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Abstract 

The effects of gastrointestinal motility in understanding disease and nutrition in cattle has been              
an active area of research. One methodology for monitoring the health of cattle involves studying               
contractions of their stomach. Traditional veterinary and electronic stethoscopes are available for these             
purposes, but can be costly. However, this feasibility study aims to provide graphical data for ruminal                
contractions in cows by employing an inexpensive electronic microphone with a 3D-printed            
stethoscope head. This electronic stethoscope was used for data acquisition at the Beef and Sheep               
Research Field Laboratory located at the University of Illinois at Urbana-Champaign. A second             
microphone was used to gather background noise. The data from the electronic stethoscope showed              
distinct peaks in the amplitude graphs that were absent from the background microphone data. Despite               
extraneous variables, like the physical shifting of the main microphone against the cow and movements               
of the cow itself, the graphs are strongly suggestive of internal noises from the cow, possibly ruminal                 
contractions. This instrument is promising and presumably could be used by animal nutritionists and              
veterinarians alike in their research. 

Introduction 

The makeshift stethoscope we created is intended to measure gastrointestinal noises in a             
specific compartment of a cow’s stomach known as the “rumen.” The rumen essentially serves as a                
fermentation vat in which bacteria and other microorganisms reside. These microbes are capable of              
breaking down feedstuffs that the cow itself cannot [1]. The goal of this feasibility study is to measure                  
ruminal contractions of large cattle using an electronic stethoscope. The device was developed from an               
Arduino Mega 2560 microprocessor and electret microphone amplifiers on a printed circuit board,             
which was programmed using the code from Professor George Golin’s code repository on the course               
website for PHYS 398 DLP at UIUC [7]. The stethoscope head attached to the microphone used for                 
measuring gastrointestinal noises of the cow was 3D-printed using the online software Tinkercad. Two              
microphones were implemented in the data collection process: one monitored the internal ruminal             
movement of the cow test subject and the other was used to pick up on environmental background                 
noise in the farm where we collected data. 

The synchronized movement of the rumen and reticulum aid in mixing the ingested food and               
passing it into the omasum (refer to Figure 3). This is done by cyclical contractions of the different                  
chambers of the cow that occur for the reticulum every 50 - 70 seconds. These extrinsic contractions                 
depend on the impulses from the motor nerve traveling in the vagal nerve, maintaining fermentation in                
the stomach continuously. In the absence of the vagal nerves, the reticulo-rumen muscles undergo low               
amplitude intrinsic contractions and the gas and feed stagnates in the stomach until the animal dies. [1]                 
A healthy cow undergoes 1-2 ruminal contractions during this time period [2] when heard from a                
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veterinary stethoscope. Hence, a decrease in the frequency (or amplitude) of contractions is one of the                
indications that the cow may not be in proper condition. For studying the health of cattle, the primary                  
research method involves surgically cutting a sizable hole in the cow’s side and placing a rubber                
cylinder there in a process known as “cannulation.” However, this method is expensive, invasive, and               
limits the number of cows that can be examined. Electronic stethoscopes (e.g. Whisper) are also               
available on the market, but their primary purpose is to study lung noises in cattle and they tend to be                    
quite costly. [3] Our study addresses these drawbacks by using a 3D-printed electronic stethoscope that               
is sensitive enough to measure the movement of the rumen. 
 

 
Figure 1: The cow that was used as the test subject for the data collection process 
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Figure 2: A cannulated cow at the research farm 

 

                                        Figure 3: A diagram of the digestive system in a cow 
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Materials 

A. Schematic and Figures 

 
 

Figure 4: General Schematic of our Printed Circuit Board 
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Figure 5: One side of Adam’s printed circuit board 

 

 

Figure 6: The other side of Adam’s printed circuit board 
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Figure 7: One of the two microphones attached to the printed circuit board using wires 

 

 

Figure 8: Top view of a 3-D printed stethoscope bell used in the data collection process 
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Figure 9: Side view of a 3-D printed stethoscope bell 

 

 
Figure 10: A snippet of the initial stethoscope bell designs in Tinkercad 
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B. Hardware 

We built a test breadboard circuit which included an Arduino Mega 2560 microcontroller and              
Adafruit breakout boards such as an electret microphone amplifier, BME 680, microSD card, INA219              
DC, I2C RTC, LCD, and keypad. The connections were made following Professor George Gollin’s              
schematics (refer to Figure 4). The electret microphone was the primary sensory device for this study.                
For final testing and data collection, all the components were soldered onto a printed circuit board                
(PCB) using Professor Gollin’s design. An additional microphone was attached to keep track of              
background noise that would be subtracted out during the post data-processing portion of the project.               
Significantly less noise/static emanating from the microphones was observed when using the PCB in              
comparison to the breadboard. 

The Arduino Mega 2560 is a high performance microcontroller based on ATMega 2560; it has               
54 digital input/output pins, 16 analog inputs, and 4 serial ports. The microphone comes with a 20 Hz -                   
20 kHz electret microphone soldered on it and built-in trimpot for adjusting the gain from 25x to 125x.                  
It contains a ground port (GND), analog port (A1), and VCC (powered by 3.3V). Two microphones                
were used which were attached from a series of extended wires to the PCB. Our main microphone                 
(which was connected to ADC channel 7 on the Arduino) had a stethoscope head fixed on it while our                   
background microphone (which was connected to ADC channel 1) was held separately to measure for               
environmental background noise. The data collected from the microphones was read on the microSD              
card which used the SPI (Serial Peripheral Interface) protocol to link to the Arduino Mega 2560. The                 
BME 680 was connected to the circuit as a pressure, temperature, and humidity sensor. However, we                
did not use the data from the BME 680 for this study. The Precision I2C RTC is a real time clock which                      
uses the I2C communication protocol (two wires to communicate). The PCB was powered by a 7.5 V                 
AA battery pack, making it portable to collect data on the field. An interacting Liquid Crystal Display                 
(LCD) and keypad were soldered on the PCB for offline data acquisition. Each member of our team                 
had a fully-functioning breadboard and PCB. However, for data acquisition, we used Adam’s PCB. 

A comprehensive list of the components on our breadboard and PCB is as follows: 
 

● Arduino Mega 2560  
● BME 680  
● MicroSD Card 
● Keypad  
● LCD 
● Precision I2C RTC 
● INA219 DC Current Sensor  
● AA Battery Pack  
● Microphone (Main) 
● Microphone (Background) (A1, GND, C10 - capacitor for the main microphone) 
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● Potentiometer 
● Capacitors (7 in total)  
● Red LED Indicator (to determine whether the PCB was on) 
● Button (to turn PCB on and off) 
● Resistor 

Methods 

Initially, we performed several tests with our breadboards and then later with Adam’s PCB to               
record biological sounds from humans, cats (even though this effort was unsuccessful), and a              
medium-sized dog. The PCB appeared to be much less noisy in terms of the sounds the microphone                 
picked up from the surrounding environment as well as static. A potential reason for this could be that                  
the electrical connection between the microphone and the PCB is much more refined (cleaner) than that                
of the breadboard. We recorded heart sounds from our human subject, Adam, while he was resting and                 
after he ran multiple laps around Loomis so that we could listen for and compare the microphone’s                 
capabilities to detect different heart rates. The cats proved to be too small of a test subject (or perhaps                   
our microphone was not sensitive enough to pick up on any gastrointestinal/respiratory frequencies). 

Throughout the semester, our group has been in contact with Professor Joshua McCann, an              
assistant professor at UIUC within the Department of Animal Sciences. He specializes in the influence               
of nutrition on metabolism and growth of feedlot cattle by characterizing ruminal fermentation and the               
gut microbiome. We made plans to go out to the UIUC cattle farm (otherwise known as the Beef and                   
Sheep Field Research Laboratory) to take real data with cows. We took data on Friday (3/13/20),                
arriving at the farm shortly after 10:00 AM. 

We were instructed by a veterinary scientist (Courtney Hayes) who also helped us to place the                
stethoscope head on the left sublumbar fossa where palpitations are most observable. A clenched fist               
can be pushed in this area to assess rumen flow. The contractions felt at the left sublumbar fossa can be                    
heard by a stethoscope, which is the most sensitive method of hearing ruminal contractions [8]. Hence,                
for this study, we chose this region to place the main microphone.  

The data were collected for 5-7 minutes. We used this time window so that we could establish                  
some sort of pattern of the major contractions since those typically occur once every minute.               
Specifically, she said approximately 2-4 contractions every two minutes is to be expected (assuming              
the cow is healthy). We took four trials of data, but only utilized Trials #2 and #3 because the first trial                     
was to make sure that the instrument was working properly and data from the last trial was taken on a                    
cannulated cow (refer to Figure 2) out of curiosity and thus was not important for our feasibility study.                  
Before taking data, Dr. Hayes helped us pinpoint the location of the rumen (right behind the cow’s                 
ribs). While taking data, the stethoscope had to be pushed up forcefully against the cow in order for the                   
instrument to detect the vibrations/churning of the rumen. Because we were able to audibly detect               
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internal movement of the cow from listening with the standard stethoscope, we are confident that the                
microphones used in our electronic stethoscope were able to pick up these frequencies as well. 
 

 
Figure 11: Adam and Yaashnaa taking data at the research farm 

Software/Data Acquisition 
Our plan for data acquisition involved utilizing two microphones. Because the noises we were              

attempting to monitor are at a low frequency, we wanted to block out as much background noise and                  
static originating from the microphone as we could in order to ensure that our results were as clear as                   
possible. To accomplish this, we wrote a wav file (the exact process is discussed in great detail later)                  
that subtracted out the ambient noise using the secondary microphone (the one that was not listening for                 
the contractions). This was done to better visualize the sounds we were recording. 

We collected data from the microphones which were written and saved onto the microSD card               
as a singular binary file. We then converted the binary file into a .wav file to process the data in Python.                     
This was done using code Professor George Gollin wrote and edited. Ultimately, we used Python to                
visualize and analyze our data that was in wav format. After implementing libraries such as LibROSA                
and SciPy, we were able to begin exploring our data. 
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The data acquisition program we implemented was written using the Arduino software in the              
object-oriented programming language C++. The program that we uploaded to our Arduino Mega 2560              
(which is connected to the PCB) logs data from two distinct ADC channels to a binary file. Both of                   
these ADC channels house an electret microphone. The sampling rate of each separate channel is 16                
kHz (meaning 16,000 samples are recorded per second). The raw ADC count data (which are               
essentially voltage signals from the microphones numbered from 0 to 1023) are written to buffers (of                
which there are 13 in total), which are in turn used to write the audio file. Each buffer used in this                     
process can hold 512 bytes of information. Once these buffers are at maximum capacity or the program                 
is stopped, they are written to the output file. This output file is written and subsequently saved to the 8                    
GB microSD card. The resulting binary file is filled with interleaving data from the two microphones.                
Basically, one sample is recorded from one of the microphones and written to the buffer and then the                  
next sample is recorded from the other microphone and written to the buffer as well. The process                 
repeats itself until the user manually stops the program. Throughout the process, the user must interact                
with both the keypad and LCD in order to communicate with the Arduino and tell it when to start and                    
stop recording data. 

The first part of our data processing program in Python involves converting the binary audio file                
into a wav file. A wav file is needed to properly analyze the data in the second part of our data                     
processing program (which is explained later). Although the binary to wav file conversion process may               
sound technically cumbersome, the underlying methodology is straightforward. Data are read from the             
binary file with the assumption that the file contains interleaved analog reads of two ADCs. Thus, two                 
distinct arrays are created for the separate channels, where each array contains every other element               
from the input file. In simpler terms, one array contains the “even” entries while the other array                 
contains the “odd” entries. The median, mean, maximum, minimum, amplitude (with respect to the              
median), and root-mean-square (RMS) of the arrays are subsequently calculated. The wav file is then               
created by utilizing the arrays (in conjunction with the aforementioned parameters). Because one of the               
microphones was being used to pick up on and record environmental background noise (while the other                
was actually recording the ruminal contractions of the cow), the program “subtracts” out this              
background noise from that specific microphone when creating the wav file to minimize disturbances in               
the data. However, before this subtraction occurs, a gain correction factor was applied to the               
background microphone array. This factor essentially adjusts the sensitivity of the background            
microphone to match that of the main microphone because the two microphones possessed different              
gains (meaning they each had different audio input levels, albeit not by much). We calculated the gain                 
correction factor (utilizing Python code) by sampling audio in a silent room and using the data from                 
each microphone to determine the relative ratio of the RMS from both arrays. Also, the raw ADC data                  
had to be centered around zero by subtracting the mean for both of the arrays before the subtraction                  
array was created so that we were minimizing the “spread” of our data without interfering with the                 
nominal values. Once this was accomplished, we were able to move onto the data analysis portion of                 
our feasibility study to determine whether or not our electronic stethoscope was truly able to sense                
ruminal contractions. 
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Data Analysis 

LibROSA is a Python package used for music and audio analysis. Its primary role can be seen                 
as a music information retrieval system. The first step of the data analysis was to visualize our audio                  
file as an amplitude envelope, which is a visualization of the changes in the amplitude as a function of                   
time. The figure below is one of the amplitude envelopes of Adam’s heartbeat in seconds. We can see                  
periodic peaks in the amplitude, which are the heartbeats. We corroborated this by listening to the                
generated wav file and heard distinct heartbeats that corresponded with the same time stamps as the                
peaks in the graphs. 
 

 
Figure 12: Amplitude Envelope of Adam’s Heartbeat  

 
Next, we plotted a spectrogram using LibROSA as well. A spectrogram is a visual              

representation of the spectrum of frequencies of a sample audio as it varies with time. It can be seen as                    
a heat map of the varying frequencies in different colors. We changed the y-axis (which represents the                 
frequencies) to a logarithmic axis to better visualize the range of the frequencies. This was also done to                  
better identify the sounds we were recording through their respective frequencies. The unit of time is in                 
seconds for the x-axis in Figures 13 and 14. 
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Figure 13: Spectrogram of Adam’s Heartbeat  

 

 
Figure 14: Spectrogram of Adam’s Heartbeat (Logarithmic Y-Axis) 
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Results/Discussion 

We used the data analysis methods detailed in the section above on the audio files we collected                 
from our field visit. Figures 15 and 16 (below) showcase the results of the entirety of Trials #2 and #3,                    
respectively. The ADC count data (which are the voltage signals picked up by the microphones and                
centered around 0) were plotted on the y-axis, whereas the sample number was plotted on the x-axis                 
(which is essentially “time,” considering how 16,000 samples were collected every second per             
channel). Both the main microphone and background microphone were plotted in the same figure to               
illustrate the relation between the two and the signals that they registered. It is important to note that the                   
background microphone dataset was adjusted for the differences in the gain between both microphones              
(using the gain correction factor, as previously discussed). Sudden spikes in both of the plots likely                
indicate the presence of loud environmental noises at a given point in time in the barn where data were                   
being collected. However, jumps in solely the main microphone readings imply that the noise it picked                
up either came from moving the microphone on the cow’s stomach during the data-taking process or                
internal noises from the cow. Audio samples via smartphone were taken concurrently with the              
electronic stethoscope to verify whether these spikes in the main microphone dataset are attributed to               
the internal ruminal movement of the cow test subject. Upon further inspection, we deduced that some                
of these noises must have come from the cow, as we could audibly detect and thus rule out which                   
noises were attributed to the shuffling of the main microphone. The low-frequency “vibrations” (being              
a faint churning or gurgling sound) were almost certainly indicative of internal noises from the cow.                
The largest spikes in the dataset, however, were most often attributed to the sudden shifting of the cow                  
or the stethoscope bell rubbing up against the cow. It is also important to mention that people must use                   
the appropriate audio equipment (e.g. high-quality headphones or speakers) in order to hear any of the                
noises from the .wav files due to how quiet they are. 
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Figure 15: ADC Count Data (Centered Around 0) for Both Microphones - Trial #2 
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Figure 16: ADC Count Data (Centered Around 0) for Both Microphones - Trial #3 

 
The following set of graphs are the amplitude envelopes of the “subtraction” audio files for both                

Trial #2 and #3. We hoped to reduce the ambient sounds in the recording from the main microphone to                   
better visualize the internal sounds from the cow. The areas circled in red in the figures below are                  
points in time where potential contractions may have been occurring. These regions encompass a              
relatively broad expanse of time because there is uncertainty surrounding exactly which “spikes” in the               
amplitude envelope are due to these potential contractions. The specific regions were chosen based on               
the premise that the wav files presented sounds at lower frequencies that seemed to be representative of                 
churning/gurgling “vibrations,” which are the types of internal noises one would expect to hear from a                
cow as its rumen actively contracts. As previously mentioned, the most intense spikes in the dataset are                 
usually (but not always) attributed to external (rather than internal) movement of the cow. 
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Figure 17: Amplitude Envelope of the Subtraction File for Trial #2 

 

 
Figure 18: Spectrogram of the Subtraction File for Trial #2 (Logarithmic Y-Axis) 
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Figure 19: Amplitude Envelope of the Subtraction File for Trial #3 

 

 
Figure 20: Spectrogram of the Subtraction File for Trial #3 (Logarithmic Y-Axis) 

 
Figures 17 and 19 show the amplitude envelopes of the subtraction audio files (generated using               

LibROSA) for both Trials #2 and #3, respectively. To reiterate, the term “subtraction” refers to how the                 
(corrected) ADC data from the background microphone array was subtracted out from the (raw) ADC               
data from the main microphone array using numpy in Python. Again, “corrected” implies adjustment              
of the background microphone’s gain and “raw” implies no manipulation of the main microphone              
dataset. The frequency of the signal is plotted (in Hz) on the y-axis, whereas time is plotted on the                   
x-axis. After accounting for the environmental background noise, it appears the main microphone of              
our electronic stethoscope was able to sense internal movement of the cow. There is a slight,                
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discernable pattern in both of these figures that hint at the possibility of contractions occurring;               
although, it is still not apparent whether or not this “pattern” is being established at regular intervals, as                  
our amplitude data appears to be fairly noisy despite manipulating the audio signals by subtracting out                
the ambient noise/static in the barn. Some of the “peaks” in the circled regions are more subtle; these                  
are where potential contractions are occurring (after closely monitoring the wav files for each trial).               
Also, while the spectrograms in Figures 18 and 20 provide insight into what frequencies were being                
measured by the microphones, there is no singular characteristic frequency that is indicative of a               
ruminal contraction. However, these setbacks are to be expected, as the components used to craft our                
instrument were not of the highest quality. Overall, the data being presented in these figures is                
promising but not conclusive of ruminal contractions. 
 

 
Figure 21: ADC Count Data (Centered Around 0) - Potential Contraction (Trial #2) 
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Figure 22: ADC Count Data (Centered Around 0) - Potential Contraction (Trial #3) 

 
Figures 21 and 22 highlight ½ second of data, corresponding to 8,000 samples, from Trials #2                

and #3 (respectively). These plots show the relation between the audio signals sensed by the               
background microphone (after adjusting its gain level using the methodology described in the             
“Software/Data Acquisition” section of the report) and main microphone during periods of time where              
a potential ruminal contraction was occurring. Figure 21 depicts audible movement just after the 6:00               
mark for Trial #2 whereas Figure 22 depicts audible movement at around the 2:15 mark for Trial #3.                  
The sinusoidal-like wave of the main microphone data heavily suggests there is some internal              
movement in the cow, especially in direct comparison to the background microphone data. There are               
other occurrences of these potential contractions in the data, but only one contraction was chosen from                
each trial as a representative snapshot for this report. As previously mentioned, the two microphones               
are inherently offset by a small amount of time because data is read from the microphones one at a                   
time. To account and correct for this minor discrepancy, consecutive values in the generated              
background microphone array were averaged to yield values that were directly comparable to values in               
the existing main microphone array. Two consecutive samples from the background data array were              
averaged and compared with consecutive samples from the main microphone to account for the time               
bin offset. This process was only applied to the graphs in Figures 19 and 20 because the time offset                   
between the two microphones is negligible, seeing as how each concurrent sample was taken within               
1/16,000th of a second of the other microphone. We also did not take into account lag between the two                   
microphones due to the speed of sound because this effect was negligible as well (the two microphones                 
were positioned within a couple of feet from one another). 
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Summary 
Utilizing our electronic veterinary stethoscope, as well as data processing software in Python,             

we were able to collect and analyze audio samples that are strongly suggestive of ruminal contractions                
in our cow test subject. The data plotted from the main microphone, which was placed near the rumen                  
of the cow, showed distinct peaks that were not present in the background microphone dataset (refer to                 
Figures 19 and 20). Supplementary audio recordings from a smartphone also did not pick up on any                 
background noise for the time periods where distinct spikes in the amplitude profiles were observed.               
However, further studies can be performed to discern ruminal contractions with other noises that the               
cow may be making (both externally and internally). Adding another microphone to collect             
gastrointestinal noises from the cow and comparing data gathered from both of them versus the               
background microphone might be more conclusive. Additionally, the gain levels of the background             
microphone and main microphone need to be more fine-tuned in order to eliminate any offset. 
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