

Measuring Heat Leakage via a Drone Mounted Sensor Package

> Abhi Chavali Tim Draher Stephan Rinner Ryan Torbet

ILLINOIS

Background

- There are a multitude of historical buildings throughout campus
- With buildings of this age, we expect to find significant heat leakage through their rooftops
- How can we measure this?

Experimental Design

- We need a method for exploring the rooftops
 - Bring in the drone
- Develop a method for measuring temperature across the rooftop
 - We needed to keep track of both temperature and location

Devices Used

- MLX 90614 IR sensor used to measure temperature based on radiation from roof's surface
- Ultimate GPS used to gather position data, such as latitude and longitude
- VL53L0X IR sensor used to measure distance to rooftop surface based on reflection from roof's surface
- BME 680 measures temperature, humidity, pressure, and elevation

About our Processor

- In order to account for the size constraints of the drone we had to switch from the Arduino Mega 2560 to a smaller processor
- We chose to use the Adalogger Feather M0, which is considerably smaller than the Mega
- The Adalogger has an onboard SD card reader which allowed us to avoid using an SD breakout board

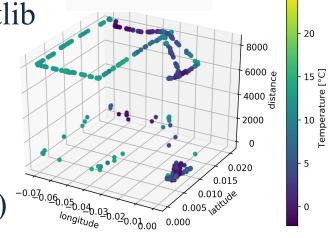
Getting in the Air

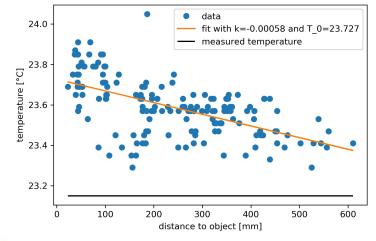
- In order to get our sensors onto our drone we had to take a few steps
 - 1. We had to use a printed circuit board small enough to fit on the drone both on top of it and hanging below it
 - 2. We also had to create a mount for the drone that could carry our sensor package.

Getting in the Air

Physics @ University of Illinois Urbana-Champaign

] [


Data Acquisition


- Going from Arduino Mega to the Adalogger
 → only minor differences
- DAQ divided in: initialization, setup and loop
- data format for python pandas

1	A	В	С	D	E	F	G	н	L	J	K	L	м	N
1	atitude	longitude	GPS_altitu	GPS_hour	GPS_minu	GPS_seco	mlx_ambi	mlx_objec	vlx_distar	bme_tem	bme_altitude	bme_pressure	bme_humidity	bme_gas
2	0	0	0	0	0	7	22.41	22.19	667	21.77	142.85	996.21	32.24	54.47
3	0	0	0	0	0	7	22.37	23.23	160	22.02	142.51	996.25	32.29	100.25
4	0	0	0	0	0	8	22.39	22.13	388	22.33	142.51	996.25	32.25	135.8
1413	4006.648	8813.382	2 240.4	1 16	5 36	52	2 7.19	10.17	8190	8.84	148.08	995.59	68.2	808.78
1414	4006.648	8813.383	3 240.4	1 16	5 36	53	3 7.11	9.99	347	8.85	148.42	995.55	68.11	812.2
1415	4006.648	8813.383	3 240.4	1 16	5 36	53	3 7.11	9.61	8190	8.83	148.42	995.55	68.02	820.12
1416	4006.648	8813.383	3 240.3	3 16	5 36	54	1 7.03	9.43	8190	8.79	148.25	995.57	67.94	822.63
1417	4006.648	8813.384	4 240.2	2 16	5 36	58	3 7.01	9.43	8190	8.57	148.76	995.51	67.74	774.77

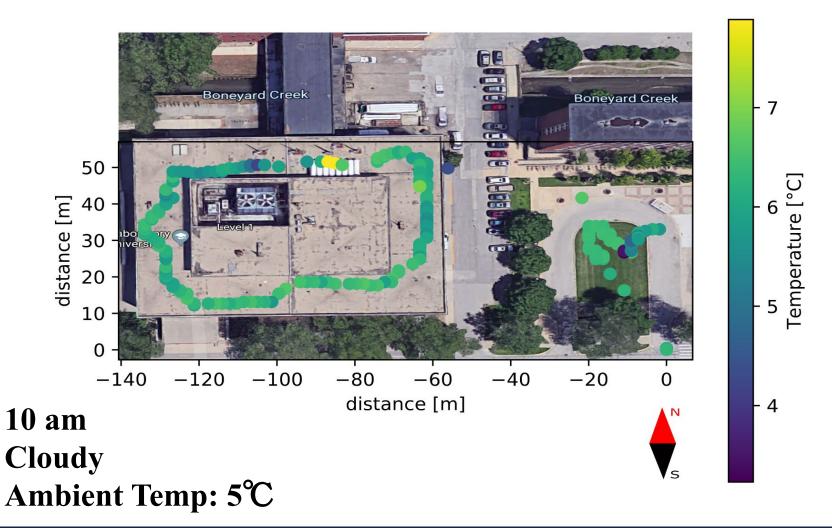
Offline Analysis

- Python with pandas, numpy and matplotlib
- Read in data
- Get rid of invalid data (distance to object and valid GPS signal)
- Calibrate Temperature
- Plot the data (x,y-position, temperature)

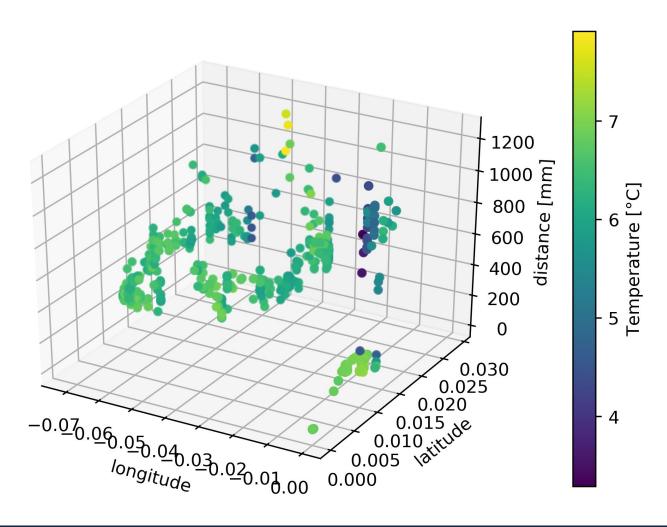
Initial Test Flights

- Proof of concept test runs on a few different buildings:
 - Aerodynamics Research Buildings (ARB)
 - Farmhouse/Barn
 - Loomis Rooftop Test Trials

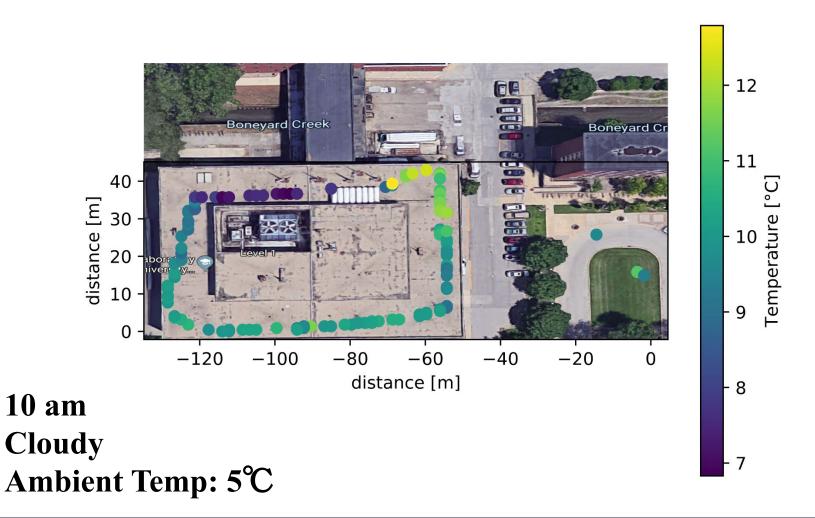
Farmhouse


Flight Plan

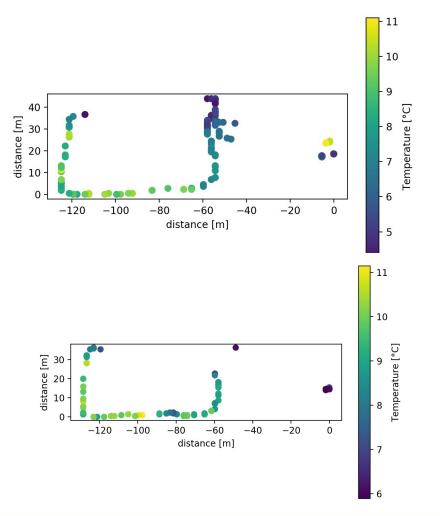
- Launched from grass pad east of Loomis
- Flown in clockwise pattern around rooftop
- Average flight time: ≈ 15 minutes
- Average sensor distance from rooftop surface: ≈ 1.5 ft
- Avoided Loomis north side and due to obstacles
- Center of roof was raised and deemed unsafe to fly over due to obstacles

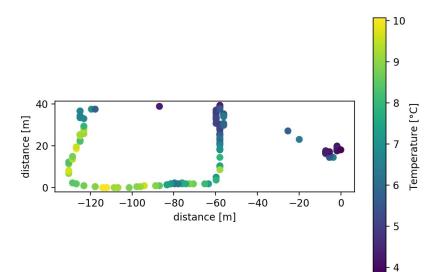


Results - Flight 1, Nov 18



Results - Flight 1, Nov 18


Physics @ University of Illinois Urbana-Champaign

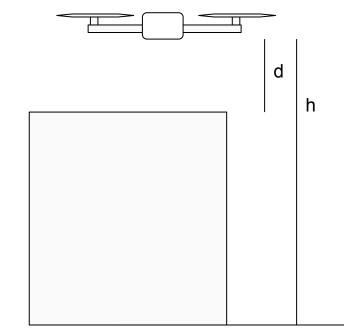

Results - Flight 2, Nov 20

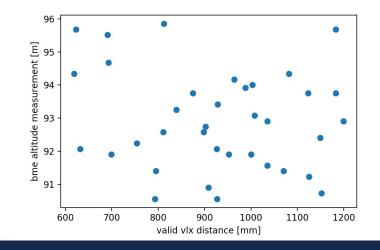
Physics @ University of Illinois Urbana-Champaign

Results - Flight 3,4,5 Nov 22

Flight time: 2:00, 2:15, 2:30 pm respectively Sun was out, no shadows on path Ambient Temp: 4°C

What We Found


- Each flight observed higher temperatures on south and west stretch of flight path.
- Temperature difference apparent despite clouds/shadows present or not.
- In comparison, similar cold spots were reproducible despite the weather.
 - Left: east side Right: South side



Distance-Altitude Correlation

• Idea: use BME altitude measurement for distance calculations

 No correlation between BME and VL53L0X data

Looking to the Future

- Investigating similar older buildings such as Noyes Laboratory
- AI programming to carry out flight path measurements automatically
- Additional devices could be added for more drone mounted experiments
- Drone thermal inspections on agriculture, power lines, cell towers, solar farms, etc.

Acknowledgements

- Professor Gollin, Justin, Christian
- Physics department (drone license)
- Christian's friend (farm house)
- Celia Elliott
- Todd Moore

References

- 1. Heat Loss Facts <u>https://www.phpsd.com/blog/the-two-part-secret-to-minimizing-energy-loss-on-your-com</u> <u>mercial-rooftop</u>
- 2. MLX 90614 Datasheet/Information https://www.melexis.com/-/media/files/documents/datasheets/mlx90614-datasheet-melexis.pdf
- 3. Ultimate GPS Datasheet/Information <u>https://cdn-learn.adafruit.com/downloads/pdf/adafruit-ultimate-gps.pdf</u>
- 4. LSM Accelerometer Datasheet <u>https://www.st.com/resource/en/datasheet/DM00103319.pdf</u>
- 5. VL5310X IR Distance Sensor Datasheet <u>https://www.st.com/resource/en/datasheet/v15310x.pdf</u>
- BME680 Datasheet https://cdn-shop.adafruit.com/product-files/3660/BME680.pdf
- 7. Altimeter Information https://www.uavnavigation.com/company/blog/uav-navigation-depth-altimeters
- 8. IR House Image https://jonesairconditioning.com/uploads/3/4/1/1/34118878/8275789.jpg
- 9. DJI Mavic 2 Pro Specifications <u>https://www.dronezon.com/drone-reviews/dji-mavic-2-pro-zoom-review-of-features-specifications-with-faqs/</u>
- 10. Local Weather Station: Williard (KCMI) https://forecast.weather.gov/MapClick.php?lat=40.1095350000005&lon=-88.2117399999996#.Xefqf-hKiUk

Any Questions?

Physics @ University of Illinois Urbana-Champaign

For Your Enjoyment

When you integrate by parts, but the resulting integral has to be done by parts again

Physics @ University of Illinois Urbana-Champaign