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Locating the source of a sound signal is both interesting and very important in various applications.
Achieving such a task using only Arduino single board computers and crude microphones can be
very challenging. In this paper, we present an algorithm to perform reasonable predictions of the
direction of the sound source. With only the access of sound recordings, we first use the L2 metric
(Euclidean distance) to extract the arrival times of the sound signal. Then, we define a cost function,
which, when minimized, gives the predicted location of the source. We test our algorithm in various
settings and show the robustness of our algorithm, despite the simple recording devices. Our work
provides a general algorithm to locate the source of a sound signal and can have a wide range of
both civil and military applications.

I. INTRODUCTION

Acoustic point-source locating has been widely studied
in the context of military and civil use. Acoustic direction
sensors have a wide range of applications; from artillery
sound ranging to mortar firing detection on battlefield [1]
to gunshot detectors to crime monitoring [2]. Their de-
tection methods can be categorized into active acoustic
location and passive acoustic location [3]. Active acoustic
location involves the creation of sound to produce echos,
which can be used to locate the object. Passive acoustic
location only involves the detection and analysis of the
sound or vibration created by the object. Military appli-
cation of acoustic sensors mainly utilizes active acoustic
location because the sound generated by aircraft or mis-
siles are extremely weak over long distances. Civil appli-
cations focus on passive acoustic location, which requires
less equipment and is much cheaper, but with limited
detection range and accuracy.

The methods to realize passive acoustic location in-
clude but are not limit to Particle Velocity [4], Time Dif-
ference of Arrival [5], and Steered-Response Power Phase
Transformation [6]. Particle Velocity exploits the fact
that sound is conveyed through the vibration of air, and
measuring the movements of air could obtain the direc-
tion of the sound source. An example of this method
is the Microflown technology devised by the Microflown
company [7]. Time Difference of Arrival method uses a
sensor array to obtain the source direction by compar-
ing each probe’s signal. This is the most commonly ap-
plied method, and Urban Institute, a non-profit research
organization, proposed a gunshot detection technology
based on this method [8]. Steered-Response Power Phase
Transformation is a novel algorithm using a beamform-
ing approach that searches for candidate position that
maximizes the output of a steered delay-and-sum beam-
former. This method will also need a system of micro-
phones and can operate in an adverse acoustic environ-
ment. Researchers have fully studied this algorithm and
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have obtained mature results [6].
Our project is based on the Time Difference of Ar-

rival method and aims to make acoustic sensing technol-
ogy available for ordinary people. We use Arduino-based
sensors with data acquisition software to record sound
and other parameters. The recorded data is then being
processed by an offline algorithm to obtain useful infor-
mation on the location of the point-source. Our design
is cheap to implement; with a total cost of less than one
hundred dollars, we are able to detect the general di-
rection of the sound source. The underlying theory and
computing algorithm are intuitive and could be used for
educational purposes in the future.

II. THEORY AND ALGORITHM

Generally, locating the source of a sound signal using
the locations of receivers and the relative time differences
of received signals between receivers requires two steps:

• Extract signals to obtain signal arrival times (time
shifts);

• Locate the source using the extracted information.

A. Extract Signals and Times

Before locating the sound source, we first need to iden-
tify from one of the recordings r0(t) a signal s0(t) =
r0(t + τ0), t ∈ [0, T ], where τ0 is the arrival time of the
signal and T is the duration of the signal. Then, we need
to find the signals si(t) in the remaining recordings ri(t)
to get the remaining arrival times. The identification
procedure is simple. One can identify a piece of sound
signal either by looking at the waveform, listening to the
recording, or setting an amplitude threshold. After the
signal s0(t) is identified, it can be compared against ri(t)
to find si(t).

Two possible approaches can be used to find si(t)—the
L2 metric and the auto-correlation.
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1. L2 Metric

This metric is simply the L2-norm of the difference
(Euclidean distance) [9] between two signals, defined as

d(τ) =

√∫ T

0

[
s0(t)

Z0
− ri(t+ τ)

Zi(τ)

]2
dt, (1)

where τ is the time shift in ri(t), T is the signal length,
and Z0 and Zi(τ) are the normalization factors, defined
as

Z0 =

√∫ T

0

s20(t)dt;

Zi(τ) =

√∫ T

0

r2i (t+ τ)dt.

(2)

The time shift of the recording ri(t) (arrival time) can
be obtained by minimizing d(τ) and defined as τi =
arg min d(τ), from which we extract the arrived signals
as si(t) = ri(t+ τi), t ∈ [0, T ].

2. Auto-Correlation

The auto-correlation is an inner product of two signals
[10] and it has two variants—a normalized version, and
an unnormalized version, which is defined as

a(τ) =
1

Z0Zi(τ)

∫ T

0

s0(t) · ri(t+ τ)dt (3)

In the normalized version, the normalization factors are
the same as the ones in Eq. 2; in the unnormalized ver-
sion, Z0 = Zi = 1. Then, instead of minimizing d(τ), one
maximizes the correlation a(τ) to find τi = arg max a(τ)
and si(t) = ri(t+ τi), t ∈ [0, T ].

One can prove that the normalized version of the
auto-correlation is equivalent to the L2 metric (see Ap-
pendix A) and in fact, even the unnormalized version
empirically produce the same result as the L2 metric.
Therefore, using L2 metrics is enough for our work.

B. Locate the Source

After extracting the signals si(t) and arrival times τi,
we can compute the location of the source. In a perfect
world where no noise or error exists, the location of the
source satisfies

|x− ai| − |x− aj | = c (τi − τj) ,∀i, j, (4)

where x is the location of the source, ai is the location of
each recording device, and c is the speed of sound. The
equation can be converted into a root-finding problem as

|x− ai| − |x− aj | − c (τi − τj) = 0. (5)

For each pair of i, j, the solution is a branch of hyperbola,
and when combined, the solution is the intersection of
all hyperbolas. In reality, however, the errors in ai and
τi can shift individual hyperbolas in different directions
and leave Eq. 5 with no solution. To resolve this issue, we
can convert the root-finding problem into a minimization
problem by defining a cost function

C(x) =
∑
i,j

[
|x− ai| − |x− aj | − c (τi − τj)

]2
(6)

and look for x that minimizes the cost function. When
there is no error, Eq. 6 gives exactly the same solution as
Eq. 2. When there is error, one can show that the x that
minimizes the expectation of C with error is the same as
the x that minimizes C without error (see Appendix B).

III. EXPERIMENTAL PROCEDURE

We test our algorithm in two different setups. In both
setups, we choose our testing site as open ground with
no trees or other people to avoid unwanted external noise
and reflections.

FIG. 1. Experimental setup. The locations of the Arduinos
form a square diamond with each vertex 5 or 10 meters from
the center. The sound sources (car beep or chirp) are located
at the red circle marks.

In the first setup (Fig. 1 (a)), the locations of the Ar-
duinos form a square diamond with each vertex 5 or 10
meters from the center. (We only show a 5-meter dia-
gram in the figure, the 10-meter setup is just a scaled-up
version of the 5-meter setup). In this setup, two Ar-
duinos are put at the bottom vertex and the other three
Arduinos are put at the other vertices. A car is directly
at the top vertex and beeps for roughly 0.5 s. The beep
is then recorded by each Arduino. We then shuffle the
locations of different Arduinos and repeat the test.

In the second setup (Fig. 1 (b)), the locations of the
Arduinos still from a square diamond with each vertex 10
meters from the center. This time, one of the Arduino
malfunctions, so only four Arduinos are used. In each
test, the car is placed at one of the red circle and plays
a chirp. Chirp signal is a special signal whose frequency



3

increases by time with fixed amplitude. In Fig. 2, we
show an example of the chirp signal. Since the frequency
changes during the signal, it is easier for the algorithm
to determine the best arrival times.

FIG. 2. Example of chirp signal. The unit a.u. means ar-
bitrary unit. The frequency increases linearly from 200Hz to
500Hz.

We show an illustration of the actual test setup in
Fig. 3 below.

FIG. 3. Illustration of a test setup for Fig. 1 (a). Five Ar-
duinos are put on the vertices of a diamond/square, marked
in red circles. There are two Arduinos at the left vertex and
the remaining three Arduinos are at the other three vertices.
The car is directly at the right vertex and plays a beep sound.
In our analysis, we rotate the diamond so that the car is at the
top corner, but all relative positions will remain unchanged.

IV. ANALYSIS AND RESULTS

As described in the experimental procedure section,
we test our algorithm in two setups. In each test, we
collect data and identify the sound signals from one of
the recordings. Then we obtain the arrival times (time

shifts) in other recordings by comparing them with the
signal using the L2 metric. With all the arrival times, the
source location can be calculated by minimizing the cost
function. We show below in Fig. 4 and Fig. 5 the record-
ings, calculated L2 metric values for different time shifts,
and shifted signals for two tests from the two setups.

FIG. 4. Example of audio beep recordings in the first setup.
The unit a.u. means arbitrary unit. Different colors represent
recordings from different microphones. (a) Raw audio record-
ings ri(t) from microphones. The zoom-in window shows the
start of the audio signals. (b) Computed L2 metric di(τ)
when taking the blue signal as the reference s0(t) and com-
paring with respect to all recordings. The zoom-in window
shows where the lowest di(τ) for each recording occurs which
indicates the optimal time shift τi for each recording. (c) The
audio signals si(t) = ri(t+τi) extracted from recordings. The
zoom-in window shows the matching between signals from dif-
ferent microphones. The orange recording is from the micro-
phone directly at the sound source, which saturated during
the beep.
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FIG. 5. Example of audio chirp recordings in the second
setup. The unit a.u. means arbitrary unit. Different col-
ors represent recordings from different microphones. (a) Raw
audio recordings ri(t) from microphones. The zoom-in win-
dow shows the start of the audio signals. (b) Computed L2

metric di(τ) when taking the red signal as the reference s0(t)
and comparing with respect to all recordings. The zoom-in
window shows where the lowest di(τ) for each recording oc-
curs which indicates the optimal time shift τi for each record-
ing. (c) The audio signals si(t) = ri(t + τi) extracted from
recordings. The zoom-in window shows the matching between
signals from different microphones. The microphone at the
sound source was covered by a piece of paper, therefore not
saturating for this test.

In the first setup, the sound source is a car beep.
Since the beep is loud, the microphone directly at the
source saturates (orange curve in Fig. 4), so some infor-
mation from the recording is lost. If the reference sig-
nal is taken from the saturated recording, when other
recordings are compared against the reference signal, the
calculated time shifts τi can be incorrect. Therefore we
analyze the data from the first setup in two ways.

• Take the reference signal from the saturated record-

ing and hope the saturation is not an issue.

• Take the reference signal from another recording
(in our analysis we used the recording at the right
vertex).

In the second setup, we place a piece of paper on top of
the microphone that is closest to the car, so there is no
saturation problem.

As shown in Fig. 4 and Fig. 5, (a) the chirp signals are
clearer from noise than beep signals, (b) resulting in a
better resolution in L2 metric to calculate the required
time shifts (arrival times), and (c) obtaining better match
for the extracted signals. Therefore, we expect the results
for the second setup to be better than the first setup.

The results for the first setup are shown in Fig. 6.
The blue predictions are calculated by taking the sat-
urated recording as the reference signal, whereas the or-
ange predictions are calculated by taking the recording
at the right vertex as the reference signal. As shown in
the figure, direction-wise, the orange prediction performs
consistently better than the blue prediction. The direc-
tion of the orange prediction is very close to the actual
direction in all tests. Distance-wise, the two predictions
perform differently in different tests.

For Test 3 in Fig. 6, we analyze the effect of multiple
recording devices, as shown in Fig. 7. The top figure
shows the result with all the recording devices and the
bottom four figures show the result with different com-
binations of three devices. As shown in the figure, the
prediction using all devices is in general better than the
prediction using only a subset of the devices. This be-
havior is expected, since the more devices, the closer the
cost function we are minimizing is to the expectation of
the cost function.

The results for the second setup are shown in Fig. 8.
We use the signal from the microphone at the left vertex
as the reference signal. Similar to the previous tests, all
the direction predictions are in general correct, but the
distance predictions are not as good.

For Test 3 in Fig. 8, we also analyze the effect of multi-
ple recording devices. As shown in Fig. 9, the prediction
using all devices performs better than the prediction us-
ing any subset of them.
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FIG. 6. Four different tests for the direction-finding algo-
rithm. In all tests, the locations of five microphones form a
square diamond with two microphones both at the bottom
vertex and the other three occupying the other three vertices.
The sound source (car beep) is at the red circle at the top cor-
ner. The blue prediction is calculated by taking the signal at
the top vertex (directly at the sound source, (0, 5) or (0, 10))
as the reference s0(t) (which may saturate and lose informa-
tion) and comparing with respect to all recordings to extract
si(t), whereas the orange prediction is calculated by taking
the signal at the right vertex (5, 0) or (10, 0) as the reference
s0(t) (which does not saturate but has a smaller amplitude)
and comparing with respect to all recordings to extract si(t).

FIG. 7. Results for different combinations of detectors for
Test 3 in Fig. 6. The top one uses all detectors whereas
the bottom four use different combinations of three detectors
(black crosses). The prediction is calculated by taking the
signal at the top vertex as the reference s0(t) and comparing
with respect to all recordings to extract si(t).
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FIG. 8. Four different tests for the direction-finding algo-
rithm. In all tests, there are four microphones whose loca-
tions form a square diamond. The sound source (chirp) is at
the red circle at different locations for different tests. The
prediction is calculated by taking the signal at the left vertex
(−10, 0) as the reference s0(t) and comparing with respect to
all recordings to extract si(t).

FIG. 9. Results for different combinations of detectors for
Test 3 in Fig. 8. The top one uses all detectors whereas
the bottom four use different combinations of three detectors
(black crosses). The prediction is calculated by taking the
signal at the left vertex as the reference s0(t) and comparing
with respect to all recordings to extract si(t).
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V. DISCUSSION

In general, the algorithm performs reasonably well in
all tests. The predicted direction (if the recorded audio
does not saturate) always points close enough to the ac-
tual source. The predicted distance, on the other hand,
is less accurate. We believe that predicting distance is
intrinsically harder than predicting directions, and since
the objective of this project is acoustic direction finding,
we claim the project a success.

Nevertheless, many improvements can be made. Cur-
rently, we only perform tests in a well-controlled envi-
ronment where the noise is small and the signal is clear.
Limited by the signal-to-noise ratio of our recording de-
vices, a real-world test is not plausible at this moment,
but with better recording devices, we should be able to
test our algorithm in a more complicated environment. In
addition, given the stochastic nature of errors, by adding
additional recording devices, we should expect the er-
rors being averaged out, improving the accuracy both
direction-wise and distance-wise.

VI. CONCLUSION

We show a robust algorithm to locate a sound signal
using simple recording devices. The algorithm averages
out the error from individual recording devices by mini-
mizing a cost function. Our algorithm generates accurate
direction predictions despite the poor signal-to-noise ra-
tio of our recording devices. The distance predictions
can be improved by adding additional recording devices
or switching to more advanced recording devices. We
expect the algorithm to have great potential in various
applications such as locating crimes or car accidents.
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Appendix A: L2 Metric vs Normalized
Auto-correlation

We claim that the L2 metric (Eq. 1) and normalized
auto-correlation (Eq. 3) are equivalent. Here we give a

proof. We expand the square of Eq. 1.

d2(τ) =

∫ T

0

s20(t)

Z2
0

+
r2i (t+ τ)

Z2
i (τ)

− 2
s0(t)

Z0

ri(t+ τ)

Zi(τ)
dt

=
1

Z2
0

∫ T

0

s20(t)dt+
1

Z2
i (τ)

∫ T

0

r2i (t+ τ)dt

− 2

Z0Zi(τ)

∫ T

0

s0(t) · ri(t+ τ)dt

= 2 [1− a(τ)] ,

(A1)

where a(τ) is the normalized auto-correlation defined in
Eq. 3. Therefore, minimizing the L2 metric is equivalent
to maximizing the normalized auto-correlation.

Appendix B: Minimize Cost Function with Error

In Eq. 6, we define a cost function and claim that
when errors exist, the cost function is still valid. Here
we provide a proof. Since the spatial error of the micro-
phones ∆ai depends on the tape measure, which we can
guarantee is less than 1 cm. The temporal error ∆τi of
the arrival signals, however, is much less accurate. Even
though Arduinos can provide a time accuracy of ∼ 1µs,
the L2 metric cannot extract signals at such an accu-
racy. Depending on the background noise and the shape
of the signal, the error from the L2 metric can range from
∼ 1 ms to as large as ∼ 10 ms. Therefore, it is safe to as-
sume that c∆τi � |ai|, where c is the speed of sound.
Thus, let’s add the error term into Eq. 6.

Cwith error(x) =
∑
i,j

[
|x− ai| − |x− aj | − c (τi − τj)

−c (∆τi −∆τj)
]2

=
∑
i,j

[
|x− ai| − |x− aj | − c (τi − τj)

]2
−2
[
|x− ai| − |x− aj | − c (τi − τj)

]
·c (∆τi −∆τj)

+
[
c (∆τi −∆τj)

]2
.

(B1)

Now, let’s look at the expectation value of Cwith error

〈Cwith error(x)〉 =
∑
i,j

[
|x− ai| − |x− aj | − c (τi − τj)

]2
−2
[
|x− ai| − |x− aj | − c (τi − τj)

]
·c〈∆τi −∆τj〉

+c2〈(∆τi −∆τj)
2〉

=
∑
i,j

[
|x− ai| − |x− aj | − c (τi − τj)

]2
+c2

[
Var(τi) + Var(τi)

]
= C(x) + constant.

(B2)
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Therefore, the x that minimizes the expectation of
Cwith error(x) is the same as the x that minimizes C(x).

Appendix C: Data Acquisition Device

Our Arduino-based data acquisition devices could
record 10-bit 40-kHz audio files with time drift error
smaller than 10 ppm (part per million). The device’s
main components include an Arduino Mega2560, a Mi-
croSD card breakout board, a microphone and associated
amplifier, a GPS breakout board, and a BME680 gas sen-
sor [11]. We think the data acquisition devices are func-
tioning well and the recording quality is quit good given
the elementary AVR processors. In the future, we may
upgrade the micro-controllers to more advanced ones to
improve recording quality. We could also upgrade the mi-
crophones or install parabolic reflectors to obtain better
sound signals.

With a third-party library (SdFat), the Arduino could
serve as an analog-digital converter (ADC) of at most 10-
bit 40 kHz or 8-bit 55 kHz [12]. The Arduino measures
the microphone output’s analog voltage and stores it to a
MicroSD card as a binary file using the MicroSD break-
out board. The GPS breakout board provides a highly
accurate time signal (PPS, or Pulse-Per-Second), with
which the time drift is calibrated. The BME680 collects
the temperature, humidity, and air pressure information
to estimate the speed of sound [13].

We use the Adafruit electret microphone amplifier
board (MAX4466 with adjustable gain) [14] to collect
audio. The board comes with a 20Hz-20kHz electret mi-
crophone and an operational amplifier. According to the
manufacturer, the amplifier has excellent power supply
noise rejection and sounds quieter than other similar mi-
crophone amplifier breakout boards on the market. It is
suitable for projects such as voice changers, audio record-
ing and sampling, and audio-reactive projects that use
Fast Fourier Transform . [14] The microphone board’s
OUT pin is connected to the Arduino analog pin directly,
and no extra audio amplifiers are needed.

1. Interrupt-driven analog bin logger

The Arduino Mega 2560 provides a default function,
AnalogRead(), to perform analog voltage measurement.
However, this function costs more than 100 microseconds
to perform a test, [15] which is too slow for our usage. To
speed up the measurement, some modifications need to
be made to the origin process. The library SdFat helped
us implement the modifications, and we would build our
software basing on it.

The first is to change the prescaler of the ADC clock.
The processor frequency is 16 MHz, and the ADC runs
slower than the central processor by a prescaler index.
The default prescaler is 7, meaning that the ADC runs at
16/27 = 0.125 MHz or 125 kHz. It would cost the ADC

13 cycles to finish a measurement, so the time needed
to conduct a measurement is about 1/125 kHz × 13 =
104 µs. If we change the Prescaler to 4, the time for
a single measurement is reduced to 1/16 MHz × 24 ×
13 = 13 µs. This change would increase the ADC’s speed
without sacrificing much of the accuracy because it is
shown by both the datasheet and the earlier experiments
that the ADC accuracy would not drop significantly for
an ADC clock up to 1 MHz. [15]

The second technique is to use buffers in SRAM (static
random access memory of the Arduino, 8k for Arduino
Mega2560) [16] for the collected data. The transforma-
tion of data from the Arduino to the MicroSD card is
done via the SPI interface. Generally, the maximum
bandwidth of SPI allows us to record 10-bit 40 kHz au-
dios. However, we can not transfer the data byte by byte
because this practice would repeatedly start and close the
MicroSD breakout board, which we believe would take
much more time than transmitting the data altogether.
Besides, the MicroSD card sometimes pauses all the in-
teractions and cleans its internal cache, which may take
up to hundreds of microseconds [17]. Therefore, we have
to store the collected data to the Arduino when the Mi-
croSD card is not responding. The solution is to use the
extra space in the SRAM as the buffer to store the data
temporarily and send them to the MicroSD card later.
We can learn how much RAM space is left from the Ar-
duino IDE terminal after uploading the DAQ program.
We have to ensure that we did not use up all the remain-
ing space in SRAM because other local variables in the
program need SRAM space too. If that happens, there
would be some SRAM conflicts, and they may cause the
Arduino to crash.

The third is to use the so-called “Interrupt-driven
ADC” technique [18]. The ATMega2560, the microcon-
troller the Arduino Mega2560 runs on, can start an ADC
and then provide an interrupt ADC vect when it is done
converting. It means that while the ADC is running, the
central processor can be executing other code. We would
be moving the data to the MicroSD card from SRAM
buffers while the ADC is running and collecting data.
We would also use a timer1 interruption to ensure that
the ADC runs at our appointed frequency.

In conclusion, our data acquisition device software runs
in this way: we have a queue of buffers in the SRAM of
the Arduino, and the MicroSD card is ready to receive
data. After we start recording, the Arduino ADC be-
gins to do the analog measurement and store the data
in the SRAM buffers, at the same time, the timer1 in-
terruption ensures that every measurement is completed
during the specified time interval (in our case, every
1/40 kHz = 25 µs). The measurement is conducted in an
interrupt service routine function, meaning that we can
do something else (moving data to MicroSD card) while
performing the measurement. Every time one buffer is
filled, the ADC would start to store data in the next
buffer in the queue, and the Arduino would begin to move
the data to the MicroSD card and clean the filled buffer
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for future usage.

2. Time synchronization and calibration

To localize the sound source, we need at least 4 data ac-
quisition devices at different locations and measure the
delay time of the arriving signals between different de-
vices. Thus, the problem is transferred to a multilater-
ation problem, which can be solved by geometric recon-
struction.

However, to ensure that we can obtain accurate time
of arrival (TOA) information, we have to synchronize the
clocks of different devices and keep their speeds correct.
In other words, we have to eliminate or minimize the time
drift of the devices.

Suppose the device recorded a series of data ai, with
the index i = 0, 1, 2, .... The exact time when ai is
recorded can be written as

ti = t0 + α∆t× i (C1)

where t0 is the start time of recording, ∆t is the nominal
time interval between two data points (25 µs for a sample
rate of 40000 kHz), and α is the time calibration coeffi-
cient such that α∆t becomes the real interval between
two data points.

The PPS (Pulse-Per-Second) pin of the GPS provides
a 100 ms pulse every second with time drift less than
100 ns. [19] So we would use the rising edge of the PPS
pulse to synchronize the beginning of recording on dif-
ferent devices. It is done by an interrupt service routine
that starts the recording exactly when the rising edge
arrives. Therefore, the beginning time t0 of different de-
vices would be the same. By later tests (Fig. 10(a) and
Fig. 10(b)), the errors of the starting points are small
enough to be neglected compared with other errors.

The internal clocks (crystal oscillator) of different Ar-
duino also tick at different speeds. The differences are
caused by the different qualities of the crystal oscilla-
tors. The temperature also plays a role in the speed.
According to our measurement, when the environment
temperature increases 1 ◦C, the clock would be slower
by about 13 µs per second. The time calibration coef-
ficient is measured by comparing the time interval be-
tween two PPS pulses and the Arduino internal clock’s
time interval. The ratio between the time difference by
the internal clock and the number of PPS pulses is the
time calibration coefficient. The time calibration coef-
ficient is measured both before and after recording and
their average is taken to reduce error.

Hence, we know the t0 and α of different devices, thus
knowing each data point’s exact time. Following, we can
use a resample function [20] to adjust the sample rate of
the sample so that the data’s comparison could be more
convenient.

Also, the total number of buffers we use controls when
the Arduino stops recording. Each buffer holds 254

(a)Calibrated audio recording of 1 kHz sine wave at t = 0 s.

(b)Calibrated audio recording of 3 kHz sine wave at t = 0 s.

FIG. 10. Sign wave of 1 kHz and 3 kHz at t = 0 s with calibra-
tion. Data labeled by “sample a” are collected by Breadboard
1 and Data labeled by “sample b” are collected by Breadboard
2.

words, and one word corresponds to 25-µs 10-bit sam-
ple. Therefore, one buffer corresponds to a recording of
6.35 ms. We can calculate how many buffers we need to
record a sample of the given length, and we would stop
the recording when all buffers are used.

Appendix D: Accuracy Analysis

To verify that the data collected by our 10-bit 40-kHz
DAQ is reliable, we use commercial devices in Fig. 11
to test them, including a function generator (Tektronix
AFG1022, time accuracy ±1 ppm) and an oscilloscope
(RIGOL DS1054). We generated some sine waves of spe-
cific frequencies and let the DAQ measure these signals.
Following, we used a computer to do some offline data
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processing and calculated the frequencies of the data col-
lected by the DAQ. By comparing the differences in the
frequencies, we could know how accurate are our data
acquisition devices.

FIG. 11. The oscilloscope (RIGOL DS1054) and the function
generator (Tektronix AFG1022). The breadboard version of
our DAQ is also in the picture.

First, we measured the time calibration coefficients of
all the devices we used. These coefficients are related to
the speeds of the internal clocks of the Arduinos. The
time drifts caused by this reason can vary from hundreds
to thousands of PPM. The average calibration coefficients
α of all our devices at the sample temperature are listed
in Table I.

Device Ave. α Drifts
Blue 1 + 1.0× 10−3 1000 ppm

Orange 1 + 1.8× 10−3 1800 ppm
Purple 1 + 2.8× 10−4 280 ppm

Red 1 + 1.0× 10−3 1000 ppm
Yellow 1 + 1.2× 10−3 1200 ppm

Breadboard 1 1− 2.1× 10−3 -2100 ppm
Breadboard 2 1 + 7.0× 10−5 70 ppm

TABLE I. Average time calibration coefficients α of all the
devices we used, and their drifts before calibration.

After we applied the time calibration method men-
tioned in Appendix C, the drifts of Breadboard 1 and
Breadboard 2 are significantly reduced. Comparing the
frequencies by the function generator and our DAQ, we
found the final time drifts listed in Table II. We believe
that these drifts come from the time calibration coeffi-
cients. First, to achieve the time calibration coefficients,
we used the micros() function, whose time resolution is 4
µs instead of 1 µs, resulting in some potential errors. Sec-
ond, there may be some temperature fluctuation during
the measurement, disturbing the internal clocks’ speed
and causing some non-linear time drifts.

We compared the calibrated data and uncalibrated

Device Ave. drifts
Breadboard 1 -4.5 ppm
Breadboard 2 1.5 ppm

TABLE II. Average time drifts of Breadboard 1 and 2 after
time calibration

data. The data are calibrated using the information in
Table I. In Fig. 12(a) and Fig. 10(b), we measured the 1-
kHz sign wave at t = 29.9 s without and with calibration.
In Fig. 16(a) and Fig. 16(b), we measured the 3-kHz sign
wave at t = 29.9 s without and with calibration. Data la-
beled by “sample a” are collected by Breadboard 1, and
Data labeled by “sample b” are collected by Breadboard
2. The figures confirm that the data are well synchro-
nized and calibrated.

(a)Uncalibrated audio recording of 1kHz sine wave at t = 29.9 s.

(b)Audio recording of 1kHz sine wave at t = 29.9 s calibrated by the
GPS PPS signal.

FIG. 12. Sign wave of 1 kHz at t = 29.9 s without and
with calibration. Data labeled by “sample a” are collected by
Breadboard 1 and Data labeled by “sample b” are collected
by Breadboard 2.
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(a)Uncalibrated audio recording of 3kHz sine wave at t = 29.9 s.

(b)Audio recording of 3kHz sine wave at t = 29.9 s calibrated by the
GPS PPS signal.

FIG. 13. Sign wave of 3 kHz at t = 29.9 s without and
with calibration. Data labeled by “sample a” are collected by
Breadboard 1 and Data labeled by “sample b” are collected
by Breadboard 2.

Appendix E: Error in Calculated Time Shift

In this section, we show the error in the calculated time
shifts τi in our tests. In particular, we demonstrate the
accuracy in two ways.

• We use the actual distance information of the
source and all microphones to compute the theoret-
ical time shift τtheory of each recording, and show
the difference between the computed time shifts us-
ing the L2 metric and the theoretical time shifts.

• We estimate the error using the L2 metric values.

Specifically, for the second method, we first convert the
L2 metric values to normalized auto-correlation values

according to Eq. A1 as

a(τ) = 1− d2(τ)

2
. (E1)

Then, we notice that audio signals generally center at
zero (mean(si) ≈ 0), so the normalized auto-correlation
is actually the correlation coefficient.

a(τ) =

∫ T
0
s0(t)·ri(t+τ)dt

T√ ∫ T
0
s20(t)dt

T

∫ T
0
r2i (t+τ)dt

T

=
Cov[s0 · ri]

Std[s0] · Std[ri]
(τ)

= ρs0ri(τ).

(E2)

The standard error of correlation coefficient [21] is

SE(ρ) =

√
1− ρ2√
N − 2

, (E3)

where N is the number of time bins. Then, we estimate
the error τerr as |τ2 − τ1| where τ1 and τ2 are the first
and last roots of a(τ) = max(a)− SE(max(a)).

Setup |a− x| τ − τtheory τerr
0 m N/A N/A

1 14.142 m −5.41× 10−3 s 9.88× 10−3 s
(Beep) 14.142 m −5.48× 10−3 s 8.31× 10−3 s

20 m 1.282× 10−2 s 1.175× 10−2 s
20 m 8.24× 10−3 s 9.09× 10−3 s
0 m N/A N/A

2 14.142 m 3.20× 10−4 s 7.50× 10−4 s
(Chirp) 14.142 m 3.31× 10−4 s 2.50× 10−4 s

20 m 5.57× 10−4 s 1.250× 10−3 s

TABLE III. Error in the calculated time shifts. The data
from Test 3 in each setup is analyzed. The distance of each
microphone to the source is shown in |a− x|. The actual
errors τ − τtheory are calculated using the actual distance in-
formation of the source and microphones. The τerr values are
calculated using the L2 metric values. In each test, the time
shifts are compared with the time shifts at 0 m, so the actual
error is not available at this location.

The errors for Test 3 in each setup are shown in Ta-
ble III. The actual error is generally at the same order
of magnitude as the τerr. We observe that the error in-
creases as the distance increases, because of the decrease
in sound volume as well as the signal-to-noise ratio. In
addition, the error when using the chirp signal is much
smaller than the error when using the beep signal, which
is expected since the frequency of the chirp signal changes
with respect to time, allowing for an easier match of dif-
ferent recordings. Besides, we know Arduino real-time
clock has much better accuracy than 1× 10−4 s, so the
total error in time is dominated by the error from L2

metric, which means our algorithm is bottlenecked by
the poor signal-to-noise ratio of the microphones.
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Appendix F: Cover Design

FIG. 14. Case lid design of breadboards. The top row is
the pinyin (pronunciations) of the Chinese characters in the
second row, which means exactly acoustic direction-finding.

We designed a unique case lid for our breadboards,
which contains four lines of words. The first three lines
are the same meaning: the first line is the Chinese pinyin
(pronunciation), the second line is the Chinese charac-
ters, and the third line is the English translation for the
Chinese characters.

Appendix G: Recording Devices

We show our Arduino-based recording devices below.
The final PCB version of the recording devices (Fig. 15) is
used for all the tests. The breadboard version (Fig. 17) is
studied to understand the behavior of individual modules
and to develop and test the data acquisition software.

FIG. 15. Five final PCB version of the recording devices.

(a)Front side of PCB version of the recording device.

(b)Back side of PCB version of the recording device.

FIG. 16. Front side and Back side of the PCB version of the
recording device.

FIG. 17. A breadboard version of the the recording device.
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