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Introduction
● Tibial stress fractures make up about 45% of lower limb 

injuries in runners  

● These injuries have short and long term effects on the 

performance of the athletes 

● They also lead to heavy medical costs, and shorten their 

career 



Introduction

● The number of runners in the US has steadily 

increased over the decade

● We must find methods to study the form and 

technique of runners



Previous Attempts

● Brayne et al. used a 

consumer-grade wireless 

accelerometer called RunScribe

● Sensor was skin mounted, sampled 

at 1kHz



Previous Attempts
● Milner et al. used the six camera 

Vicon 512 system

● Runners ran on a force-measuring 

platform while wearing reflective 

trackers



Previous Attempts 
● Lafortune et al. used bone mounted 

transducers (BMTs) to do the job

● Accelerometers were attached onto 

the tibia using a 4.7mm diameter 

Steinmann intracortical pin

Trust us, you don’t want a picture here



Our Method
● To our Arduino Mega, we connected three 9-axis 

Accelerometer-Gyroscope-Magnetometer sensors

● We had to use a I2C multiplexer because the sensors are identical, and 

hence have the same I2C address

● The bottlenecks to our sample rate were the address switching by the 

multiplexer and the writing of the data to the SD card

● Which meant we could read 3-axis accelerometer and 3-axis gyroscope from 

each sensor at 110Hz



Our device (one big pedometer)

LSM9DS1 x3
(waterproofed)

Ankle strap

Thigh/ calf strap

DAQ 
(input/output)

Additional 
accelerometer
input sockets



Track running/walking setup
● The arduino, PCB and 9V battery supply were kept in a backpack with the 

wires to the sensors coming out of it 

● A sensor was attached to each ankle using tight velcro straps

● Another one was attached to the belt buckle 

● We used velcro straps at the thighs to guide the wires and keep them from 

dangling



Treadmill running/walking setup
● The setup on the treadmill was simpler since we could simply keep the device 

in the cup holder

● And this meant we could take a video of each of our running techniques



https://docs.google.com/file/d/1wT3lefAP9fYPw4wvMEaTGdsee9IMevud/preview


https://docs.google.com/file/d/19rykgDknS6Qrw9orXjBnixV0NnCbUY94/preview


Running and walking gait characterization
● Two main phases:

○ Stance phase (A-B): 
■ Begins with contact with ground, ends with leaving ground
■ Contact phase (A) - contact with ground
■ Propulsion phase (B) - push off from ground

○ Swing phase (C-D) - foot moving through the air:
■ Begins with lift off from ground, ends with contact.

A B C D



Measuring the accelerations of walking and running
● Used a force pad to measure the “vertical ground reaction force” (VGRF) of walkers and 

runners
● Sample rate was 2500 Hz

Walking Running Walking-Running transition

[8] Anthony Tongen, and Roshna Wunderlich.



Data Analysis: Outline

● All analysis was done offline in Python
○ Step one: Calibration of raw accelerometer/gyroscope data
○ Step two: Correction of accelerometer data using gyroscope
○ Step three: Partition of data to define individual steps

■ Partition algorithm problems and pitfalls
○ Step four: Optimization
○ Step five: Generate average step
○ Step six: Error analysis



Calibration
● Based off of the calibration 

algorithm implemented in the 
Sparkfun library

● Input:
○ Acceleration and gyroscope data
○ Axis oriented in direction of “g”
○ Calibration data range (for bias 

determination)

● Output:
○ Acceleration/gyro data with bias 

subtracted
○ Axis in direction of “g” reads 

approximately 1.0 g

Calibration data

Bias subtraction



Subtraction of “g” using gyroscope
● Problem: orientation of sensor changes constantly during motion
● Solution: use gyroscope data to calculate ∆𝛳 of the accelerometer

○ Numerically integrate angular velocity to obtain angles
○ What about drift? → use scipy “filtfilt” with scipy butterworth filter
○ Project g onto constantly changing accelerometer reference frame using euler angles
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Partitioning of Data into ‘Steps’ (pedometer algo)

● What feature(s) of the acceleration data can be used to define a step?

Acceleration 
magnitude data

Vertical 
acceleration data
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● Peak finding works OK for both types of data...
● Using peaks to partition data into steps:

Partitioning of Data into ‘Steps’ (pedometer algo)

● Find clusters of peaks
○ Can measure the distances between them, want to treat a cluster as one feature
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● Split data between clusters of peaks
○ Make a partition if [distance b/w peak i and peak i+1] > average distance between peaks
○ Partition start and end halfway between peak clusters

Partitioning of Data into ‘Steps’ (pedometer algo)
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Problems and Pitfalls
● Jolts and stumbles in the middle of a data set

○ Can cause the partitions to be defined inconsistently

Glitch!
Before glitch

After glitch



Problems and Pitfalls
● Natural, slow changes in the subject’s gait

○ Significant changes in step duration over a particular data set
○ Need a different analysis to characterize this
○ Unexplored avenue of gait characterization!

Time duration of 
steps often change 
slowly (over 10s - 
100s of steps).
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Optimization of Partitions
● The partition algorithm can be tuned in the following ways:

○ Threshold value for acceptable peaks
■ Decrease variance in partition sizes and beginning/end points

○ Orientation of data set
■ In acceleration data, some of the “trough” features are more consistent then peaks

○ Correction of inconsistent partition formation
■ Identify inconsistent partition formation, discard problem data, correct inconsistencies

Peak
threshold
optimization
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Generate Average step
● Input: acceleration data set, partitions generated by partition algo.

○ Use 10 ms bins for data points
○ Plot average of each bin

● Output: Average bin values, uncertainty (acceleration), uncertainty (step 
duration)
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Optimization and average step output
Optimized peak threshold 
(increased from average)Default peak thresholds (the 

average value of the data set)

● Raising the peak threshold generally increases the sharpness of the highest peaks
● However, it can muddy peaks that fall below the threshold



Results: How well does the averaging model the data?

● Very obvious asymmetry b/w orange and blue data sets in raw data (blue > orange)
● Problem: in averaged data, the difference appears less significant
● Averaging tends to smear sharp, low resolution peaks.  These peaks account for much of the 

apparent difference b/w the two data sets.

0.2 0.4 0.6 0.8



Interpreting walking data

B C DA
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Left and Right leg Time Shift
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Subject one: walking

Right Leg Left Leg

Step duration (ms) 926.0 +/- 7.8 927.9 +/- 6.9

Contact acc max (g) 2.172 +/- 0.075 1.567 +/- 0.032

Propulsion acc max (g) 2.757 +/- 0.143 2.483 +/- 0.068
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Subject two: walking

Right Leg Left Leg

Step duration (ms) 854.4 +/- 4.51 854.5 +/- 4.5

Contact acc max (g) 1.870 +/- 0.032 1.911 +/- 0.031

Propulsion acc max (g) 3.283 +/- 0.065 2.976 +/- 0.073
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Centre of Mass

● Centre of mass 
magnitude data is 
periodic, but complicated.

● It is better to look at the 
individual components of 
acceleration 

forward

hip

vertical

Acc. mag.

Acc. 



Centre of Mass Averages (walking)
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Interpreting running data
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Subject one: Running

Right Leg Left Leg

Step duration (ms) 711.2 +/- 58.1 708.3 +/- 55.3

Contact acc max (g) N/A 3.488 +/- 0.032

Propulsion acc max (g) 8.511 +/- 0.482 6.769 +/- 0.339
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Subject two: Running

Right Leg Left Leg

Step duration (ms) 623.2 +/- 48.1 623.4 +/- 48.0

Contact acc max (g) 4.156 +/- 0.063 4.089 +/- 0.043

Propulsion acc max (g) 3.284 +/- 0.148 3.427 +/- 0.131
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Discussion: Asymmetries
● It is clear from the graphs, the accelerations experienced by the right ankle of 

subject one are significantly greater than the left ankle

● Could be a sign of pronation, supination or “leg length discrepancy”

● We have shown it is possible to observe such discrepancies using our 

method



Discussion: Heel strike vs. Toe strike

● Subject one’s graph exhibits a shoulder pattern right before the large 

peak

● Subject two’s graph instead shows another smaller peak right after the 

large peak

● The majority of these differences are probably because subject one uses 

the Toe Strike technique, where subject two uses the heel strike 

technique



Conclusions
● Our study demonstrated how, through the collection of raw accelerometer and 

gyro data we can obtain accurate values of acceleration for an average step 

of a subject

● Hence, this method can be used for future studies into the techniques used by 

runners, whether for diagnostic purposes or to improve and perfect a 

technique

● Such accurate data could also be a useful tool for rehabilitation for patients 

trying to regain full motion of the lower limbs 
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