured
SCR7DA Dato & Timo	SCR7DA - Dato & Timo
SOLADY - Date & ITHE	SOLADY - Dare & ITHE

MicroSD Card Reader/Writer

BMEtemp, BMEpress, BMEhumid, BMEgas, BMEalt, GPSlat, GPSlong, IR_ambC, IR_objC, IR_ambF, IR_objF

19.96,992.31,34.31,247.33,175.99,3958.0629,8816.5019,18.01,10.79,64.42,51.42 20.03,992.29,34.21,247.52,175.99,3958.0676,8816.5019,18.05,10.71,64.49,51.28 20.09,992.27,34.12,247.33,175.99,3958.0708,8816.5019,18.09,10.37,64.56,50.67 20.14,992.29,34.03,248.26,175.82,3958.0764,8816.5019,18.13,10.41,64.63,50.74 20.20,992.33,33.95,246.96,175.82,3958.0786,8816.5009,18.17,10.33,64.71,50.59 20.26,992.33,33.89,247.33,175.48,3958.0788,8816.5009,18.17,9.89,64.71,49.80 20.33,992.33,33.84,247.52,175.48,3958.0788,8816.5009,18.15,10.33,64.67,50.59 20.38,992.37,33.79,246.59,175.65,3958.0786,8816.4990,18.19,10.31,64.74,50.56 20.42,992.37,33.79,244.58,175.31,3958.0786,8816.4980,18.21,10.27,64.78,50.49 20.46,992.37,33.79,244.58,175.31,3958.0791,8816.4970,18.21,10.37,64.78,50.59

Offline Analysis

The Roll Cage

- > Designer
 - > Designer: Justin Languido
 - > Program: Autodesk Inventor 2019
- > Design Constraints
 - > Low weight
 - > Open yet protective
 - > Secure attachments
 - > Justin is clumsy
- > Materials
 - > Polylactic acid
 - > Cyanoacrylate

Pictured: Crossbars (Orange), Main body V2 (Blue), Harness designed by Professor Gollin (White)

Version 1: Computer Render and Physical Prototype

Version 2: Computer Render and Final Design

Future Works

- Get more densely-packed data using a drone
- > Take runs with more high-end sensors and compare to initial runs
- > Redesign instrument package to be more compact