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Feasibility of Measuring Particulate Matter Concentrations in Home Kitchens 

Jack Williams, Weichen Gao, Chang Liu 

Abstract 

Particulate matter (PM) can cause health issues if people are exposed in an environment with a 
high concentration for a long period of time, and therefore it is important to monitor and record 
PM concentrations. In this study we established the feasibility of monitoring PM concentrations 
with easy-to-acquire hardware and self-assembled circuits during and after cooking in a home 
kitchen. We assembled a data collection device that includes a PMS5003 particulate matter 
sensor, a real time clock, and a BME680 sensor. The device is controlled by a software we wrote 
using the Arduino programming environment. It is observed that PM concentrations grow during 
the cooking and decay exponentially thereafter. We have also observed that concentrations of 
particulate matter of different sizes and VOC concentrations generally follow the same trend. 
PMs of different sizes also have almost the same distribution throughout the cooking process. 
Furthermore, we have discovered that temperature, humidity, and pressure are not significantly 
affected by the cooking events. Further research could be done on considering the effects of 
ventilation, different cooking ingredients, and the stove temperature on the PM concentrations. 
Commercial kitchens might also consider building such PM concentration monitors that give 
warnings if PM concentrations are at a high level for a significant period of time, and relevant 
regulatory or advisory standards on PM concentrations in commercial kitchens might be 
important to be developed. 

1. Background and Introduction 

Particulate matter (PM) pollution is a significant public health concern. PM is generally 
classified by its aerodynamic diameter, according to which it is characterized as coarse PM 
(PM10) with a diameter between 2.5 µm and 10 µm, and fine PM (PM2.5) with a diameter 
smaller than 2.5 µm. The diameter is directly related to its ability to travel in the atmospheric 
environment and its ability to be inhaled by humans. The chemical compositions of PM are 
extremely diverse, with PM2.5 mainly composed of sulfate, nitrate, ammonium, hydrogen ion, 
elemental carbon, organic compounds, metal, and particle-bound water, and PM10 is mainly 
composed of dust, coal and oil ash, metal oxides, table salt and sea salt, pollen, mold spores, and 
plant parts (Kim, Kabir, and Kabir 137). The sources of PM pollution are also diverse, including 
combustion of fossil fuel, organic processes, industrial processes, farming, mining, construction, 
etc. (Kim, Kabir, and Kabir 137). 

It is known that PM pollution adversely affects human health. PM particles are able to penetrate 
and deposit on the respiratory tract and it is generally believed that smaller particles can 
penetrate deeper. For particulate matter larger than 10 µm in diameter, the cilia and the mucus in 
the respiratory tract act to stop the particles, generally collecting the particles in the nose and 
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throat, where they can be eliminated later through sneezing and coughing. Therefore, it is 
generally agreed that particulate matter smaller than 10 µm in diameter are those having the most 
adverse health effects (Kim, Kabir, and Kabir 138). Such particles, depending on their size, 
could settle in the tracheobronchial tree, in the lung, or even in the bloodstream. In such 
positions, they may interfere with gas exchange in the lung or even penetrate the lung. Metals in 
the PM, especially iron, may also cause cellular and tissue damage, leading to inflammation. 
Certain organic materials in the PM may also cause airway inflammation and malfunction. These 
may lead to severe health effects, for example pulmonary fibrosis and other lung diseases. 
Moreover, adverse effects of PM on lung development in children have been observed as well. 
They may also lead to cardiovascular diseases (Kim, Kabir, and Kabir 138). Indeed, correlation 
between higher PM concentration level and increased hospital admissions for numerous diseases 
has been observed around the world. Higher concentration of PM2.5 is also linked to lower life 
expectancy (Kim, Kabir, and Kabir 138-139). 

Responding to such adverse health effects, Environmental Protection Agency, pursuant to the 
Clean Air Act, publishes and maintains National Ambient Air Quality Standards. The primary 
standards, which provide public health protection, were set at 12.0 µg/m3 in average per year and 
35 µg/m3 in average per 24 hours for PM2.5, and 150 µg/m3 in average per 24 hours for PM10 
(EPA, “NAAQS Table”). EPA also publishes and forecasts PM concentration levels across the 
US (AirNow). 

While outdoor PM concentration is a significant public health issue, indoor PM concentration 
can be significantly higher than outdoor during several household activities, and in particular 
cooking. If a fuel-consuming stove is used, depending on the specific fuel that is used, the PM 
concentration might increase up to 2,000 µg/m3 (Kim, Kabir, and Kabir 137). It is not clear, 
though, whether such a high increase will also be present in case an electrical stove is used. 
Indeed, most studies seem focused on the use of fuel in the cooking process. However, it is 
known that the burning of food and oil can in itself generate fine particulate matter (Kim, Kang, 
and Kim 843). Therefore, it is important to collect further data on the particulate matter 
generated by the cooking process when an electrical stove is utilized. 

The aim of this current study is to establish the feasibility of using commercially available 
sensors and self-assembled circuits to collect data on indoor air quality when cooking is 
underway and after cooking. Since sizes of particulate matter are relevant to health effects 
consideration, we collected data on different sizes of particles and studied how the concentration 
of each of them changes over time and relative to each other. We also studied the decay in the 
concentration of these particles after the cooking was finished.  The data were then evaluated and 
compared against relevant standards to see whether usual cooking activities might cause a PM 
exposure exceeding those standards. Our conclusion is that the data collection is feasible and the 
PM concentrations would indeed be higher during the cooking process. We also confirmed the 
PM concentration would grow at the beginning of the cooking procedure and also decay 
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exponentially at the end of the process. In most cases, our results show that the distribution of 
PM particle sizes stays the same unless certain new PM sources are introduced. Further research 
into this topic might be conducted by observing the health of people who frequently cook in the 
long term, doing experiments in more controlled environments, and taking the temperature of 
stoves and ingredients into account. Our study also proves it possible to set up a PM 
concentration monitoring device in commercial kitchens to alert the kitchen staff when the PM 
concentrations exceed safety standards. 

2. Methods and Procedures 

2.1.  Hardware 

The hardware we need for this research is a device that can conveniently collect all the relevant 
data so that we can analyze and compare between different data runs and data categories. Our 
aim is to present a technical analysis of airborne particulate concentrations in home kitchens, so 
our device should be able to collect data on airborne particulate matters that includes PM2.5, 
PM10 and so on. The particulate matter sensor PMS5003 satisfies these requirements. We would 
need to store the data in a useful format and here we used an SD card onto which we could write 
data that we could then process. To control device components and receive data from them, we 
need a microcontroller and we used the Arduino Mega 2560 controller to do this task. To 
communicate with our device effectively, we used a keypad to give commands and an LCD 
screen to display the data from our device. 

 

Fig 2.1. The schematic diagram for the data collection device. 
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Fig 2.2. Front view of the data collection device. 

 

Fig 2.3. Back view of the data collection device. 

2.1.1. PMS5003 

 

Fig. 2.4. PMS5003 (Adafruit Industries, “PM2.5 Air Quality Sensor and Breadboard Adapter Kit 
- PMS5003”). 
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The PMS5003 provides us with data of PM1.0, PM2.5 and PM10 concentrations in both standard 
and environmental units, and it also gives us the number of particulate matters (PMs) per 0.1 liter 
of air. The second type of data would be categorized in 0.3 µm, 0.5 µm, 1.0 µm, 2.5 µm, 5.0 µm 
and 10.0 µm size bins. This device is key to our research because it can collect the PM 
concentration data we require in many forms and also distinguish between different sizes of PM. 
With this sensor, we could establish relations between the amounts of particulate matters of 
different sizes and what ingredients were cooked or which cooking methods were used. Since the 
sensor could update the PM count every second, it is possible to analyze how fast particulate 
matters spread throughout the kitchen, how quickly the concentration increases to the peak level 
and how long it takes for the concentration to decay back to the baseline level. The sensor uses 
laser scattering to radiate floating particles near it in the air, and then collect scattered light to 
obtain PM concentrations. The microcontroller inside the sensor calculates the diameters of 
particles and the number of particles of different sizes per volume (Adafruit Industries, “PM2.5 
Air Quality Sensor and Breadboard Adapter Kit - PMS5003”). 

 

Fig. 2.5. Block diagram of PMS5003 (Plantower Technology 2). 

2.1.2. BME680 
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Fig. 2.6. BME680 (Adafruit Industries, “Adafruit BME680 - Temperature, Humidity, Pressure 
and Gas Sensor”). 

This is a low power gas, pressure, temperature, and humidity sensor. BME 680 is needed to 
study the relations between the concentrations of particulate matters and the VOC gas 
concentration, pressure, temperature, and humidity of the kitchen. The temperature measurement 
is important also for the reason that the temperature information is often used to compensate for 
the temperature influences in other parameters. The sensor can measure humidity with ±3% 
accuracy, barometric pressure with ±1 hPa absolute accuracy, and temperature with ±1.0°C 
accuracy. Its response rate is less than 1s for new sensors, and this could help us analyze data on 
a smaller time scale with greater precision. The BME680 is also small in dimension and requires 
low power which is helpful since we want to integrate the sensor into a hand-held device that is 
powered by batteries. This sensor, like all VOC gas sensors, has variability and has to be 
calibrated against known sources if accurate data is needed (Adafruit Industries, “Adafruit 
BME680 - Temperature, Humidity, Pressure and Gas Sensor”). 

2.1.3. Arduino Mega 2560 

 

Fig. 2.7. Arduino Mega 2560 (Arduino). 

The Arduino microcontroller controls all the hardware we installed on the printed circuit board. 
Its function is to execute the series of commands we have written in C programming language 
using the Arduino IDE. It has 54 digital input/output pins and 16 analog pins. It has a USB 
connection which is used to upload the software instructions to the microcontroller (Arduino). 

2.1.4. DS3231 Real Time Clock 
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Fig. 2.8. DS3231 real time clock (Adafruit Industries, “Adafruit DS3231 Precision RTC 
Breakout”). 

The DS3231 real time clock provides our data collection software with accurate and precise 
timing. It is needed to track what happened during the cooking process and analyze the 
connections between those events and the PM concentrations. It would reset the time if the 
power is cut off, so a coin cell is needed (Adafruit Industries, “Adafruit DS3231 Precision RTC 
Breakout”). 

2.1.5. INA219 Current Sensor 

 

Fig. 2.9. INA219 current sensor (Adafruit Industries, “INA219 High Side DC Current Sensor 
Breakout - 26V ±3.2A Max”). 

The INA219 high side DC current sensor breakout enables us to measure the power use of our 
device. It will measure the battery voltage, the current draw, and the power draw. It measures 
high side voltages and DC currents with a precision of 1% and also tracks battery life (Adafruit 
Industries, “INA219 High Side DC Current Sensor Breakout - 26V ±3.2A Max”). 

2.1.6. LCD Screen 
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Fig. 2.10. The LCD screen (Adafruit Industries, “RGB Backlight Positive LCD 16 x 2 + Extras - 
Black on RGB”). 

The LCD functions as a screen that displays information about the working status of the data 
collection device. It can report data during the data collection, and give notices when the device 
starts or stops collecting data. The screen’s size is 27mm x 71mm / 1.1" x 2.8” and it is 16 
characters wide with 2 rows (Adafruit Industries, “RGB Backlight Positive LCD 16 x 2 + Extras 
- Black on RGB”). 

2.1.7. MicroSD Card 

 

Fig. 2.11. The microSD card (Adafruit Industries, “MicroSD Card Breakout Board”). 

The SD card helps store the data we have collected. After each data collection run, a CSV file 
will be generated which could then be used as a data source for analysis. 

2.1.8. Keypad 
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Fig. 2.12. The keypad (Adafruit Industries, “3 x 4 Phone-style Matrix Keypad”). 

The keypad is needed to interact with the data collector without it being connected to the 
computer. By pressing each of the keys of the keypad, different commands can be given. Such 
commands include displaying the current time, or starting the data collection. This keypad has 12 
buttons, i.e., 3 columns and 4 rows (Adafruit Industries, “3 x 4 Phone-style Matrix Keypad”). 

2.1.9. PCB 

The printed circuit board connects electronic components with copper laminated onto and/or 
between non-conductive substrates. This device integrates various components within a compact 
space such that we can make our data collection device hand-held and easy to operate (“PCB 
Layout”). The electronic components are generally soldered to the PCB, but we use female and 
male headers so that the components can be reused later. 

2.2.  Software 

2.2.1. DAQ Software 

The data acquisition (DAQ) software for the data collection devices was programmed in the 
Arduino programming environment, using C language. The code incorporated previous works by 
George Gollin. 

The program initializes and powers the BME680 sensor, the PMS5003 airborne particulate 
sensor, the DS3231 real time clock, the INA219 current and voltage sensor, the LCD screen, the 
SD card reader, and the keypad. It is run from an Arduino board installed on the printed circuit 
board. The program collects data approximately once every second. Depending on the 
instructions entered through the keypad, it also stores the data in the SD card. It also displays a 
selected segment of current data on the LCD screen, according to the value of a variable 
current_mode, which can be changed through keypad instructions. 

Table 2.1 
The 12 keys and the corresponding instructions on the keypad. 
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Key Instruction 

1 Display on the LCD screen the temperature and pressure readings 

2 Display on the LCD screen the relative humidity and VOC gas readings 

3 Display on the LCD screen the altitude (as calculated from the pressure) and the 
number of lines of content that have been written on the LCD screen 

4 Display on the LCD screen the PM > 0.3 µm and PM > 0.5 µm readings 

5 Display on the LCD screen the PM > 1.0 µm and PM > 2.5 µm readings 

6 Display on the LCD screen the PM > 5.0 µm and PM > 10.0 µm readings 

7 Display on the LCD screen the PM1.0 and PM2.5 readings 

8 Display on the LCD screen the PM10 and device battery voltage readings 

9 Display on the LCD screen the device battery current and device battery power (as 
calculated from the battery voltage and current) readings 

* Display on the LCD screen the air quality indexes (as calculated from the PM2.5 
and PM10 readings) 

0 Display on the LCD screen the current date and time (as recorded by the RTC) 

# Begin storing the collected data to the SD card, or, if the data storage is already 
underway, stop the data storage 

  

Each time a key is pressed, one would see some corresponding indication on the LCD screen. 
For example, when the ‘#’ key is pressed, the LCD screen will display “Saving data” and the 
name of the file it is currently writing into. If the data storage is already underway, the LCD 
screen will display “Stop saving data”. 

If the DAQ software is instructed to save data to the SD card (the variable saving_data is set to 
true by the instruction sent from the keypad), it will collect and save them in a CSV file format. 
Each line in the file will contain an entry (the first line includes the data labels), and each entry 
will contain data in the following order: Date, Time, Battery Voltage (V), Battery Current (mA), 
Battery Power (W), Temperature (�), Pressure (hPa), Relative Humidity (%), VOC Gas (kΩ), 
Altitude (m), PM > 0.3 µm (Particles / 0.1L), PM > 0.5 µm (Particles / 0.1L), PM > 1.0 µm 
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(Particles / 0.1L), PM > 2.5 µm (Particles / 0.1L), PM > 5.0 µm (Particles / 0.1L), PM > 10.0 µm 
(Particles / 0.1L), PM1.0 (µg/m3), PM2.5 (µg/m3), PM10 (µg/m3), AQI (as calculated from 
PM2.5 data), AQI (as calculated from PM10 data). 

Each time the data storage process begins, the program will create a new file to save the data, 
with file name data####.csv, ranging from data0000.csv to data9999.csv. Therefore, without 
replacing the SD card, it is possible to save up to 10,000 data files, so long as the storage 
capacity of the SD card allows. 

All data displayed and stored come directly from the sensors except the battery power and the 
AQI readings. The battery power is simply obtained by multiplying the battery voltage and the 
battery current (divided by 1,000 to change the unit from mA to A). The two AQI readings are 
calculated from the PM2.5 data and the PM10 data, respectively, following the AQI calculation 
mechanism defined by EPA (EPA, “Technical Assistance Document for the Reporting of Daily 
Air Quality – the Air Quality Index (AQI)”). 

2.2.2. Offline Analysis 

Offline analysis was completed using Python 3.7 (open source and cross-platform programming 
language) and the tool Jupyter Notebooks to create an InteractivePython environment for 
performing our data analysis. We use the scientific modules pandas, numpy, and matplotlib. 

Pandas allows us to load and organize our data in the environment using the DataFrame object. 
The DataFrame object represents a relational table; upon being loaded with data collected from 
our device, each entry will have all points of data for a certain time. The features used for 
analyzing airborne particulate concentration were: PM > 0.3 µm (Particles/0.1L), PM > 0.5 µm 
(Particles/0.1L), PM > 1.0 µm (Particles/0.1L), PM > 2.5 µm (Particles/0.1L), PM > 5.0 µm 
(Particles/0.1L),  PM > 10.0 µm (Particles/0.1L), PM1.0 (µg/m3), PM2.5 (µg/m3), PM10 
(µg/m3), AQI (as calculated from PM2.5 data), AQI (as calculated from PM10 data). We also 
monitored other air quality features: Temperature (°C), Pressure (hPa), Relative Humidity, and 
Volatile Organic Compound Resistivity (kΩ). Our device also collects data on its own battery 
voltage, current, and power. However, we saw these as values used for monitoring our device 
while using it, so they were not included in analysis. 

To perform analysis on decay rates, we used the numpy module. Numpy allows us to create 
additional data points of our airborne particulate data on a logarithmic scale. We then visually 
cut the growth and decay of each feature so numpy can calculate the best fit curve and resultant 
growth and decay rates. The values numpy calculates are then used to plot best fit curves. 

Graphing was done using matplotlib, a python plotting package for creating animations and 
visualizations. Most plots were just made as a reading over time, but other data graphing 
methods were used as well. See Section 3. 
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2.3.  Data Collection 

All data collection runs were conducted in home kitchens. In each run, data on airborne 
particulate, temperature, pressure, relative humidity, and VOC gas were collected and analyzed. 

In each run, the device was turned on for at least a minute before actual data collection began. 
This was done based on prior observations in test runs that the device needed approximately a 
minute to fully “fire up”, and the readings on relative humidity and the VOC gas, among other 
data categories, might be inaccurate barring that. 

The device began collecting data about 10 minutes before the actual cooking began, so that an 
appropriate amount of baseline data can be included. Furthermore, the device was not turned off 
until at least five minutes after the cooking concluded, so that data on the decay in the airborne 
particulate content can be collected and analyzed. We have also recorded the whole process of 
the cooking with our phones. The video also records the time displayed on the data collection 
device to align the timestamps in our data and the video. This is used to understand when the 
events recorded in the video happened and how that affected the PM concentration level. 

Chang’s cooking process involved heating pot, heating oil, frying pork, frying vegetables, 
stirring the ingredients, adding salt and sauce, and removing ingredients. These events were 
recorded and identified in the video to establish connections with the changes in PM 
concentrations. 

 

Fig. 2.13. A photo of Chang’s kitchen. 
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Jack was responsible for the bread making run. The process involved mixing the dough, 
kneading it, letting it rise, and then baking it. The events were recorded and can be referenced as 
a timestamp. The data for the bread making was taken on Monday April 13th at 11am. 

 

Fig 2.14.  A photo of Jack’s kitchen. 

3. Results 

3.1.  Airborne Particulate Features 

The following graphs plot the airborne particulate data versus time. Also plotted are lines of best 
fit for the decay of airborne particulates. Decay was modeled in the form of 𝑦 = 𝐴𝑒!", to give us 
exponential models of decay.  

Right away we were able to see that in runs where meat was being cooked over heat, PM 
concentrations would spike when ingredients were added to heat. Observations made from the 
Focaccia Bread run indicate that all-purpose flour is either too large or too small to be detected 
by the PMS5003. The spike seen near 8000 seconds is the result of the use of non-stick cooking 
spray. Immediately when it was used, PM concentration spiked very high. It then just as quickly 
fell. 
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3.1.1. PM1.0 (µg/m3) 

 

Fig. 3.1. PM1.0 (µg/m3). 

Table 3.1 

Run Start Time End Time Mean Median Range 

Mushroom 71 788 119.63 157 270 

Pepper 34 977 16.55 14 24 

Broccoli 141 1185 43.82 3 297 

Focaccia 64 13974 1.644 1 49 

 



15 

These graphs show the PM1.0 (µg/m3) data. This is the concentration of particles of size smaller 
than 1.0 micrometers, measured in units of micrograms per meter cubed of air.

3.1.2. PM2.5(µg/m3) 

 

Fig. 3.2. PM2.5 (µg/m3). 

Table 3.2 

Run Start Time End Time Mean Median Range 

Mushroom 71 788 306.51 354 982 

Pepper 34 977 27.1 24 37 

Broccoli 141 1185 84.83 5 976 

Focaccia 64 13974 3.11 1 113 
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These graphs show the PM2.5 (µg/m3) data. This is the concentration of particles of size smaller 
than 2.5 micrometers, measured in units of micrograms per meter cubed of air. 

3.1.3. PM10 (µg/m3) 

 

Fig. 3.3. PM10 (µg/m3). 

Table 3.3 

Run Start Time End Time Mean Median Range 

Mushroom 71 788 371.39 389 1278 

Pepper 34 977 31.44 27 46 

Broccoli 141 1185 99.04 5 1502 
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Focaccia 64 13974 3.8 2 166 

 

These graphs show the PM10 (µg/m3) data. This is the concentration of particles of size smaller 
than 10 micrometers, measured in units of micrograms per meter cubed of air. 

3.1.4. PM Size Counts 

 

Fig. 3.4. Particle size counts graphed on a log scale. 

These graphs represent particle counts grouped by size. Each reading represents the count of 
particles above a certain size (in units of micrometers). The concentration is measured in 
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particles per 0.1 liters of air. We elected to graph these on a log scale as they have the same 
shape as the PM1.0, PM2.5, and PM10 graphs, and we wanted to show this shape on a log scale. 

3.1.5. AQI (PM2.5) 

 

Fig. 3.5. Air Quality Index (calculated from PM2.5). 

Table 3.4 

Run Start Time End Time Mean Median Range 

Mushroom 71 788 140.98 25.0 500.08 

Pepper 34 977 82.9 76.03 91.06 

Broccoli 141 1185 50.5 20.83 485.55 

Focaccia 64 13974 12.57 4.17 180.69 
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Air quality index calculated from PM2.5 concentration. The Air Quality Index has a maximum 
of 500, so when the value calculated was higher, our software would overwrite this value to 0 to 
show this. This can be seen in the Mushroom and Broccoli runs (Fig. 3.5.). 

3.1.6. AQI (PM10) 

 

Fig. 3.6. Air Quality Index (calculated from PM10). 

Table 3.5 

Run Start Time End Time Mean Median Range 

Mushroom 71 788 103.16 6.48 499.0 

Pepper 34 977 29.11 25.0 42.23 
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Broccoli 141 1185 29.12 4.63 501.0 

Focaccia 64 13974 3.48 1.85 106.44 

 

Air quality index calculated from PM10 concentration. The Air Quality Index has a maximum of 
500, so when the value calculated was higher, our software would overwrite this value to 0 to 
show this. This can be seen in the Mushroom and Broccoli runs (Fig. 3.6.). 

3.1.7. PM Concentration Decay 

 

Fig 3.7. Decay of PM1.0, PM2.5, and PM10 on a log scale. 

These graphs show the decay of each data run graphed on a log scale. In each run, details align 
between PM1.0, PM2.5, and PM10 concentrations. 
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3.1.8. Distribution of Particle Sizes 

 

Fig. 3.8. Distributions of particles by size over time. 

Particle distribution by size. It can be seen that for the most part, the size distribution remains 
unchanged, regardless of the amount of particles, indicating that particulate matters of all sizes 
decay at the same rate. 

3.2.  Other Air Features 

3.2.1. Temperature (°C) and Relative Humidity 
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Fig. 3.9. Temperature and relative humidity graphed together. 

These plots show the relationship between temperature and relative humidity. It can be seen that 
in the long term, they follow each other. However, for short perturbations they will be inversely 
correlated. Periodic behavior in temperature in the Mushroom and Pepper runs could probably be 
attributed to air conditioning. In most cases relative humidity will not change much. 

3.2.2. Volatile Organic Compound Resistivity 
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Fig. 3.10. Volatile Organic Compound Resistivity as measured by the BME680. 

These plots show the VOC resistivity as measured from the BME 680. This value is inversely 
proportional to the PM concentration. One can see that it will spike down when PM 
concentration spikes up. 

4. Discussion 

The results from our cooking trials behave in a mostly expected way, that is, when something is 
being cooked over heat, particulate matter (PM) concentrations are driven up. Across all runs we 
can see a similar pattern of PM concentration spikes followed by an exponential decay back to 
the baseline concentration. However, it is important to note that some events such as burning 
food might produce smoke. Smoke can drive PM concentrations significantly high and certain 
patterns in the data might be attributed to that. 

We were able to extrapolate a few relationships between features in our data. Throughout all runs 
it can be seen that the VOC resistivity will spike at the same time as PM concentrations. Albeit, 
the VOC resistivity will spike down, i.e., its relationship with the PM concentration is inverse. 
We believe this is because the VOC sensor is also picking up the particulate matter but just 
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reading it in a different way. Another relationship we were able to pick out from collected data is 
a relationship between temperature and relative humidity. When temperature goes up, relative 
humidity will go down. Reference Fig 3.9. to view this relationship. 

We were also able to extract some other interesting features from our data as well. While 
examining PM1.0, PM2.5, and PM10 readings, we were able to confirm that the readings all 
follow the same trend, that is, the fine details from each reading align. We were also able to do 
an analysis on the distribution of particle sizes. From this data we observed that in most cases, 
the distribution of particle sizes stayed the same. It would take the introduction of a new particle 
source to throw the distribution off. For example in the focaccia bread run, there is a change in 
particle distribution; this was due to non-stick cooking spray being used in the vicinity of the PM 
sensor. The effects of this distribution change are very short. We were also able to determine that 
cooking has no effect on the air pressure in the room, and air pressure had no effect on PM 
concentrations. 

One thing that we were able to see in all of our runs involving cooking meat in an oil, was that 
each step in the cooking process could be seen as a spike in PM concentration (see Fig 4.1. and 
Table 4.1). We were able to reference our video logs to determine this. We saw that there was a 
spike in PM concentrations when oil was first introduced into the cooking vessel, as well as 
every time a new ingredient was added. 

 

Fig 4.1. Zoomed in view of Mushroom with Pork PM spike. 
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Table 4.1 
Timestamps and corresponding events. 

Timestamp Event 

13:38:53 Mushroom added to  boiling water 

13:39:13 Pot removed from heat 

13:39:30 Pot put back on heat 

13:42:02 Oil added to pot 

13:43:40 Mushroom added to pot 

13:46:21 Sauce added to pot 

13:46:51 Cooked pork added to pot 

 

Our research shows that it is viable to build a data collection device and record the particulate 
concentration level in the home kitchen with an electric stove. We assumed the PM 
concentration would increase during the cooking process and would decay after the process. This 
assumption was indeed verified. We expect the increase of the concentration at the start of the 
cooking process and the decrease at the end to be exponential. The increase and decrease are 
indeed mostly exponential. 

Previous studies have long established the harmful health effects of high concentration of 
particulate matter and that using fuel in cooking leads to a highly substantial increase in PM 
concentration. However, cooking using an electric stove is less understood. Our study, while 
neither comprehensive nor precise in nature, established that an appreciable increase in PM 
content would indeed arise during such a cooking process. It also established that it is possible to 
use easily acquired hardware and self-assembled circuits to collect data on such processes, 
enabling future and further studies to be conducted. However, we stress that until more 
controlled studies are conducted, it is impossible to draw conclusive and quantitative conclusions 
on how the PM concentration behaves during the cooking process. 

We should also note here that during a specific cooking process, several factors might affect the 
behavior of PM concentration. As an example, if the kitchen is shared between several people, 
whether those people have used the kitchen before or after cooking might greatly impact how the 
PM concentration grows and decays, as can be seen in Fig 4.2. The baseline PM concentration 
before cooking can also have significant effects, as well as the use of ventilation. Environmental 
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factors like whether and how the kitchen is connected to other environments and random 
fluctuations in PM concentration, also need to be taken into account. We should also note that 
during certain kinds of cooking processes, open fire might be necessary, which would need to be 
studied and accounted for as well. 

 

Fig. 4.2. Fried Cabbage with Pork PM2.5 concentration. 

Given the limitations in our experimental resources and capabilities, we should note that during 
each data collection run, only one PMS5003 sensor and one BME680 sensor are used. While we 
strived to place them at a fixed distance from the stove, such things are not always possible in 
every setting. Using only one set of sensors also means we are unable to determine how changes 
in PM concentrations might differ between different distances from the stove. Moreover, while 
the BME680 sensor was used and in several experimental runs, the VOC gas resistance data 
returned from it can be seen to have the expected correlation with the PM concentration (see Fig 
3.2. and Fig 3.10.), we do not have a clear and certain way to translate the data returned from the 
BME680 sensor, i.e., the resistance, into precise VOC concentration data. The resistivity might 
also be affected by factors such as humidity (Bosch 23), further clouding the use of VOC data to 
corroborate the PM data. 

Furthermore, due to the circumstances during our experiments, it is impossible for us to gain 
access to a commercial kitchen and take data on cooking processes in such a kitchen, where the 
presence of possibly more people and the use of different ventilation systems might affect how 
the PM concentration grows and decays. However, if we assume these factors do not affect the 
behavior of PM concentrations too much, we may approximate the amount of PM a worker in 
the kitchen might be exposed to during an eight-hour shift. We present such data in the following 
table: 
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Table 4.2 
Approximate average exposure of PM2.5 and PM10 in a commercial kitchen. 

  PM2.5 (Average, µg/m3) PM10 (Average, µg/m3) 

Mushroom with Pork 217.57 263.61 

Pepper with Pork 21.77 25.30 

Focaccia Bread 3.07 3.74 

Broccoli with Pork 66.79 77.83 

 

In taking the average, we assumed each worker would perform the cooking process and then 
have a five-minute break before the next cooking process starts, i.e., the average considers the 
PM concentrations of the entire cooking process plus five minutes of baseline PM concentrations. 
In order to put the data into appropriate context, we compare the data with certain environmental 
standards. The Occupational Safety and Health Administration (OSHA) does not have a general 
indoor air quality standard (OSHA, “Indoor Air Quality in Commercial and Institutional 
Buildings” 11), and we were only able to compare our data with the general workplace air 
contaminants limits provided by federal regulations, which, at 15 mg/m3 or 15,000 µg/m3 
(OSHA, “Limits for Air Contaminants”), far exceeds the spike value of any of our data runs. We 
also compared the data with the National Ambient Air Quality Standards (NAAQS) published by 
the EPA. Since the standards consider 24-hour average, we added a further 16-hour amount of 
baseline PM concentrations and re-calculated the average. The data and the NAAQS are as 
follows: 

Table 4.3 
Approximate 24-hour average exposure of PM2.5 and PM10 for a commercial kitchen worker 
and the NAAQS (EPA, “NAAQS Table”). 

  PM2.5 (24-Hour Average, µg/m3) PM10 (24-Hour Average, µg/m3) 

Mushroom with Pork 75.86 91.87 

Pepper with Pork 10.59 12.43 

Focaccia Bread 1.69 1.91 

Broccoli with Pork 24.93 28.61 
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According to the comparison, the “Mushroom with Pork” data run has a 24-hour average in 
PM2.5 concentrations exceeding the NAAQS. Otherwise, all concentrations in our data are 
below the NAAQS. However, we urge readers to exercise caution in interpreting this result, as 
the NAAQS pertain to outdoor ambient air quality instead of indoor air quality. 

Further research might be needed to concretely and accurately establish the behavior of PM 
concentration in a commercial kitchen. However, we believe it to be possible to develop a device 
for commercial kitchens that would alert when PM concentrations become unsafe. We also 
believe, given the lack of relevant governmental standards that we are aware of, it is important to 
further understand the issue and develop a reasonable regulatory or advisory standard to protect 
the health of commercial kitchen workers. 

It is known that staying in an environment with a PM concentration higher than a certain level 
for an extended period of time could harm one’s health. However, we cannot verify how 
different levels of PM concentration might differ in how they negatively affect one’s health. We 
have no volunteers to stay in the kitchen for a long time so that we can observe how their health 
has been affected. This research could also be unethical if someone does get diseases by staying 
in the kitchen, and we possess no medical skills to diagnose their diseases. The process of 
causing a disease might also take years or decades. To study this situation, we believe further 
research could be conducted by surveying people who cook frequently. Though it might be still 
hard to rule out other possibilities that might lead to diseases. 

We could not set up control groups either because it was impossible to set up perfectly identical 
situations. We could not control the wind flow or the internal shape of the kitchen which may 
affect the amount of the PM recorded by the sensor. We could not find the exact same steak or 
broccoli, and we could not make sure they are cooked in exactly the same way while keeping the 
environment unchanged. However, we think it is possible to replicate simple cases like cooking 
oil of the same volume inside a laboratory. In such a situation, it might be possible to study how 
different ingredients and cooking methods would affect PM concentrations differently.  

Moreover, we do not have the capability to measure the temperature of the stove or the cooking 
container. Instead, we only know the power level of the stove. Even though we collected data on 
two cases with one using higher power and one using lower power and we found the one with 
higher power generated much higher concentrations of PM (Mushroom with Pork, see Fig 3.2.), 
we could only conclude that if other factors are negligible, the general trend is that higher power 
of the stove associates with higher PM concentrations. Further research might be needed to 
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establish exactly how temperatures of the cooking materials affect PM concentrations and find 
out if the correlation is positive or not, in ideal conditions. 

5. Conclusion 

Based on our results, our study has achieved its aim, namely, to ascertain the feasibility of using 
easily acquired hardware and self-assembled circuits to measure PM concentrations during 
cooking processes in a kitchen setting. How cooking with an electric stove would affect PM 
concentrations is previously little understood, and we believe our results certainly demonstrate 
that further research in this area is possible. 

Indeed, we have also observed several trends in PM concentrations. Among other things, we 
have seen that fine features in PM concentration data correspond to specific procedures in a 
cooking process, such as introducing a cooking ingredient. Moreover, we have seen the 
distribution of PM particle sizes varies little during the cooking processes, except in some cases 
where certain kinds of PM sources were introduced. We have also seen that in most cases PM 
concentrations decay exponentially after the cooking has concluded. Furthermore, we note that 
there might be a correlation between PM concentrations and VOC gas concentrations, which 
might warrant further research and might be used to further corroborate PM concentration data. 
We also note that air features such as air pressure, humidity, and temperature seem little affected 
by the cooking process. We caution that our results are by no means conclusive, and we view 
these results as illustrating general directions for further research. 

We do believe, though, that our results can have practical implications. Since building such a 
data collection device is possible, commercial kitchens might be interested in developing such 
devices to alert their employees about possible unsafe PM concentrations. It might also be 
important to develop regulatory or advisory standards on PM concentrations in commercial 
kitchens. We again caution that we do not know for certain our results apply to commercial 
kitchens, given that all of our experiments were conducted in home kitchens and several factors 
possibly affecting PM concentrations might differ between commercial kitchens and home 
kitchens. 

We also recommend further research looking into how PM concentrations might be affected by 
several factors, such as the use of ventilation, the temperature of the stove, and different cooking 
ingredients. Such research might need more controlled environments and possibly more 
specialized equipment that we do not have access to, but we believe our study has illustrated the 
general possibility of conducting these kinds of further research. It might also be important to 
further look into how the high PM concentrations caused by cooking affects human health, 
which is beyond the scope of our current study. 
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