Measuring walking and running dynamics using skin mounted accelerometers

Surjo Dutta and David Friedman

Introduction

- Tibial stress fractures make up about 45% of lower limb injuries in runners
- These injuries have short and long term effects on the performance of the athletes
- They also lead to heavy medical costs, and shorten their career

Introduction

Previous Attempts

- Brayne et al. used a consumer-grade wireless
accelerometer called RunScribe
- Sensor was skin mounted, sampled at 1 kHz

Previous Attempts

- Milner et al. used the six camera Vicon 512 system
- Runners ran on a force-measuring platform while wearing reflective trackers

(b)

Previous Attempts

- Lafortune et al. used bone mounted transducers (BMTs) to do the job
- Accelerometers were attached onto Trust us, you don't want a picture here the tibia using a 4.7 mm diameter Steinmann intracortical pin

Our Method

- To our Arduino Mega, we connected three 9-axis

Accelerometer-Gyroscope-Magnetometer sensors

- We had to use a I2C multiplexer because the sensors are identical, and hence have the same I2C address
- The bottlenecks to our sample rate were the address switching by the multiplexer and the writing of the data to the SD card
- Which meant we could read 3-axis accelerometer and 3-axis gyroscope from each sensor at 110 Hz

Our device (one big pedometer)

Thigh/ calf strap
DAQ
(input/output)

Additional accelerometer input sockets \qquad

Track running/walking setup

- The arduino, PCB and 9V battery supply were kept in a backpack with the wires to the sensors coming out of it
- A sensor was attached to each ankle using tight velcro straps
- Another one was attached to the belt buckle
- We used velcro straps at the thighs to guide the wires and keep them from dangling

Treadmill running/walking setup

- The setup on the treadmill was simpler since we could simply keep the device in the cup holder
- And this meant we could take a video of each of our running techniques

Running and walking gait characterization

- Two main phases:
- Stance phase (A-B):
- Begins with contact with ground, ends with leaving ground
- Contact phase (A) - contact with ground
- Propulsion phase (B) - push off from ground
- Swing phase (C-D) - foot moving through the air:
- Begins with lift off from ground, ends with contact.

Measuring the accelerations of walking and running

- Used a force pad to measure the "vertical ground reaction force" (VGRF) of walkers and runners
- Sample rate was 2500 Hz

Data Analysis: Outline

- All analysis was done offline in Python
- Step one: Calibration of raw accelerometer/gyroscope data
- Step two: Correction of accelerometer data using gyroscope
- Step three: Partition of data to define individual steps
- Partition algorithm problems and pitfalls
- Step four: Optimization
- Step five: Generate average step
- Step six: Error analysis

Calibration

- Based off of the calibration algorithm implemented in the Sparkfun library
- Input:
- Acceleration and gyroscope data
- Axis oriented in direction of " g "
- Calibration data range (for bias determination)
- Output:
- Acceleration/gyro data with bias subtracted
- Axis in direction of " g " reads approximately 1.0 g

Subtraction of " 9 " using gyroscope

- Problem: orientation of sensor changes constantly during motion
- Solution: use gyroscope data to calculate $\Delta \theta$ of the accelerometer
- Numerically integrate angular velocity to obtain angles
- What about drift? \rightarrow use scipy "filtfilt" with scipy butterworth filter
- Project g onto constantly changing accelerometer reference frame using euler angles

Partitioning of Data into 'Steps’ (pedometer algo)

Time (sec)

- What feature(s) of the acceleration data can be used to define a step?

Partitioning of Data into 'Steps' (pedometer algo)

- Peak finding works OK for both types of data...
- Using peaks to partition data into steps:

- Find clusters of peaks
- Can measure the distances between them, want to treat a cluster as one feature

Partitioning of Data into 'Steps’ (pedometer algo)

- Split data between clusters of peaks
- Make a partition if [distance b/w peak i and peak i+1] > average distance between peaks
- Partition start and end halfway between peak clusters

Problems and Pitfalls

- Jolts and stumbles in the middle of a data set
- Can cause the partitions to be defined inconsistently

Before glitch

After glitch

Problems and Pitfalls

- Natural, slow changes in the subject's gait
- Significant changes in step duration over a particular data set
- Need a different analysis to characterize this
- Unexplored avenue of gait characterization!

Time duration of steps often change slowly (over 10s 100s of steps).

Optimization of Partitions

- The partition algorithm can be tuned in the following ways:
- Threshold value for acceptable peaks
- Decrease variance in partition sizes and beginning/end points
- Orientation of data set

■ In acceleration data, some of the "trough" features are more consistent then peaks

- Correction of inconsistent partition formation
- Identify inconsistent partition formation, discard problem data, correct inconsistencies

Peak threshold optimization

Generate Average step

- Input: acceleration data set, partitions generated by partition algo.
- Use 10 ms bins for data points
- Plot average of each bin
- Output: Average bin values, uncertainty (acceleration), uncertainty (step duration)

Optimization and average step output

Default peak thresholds (the average value of the data set)

Optimized peak threshold (increased from average)

- Raising the peak threshold generally increases the sharpness of the highest peaks
- However, it can muddy peaks that fall below the threshold

Results: How well does the averaging model the data?

- Very obvious asymmetry b/w orange and blue data sets in raw data (blue > orange)
- Problem: in averaged data, the difference appears less significant
- Averaging tends to smear sharp, low resolution peaks. These peaks account for much of the apparent difference b / w the two data sets.

Interpreting walking data

Left and Right leg Time Shift

Subject one: walking

	Right Leg	Left Leg
Step duration (ms)	$926.0+/-7.8$	$927.9+/-6.9$
Contact acc max (g)	$2.172+/-0.075$	$1.567+/-0.032$
Propulsion acc max (g)	$2.757+/-0.143$	$2.483+/-0.068$

Subject two: walking

	Right Leg	Left Leg
Step duration (ms)	$854.4+/-4.51$	$854.5+/-4.5$
Contact acc max (g)	$1.870+/-0.032$	$1.911+/-0.031$
Propulsion acc max (g)	$3.283+/-0.065$	$2.976+/-0.073$

Centre of Mass

Centre of Mass Averages (walking)

a.) vertical
b.) forward
c.) hip

Interpreting running data

Subject one: Running

	Right Leg	Left Leg
Step duration (ms)	$711.2+/-58.1$	$708.3+/-55.3$
Contact acc max (g)	N/A	$3.488+/-0.032$
Propulsion acc max (g)	$8.511+/-0.482$	$6.769+/-0.339$

Subject two: Running

Right

Discussion: Asymmetries

- It is clear from the graphs, the accelerations experienced by the right ankle of subject one are significantly greater than the left ankle
- Could be a sign of pronation, supination or "leg length discrepancy"
- We have shown it is possible to observe such discrepancies using our method

Discussion: Heel strike vs. Toe strike

- Subject one's graph exhibits a shoulder pattern right before the large peak
- Subject two's graph instead shows another smaller peak right after the large peak
- The majority of these differences are probably because subject one uses the Toe Strike technique, where subject two uses the heel strike technique

Conclusions

- Our study demonstrated how, through the collection of raw accelerometer and gyro data we can obtain accurate values of acceleration for an average step of a subject
- Hence, this method can be used for future studies into the techniques used by runners, whether for diagnostic purposes or to improve and perfect a technique
- Such accurate data could also be a useful tool for rehabilitation for patients trying to regain full motion of the lower limbs

References

1. Bennell, Kim L., et al. "The Incidence and Distribution of Stress Fractures in Competitive Track and Field Athletes: A Twelve-Month Prospective Study." The American Journal of Sports Medicine, vol. 24, no. 2, Mar. 1996, pp. 211-217, doi:10.1177/036354659602400217.
2. Hreljac, Alan. "Impact and Overuse Injuries in Runners." Medicine \& Science in Sports \& Exercise, 1 May 2004, insights.ovid.com/crossref?an=00005768-200405000-00017.
3. Aschwanden, Christie. "Age Matters." Runner's World, 31 Aug. 2018, www.runnersworld.com/advanced/a20848096/age-matters-for-marathoning/.
4. "Running/Jogging Participants US 2006-2017 | Survey." Statista, 2017, www.statista.com/statistics/190303/running-participants-in-the-us-since-2006/.
5. Brayne, L., Barnes, A., Heller, B. et al. Sports Eng (2018) 21: 487. https://doi-org.proxy2.library.illinois.edu/10.1007/s12283-018-0271-4
6. Milner, Clare. "Are Knee Mechanics during Early Stance Related to Tibial Stress Fracture in Runners?" Redirecting, July 2017, doi.org/10.1016/j.clinbiomech.2007.03.003.
7. Lafortune, Mario. "Tibial Shock Measured with Bone and Skin Mounted Transducers." Redirecting, 1995, doi.org/10.1016/0021-9290(94)00150-3.
8. Tongen, Anthony et al.. Clinics in Sports Medicine (1994). https://www.researchgate.net/publication/15394317 The biomechanics of walking and running
