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Abstract

Vibrato is a technique that is used in nearly all musical pieces, ranging from orchestras,
operas, and other classical performances to contemporary music. Vibrato is a mechanical, mu-
sical technique that causes oscillations in frequency about a given note which, when executed
properly, also causes equivalent oscillations among a note’s overtones. All sung notes naturally
have some vibrato and the oscillations present are consistent among overtones when vibrato is
naturally occurring rather than in cases of false vibrato. String instruments, however, can pro-
duce cleaner, crisp notes without the presence of vibrato. The backbone of our analysis is the
Fast Fourier Transform algorithm as we are primarily interested in the oscillations of a note’s
frequency. We analyze short audio samples, typically three to six seconds long, consisting of
human vocals and stringed instruments to characterize vibrato from varying sources. A negli-
gible difference in fundamental frequencies of notes is apparent between stringed instruments
and human vocals. Analyzing the spectrograms, we found an average percent difference of
notes’ amplitude in frequency of the fundamental harmonic between notes containing vibrato
and their non-vibrato counterparts of 17.9% for human vocals and 15.6% for cello.
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1 Introduction
Vibrato is a common musical technique that is used throughout all musical genres and styles.

This ranges from classical pieces and operas to contemporary music. It is commonly thought of as
warbling of notes in vocal or instrumental sounds. In more scientific terms, vibrato is a mechanical,
musical technique that causes oscillations about a given note which, when executed properly, also
causes equivalent oscillations among a note’s overtones [9]. Overtones are notes of any frequency
greater than the fundamental frequency that may be heard with the original note. The oscillations
about a note do not exceed a semitone1 in all correct executions of vibrato. An explanation of
semitones can be found in Fig. 1. In all sung notes vibrato is present, however instances of false or
faked vibrato can vary the pitch widely since humans can force the modulation of the diaphragm
or jaw at frequencies that result in pitch modulation of greater than a semi-tone [10]. On the
contrary to vocals, string instruments can produce cleaner, crisp notes without the presence of
vibrato without much training of the player. This is not to say that stringed instruments cannot
produce notes with vibrato as they can and often do in contemporary music.

There is a point of contention when defining vibrato and tremolo in the musical community
[9, 15, 16]. The definition of vibrato is the modulation of the pitch about a note while tremolo,
a notably distinct technique, has two definitions depending on the instrument. The first definition
of tremolo is the rapid repetition of a note, on a stringed instrument for example, and the second
definition is the modulation of volume, which is primarily used on electronic instruments [16]. The
other, less common class of thought, which is primarily only a position of electric guitar players, is
that vibrato and tremolo are different types of the same technique, namely pitch vibrato and ampli-
tude or volume vibrato. The common misunderstanding that tremolo is a type of vibrato is larger
the fault of Leo Fender, the creator of Fender guitars, who mistakenly coined the name tremolo
bar, with other common names including whammy bar and vibrato bar, and gave rise to nearly
a century of incorrect interpretation of vibrato and tremolo [2]. This started the colloquialism of
defining tremolo and vibrato as the same technique, which was continued throughout the 20th and
21st centuries by guitar players. This was exacerbated by the popularity of Fender guitars. Thus,
for the sake of both the accuracy and simplicity of this analysis, we distinguish between the two
techniques and classify them as separate entities. This is to say that we only analyze the vibrato in

Figure 1: A demonstration of whole and half steps with respect to the keys of a piano. Whole
steps are a white keys to white keys except B to C and E to F. Half steps are white keys to black

keys and the aforementioned exceptions to whole steps [12].

1Also commonly referred to as a half step. It is the smallest interval used in Western music.
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(a)

(b)

Figure 2: a) A diagram of vocal cords situated at the top of the larynx [6]. b) A diagram of a cello
with features denoted. Strings are held along the fingerboard and bowed above the bridge [19].

samples and entirely disregard any potential tremolo apparent in our samples.
Due to the repeated discussion of vibrato further into this report, it is prudent to discuss both

the physiological and mechanical aspects of vibrato in vocals and stringed instruments, respec-
tively. The physiological mechanism that allows humans to produce notes is a result of the larynx,
which is colloquially known as the voice box. The cricothyroid muscle is the muscle specifically
responsible for controlling pitch and stretching the vocal folds. It is with a combination of airflow
and the use of the cricothyroid muscle that humans can produce notes. Vibrato arises due to the
natural oscillations of tensed muscles within the human body [9]. These oscillations, which occur
naturally when any muscle is tensed, vibrate the vocal folds thus creating what we hear as vibrato.
The fact these oscillations occur every time a muscle is tensed is precisely the reason why all sung
notes have some vibrato. Vibrato may be more present in a skilled vocalist’s singing depending
on preference, however it always a result of vibrations of the vocal folds. On the contrary to this
naturally occurring vibrato, there is false or faked vibrato that arises from quivering of the jaw or
diaphragm [10]. This is, as the name suggests, a false vibrato and is a forced and incorrect method
to produce vibrato typically apparent in unskilled vocalists’ singing,.

The physiological mechanisms that produce notes and vibrato within human vocals share some
similarity with the mechanisms that produce notes on all stringed instruments. The vibration of
strings produce notes similarly to the vibrations of the vocal folds. This is true for all stringed
instruments. Sounds are produced by vibrations of the strings and certain notes are produced by
certain lengths of the strings. The change in length of strings on all stringed instruments comes
from pressing down on certain spots along the string and is the same process for all stringed
instruments. Due to the availability of data and comparative simplicity of bowed instruments to
guitars and other stringed instruments, we focus on bowed instruments and specifically the cello.
For bowed instruments, playing a single note is rather simple. A string is held down at a given
position to produce the desired note and either the bow is run across the string or the string is
plucked. Adding vibrato to a note requires varying the pitch which is achieved by rolling the finger
along axis of the string [13]. As stated previously, while all bowed instruments would be equally
suited to study, the instrument of choice for this report is the cello.
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The focus of our project is characterizing vibrato in both human vocals and stringed instru-
ments. There are many techniques used to analyze sound with each being best suited for a given
type of sample [14]. An obvious contender for our analysis is a Fourier Transform as we are pri-
marily interested in the oscillations of a note’s frequency. We analyze audio samples consisting
of human vocals and cello notes to characterize vibrato in both cases qualitatively and quantita-
tively. The audio samples are intentionally cut into short time intervals in an attempt to reduce
noise from extraneous notes. The hardware used for this project consists of a group of sensors
that are compatible with the Arduino Mega 2560. For the software and data analysis, multiple
common scientific Python libraries were utilized in our analysis; NumPy, SciPy, and Matplotlib
are our main imported libraries, among others [7, 8, 11].

2 Hardware
There was a two-fold approach to creating the hardware for this project. Breadboards were

used initially to aid with the experimental phase of circuit building and to allow for the testing
of multiple sensors and tools. The final circuits built on the breadboards were then transferred to
printed circuit boards (PCBs). There is one breadboard and one PCB for each of the group mem-
bers along with one Arduino Mega 2560 per board. The breadboards were also used as backups
in case the PCB failed or was unavailable. The PCBs were the primary equipment used for data
collection and allowed for greater portability than the breadboards.

All of the sensors and equipment are compatible with the Arduinos. The sensors and tools
used to complete both the breadboards and the PCBs are an LCD, contrast setting potentiometer,
keypad, microphone, microSD breakout board, INA219 current/voltage regulator, and a battery
pack. An Arduino acts as the processor for the board while everything else can be treated as extra
components. All of these sensors required soldering to prepare them for installation on either of the
hardware devices. There was also some soldering required to prepare the PCB for the installation
of an Arduino and all of the other equipment.

2.1 Sensors and Equipment
The sensors and other various equipment require some explanation to make the analysis and

discussion of data easier to interpret. Starting in no particular order, the liquid crystal display
(LCD) is one of the tools used to make data acquisition easier. The LCD is not used to collect any
data but is instead used to relay information. This information may be related to the sample, such as
length or size, or may be used as a method to relay that the data acquisition is complete. The LCD
is able to take in information from the Arduino through it’s many pins and is then able to display
messages across its screen. The LCD relies on a device called a contrast setting potentiometer.
This is a variable resistor that is used to set the contrast of the LCD screen. The potentiometer
has three electrical connections and a knob, allowing it to adjust the path that current has to flow,
which is what allows it to vary its resistance. The analog knob allows for smooth varying of the
resistance and hence, smooth variation in the contrast of the LCD.

The keypad is a device that we use to interface with the Arduino. It has buttons that are labeled
0-9 along with # and * in a 3x4 matrix. Each column and each row corresponds to a different pin
connected to the Arduino, hence the 7 utilized (or 8 total) pins soldered to keypad. When a button

4



Figure 3: A schematic of the circuit design for both the breadboards and PCBs [5]. Not all
components were implemented into the final design and the INA219 is not shown.

is pressed, two signals are sent through their respective pins, signalling the coordinate of which
button was pressed, and subsequently released, on the Arduino. This allows for specific inputs
from the user, such as a stop and start command used during data acquisition. Another important
device used for data acquisition is the MicroSD Breakout Board. The MicroSD Breakout Board
is used to interface with a micro SD card, which stores the samples for analysis. The breakout
board has a series of pins that allow for data input and output to and from the micro SD card. This
allows for information to be saved and analyzed later. This drastically improves the functionality
of our device as it allows for the separation of data acquisition and data analysis into disconnected
processes.

2.2 Microphone
The microphone is arguably the most important piece of hardware. It records with a 32kHz

sampling rate2 and is the component that this project relies on the most. The microphone used is
an electret microphone, which is a type of electrostatic capacitor-based microphone. The electret
in the microphone is a stable, permanently charged dielectric material. This electret is placed in
parallel with a conductive backplate and does not require power to operate. Sound waves cause
the electret to vibrate which produces a small electrical output. For the output to be useful, an
amplifier is required, which does require power to operate.

2It should be noted, however, that the sampling rate used in the final WAV files was 44.1kHz. An explanation can
be found in the Data Collection section.
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2.3 Power Management
There are several important components that enable the use of all other components. The

power management related components are the INA219 and the battery pack. The INA219 is a
current and power monitor with an I2C interface. It allows us to monitor the voltage and current
between the batteries and the Arduino. Its location in the circuit is between the power source, in
this case five AA batteries, and the Arduino. The battery pack, however, is not a sensor but rather a
necessary component of our setup that enables us to use the breadboards and PCBs without needing
a connection to an external power source. The battery pack takes five AA batteries and allows for
approximately 5-6 hours of constant use before replacing the batteries.

3 Data Collection
Initially, data was to be collected from volunteers within the music department inside sound-

proof rooms in the Krannert Performing Arts Center. However, due to complications that arose
during the COVID-19 pandemic, methods for data collection for the project were modified. Pre-
liminary testing samples were taken from YouTube and other online sources, initially using the
microphone on the PCB to record them and then, in some cases, downloading samples directly.
Due to the change in the data acquisition method, there was a noticeable increase in noise in
samples when the microphone was used to re-record audio from the internet. That is to say that
noise was compounded from the original recording setup, YouTube’s compression algorithm, the
speakers playing the sample, and from the PCB. To clarify, noise is defined as undesirable and
extraneous sound. It comes from a source that is not the instrument or voice that is desired. Noise
has the potential to detract from the experiment if it is apparent at an extreme enough level as it
would reduce the quality and clarity of data being analyzed. Although the magnitude of the noise
has increased in those samples, it has not increased to the point that would cause an issue when
analyzing the data. Thus there does not appear to be any severe adverse effects to using data from
the internet. Additionally, noise was naturally suppressed during analysis, cutting out the majority
of random noise. The final samples used to characterize vibrato, however, were recorded using an
iPhone and the microphone on the PCB for cello notes and vocals, respectively. The notes chosen
to be analyzed were G2, D3, and E4 for both cello and vocals. All final data presented in this
paper was collected via friends and family. The initial testing phase helped us determine which
parameters are useful to characterize vibrato and which instruments’ samples are too complex to
analyze. The final recordings in particular helped us directly compare identical notes from a cello
and human vocals as well as vibrato and non-vibrato notes from the same source.

3.1 Control Group
A non-vibrato control group was used to characterize and isolate differences between notes

with and without vibrato. The non-vibrato control group consisted of single notes played or sung
at particular frequencies with no modulation. The group of notes consisted of G2, D3, and E4,
which are at a frequency of 98Hz, 146Hz, and 330Hz, respectively. For reference, a middle C
has a frequency of 261Hz. This standard set of notes was then compared to recordings of the
same instrument or singer repeating the corresponding note with vibrato. This allowed for direct
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comparison of notes with and without vibrato and aided in the characterization of the technique as
a whole.

3.2 Data Acquisition Software
The data acquisition software (DAQ) was entirely contained to the Arduino in internal storage.

The DAQ activated the microphone and started recording upon the keypad being pressed. The
recording was then saved as a binary file to the microSD card after the keypad was pressed again.
This file could then be extracted from the microSD card and analyzed remotely using our analysis
software. During the recording process, the DAQ activates the microphone and enables 32kHz
audio recording. The raw output was stored as a binary file of ADC counts. The code was a
replication of an Arduino code that activates the microphone, LCD, and keypad simultaneously
[4]. A delay was present with input from the keypad, adding extraneous runtime to edges of our
samples, and was dealt with by clipping the recording appropriately during the analysis phase.

3.3 Software
The analysis software was written in Python and utilized a variety of functionality from the

Matplotlib, NumPy, and SciPy libraries. The first portion of the analysis software came from code
that converted binary files to .WAV files [4]. This was used to convert the files on the microSD Card
into usable data. The second portion of the code is responsible for the conversion of .WAV files into
their respective FFT plots. The generation of the plots relied on the SciPy Fast Fourier Transform
function and, as such, there was an option between a frequency based FFT and an amplitude, or
intensity, based FFT. While the amplitude FFT was not used explicitly, the code for creating plots
of amplitude and plots for spectrograms are still present for future analyses.

The plots were generated automatically when fed .WAV files from a local directory. The plots,
some of which are shown in Figure 4, show the fundamental frequency, or the frequency of the
note played, as the peak with the lowest frequency of all large peaks. The amplitude of the peaks,
fundamental and overtones, is given by ADC counts · seconds. However, these plots have been
normalized to allow for easier interpretation and comparison. The frequency is clearly in units of
Hz, and the peaks correspond to a note’s fundamental frequency and overtones in order of lower to
higher frequencies.

Additionally, spectrograms were produced using pre-existing software known as Sonic Visu-
aliser [17]. The spectrogram is a visual representation of frequency, in Hertz, versus time, in
seconds. The plot utilizes a heat map where the intensity, in dB, of a signal appears as colors on a
spectrum between cold and warm colors where warmer colors denote higher intensity.

4 Analysis
The backbones of the analysis are the Fourier Transform, which allows us to analyze the fre-

quency spectra of samples, and the spectrogram, which allows for a thorough analysis of the wave-
form and its overtones by providing something similar to a heatmap. An in-depth explanation of
the Fourier Transform can be found in Appendix A.
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(a) (b)

(c) (d)

Figure 4: Figures a) and c) are the Fourier spectra for a cello playing an E4 note without vibrato
and with vibrato, respectively. Figures b) and d) are the Fourier spectra for a vocalist singing an

E4 note without vibrato and with vibrato, respectively.

The type of Fourier Transform that was utilized was known as a Discrete Fourier Transform
(DFT). A DFT can be summarized as a Fourier Transform that is performed over a finite or discrete
interval of time. The algorithmic implementation of the DFT is commonly referred to as a Fast
Fourier Transform (FFT), however DFT and FFT are often used interchangeably. Since the Fourier
spectra served mainly to bolster qualitative data, we decided to supplement our Fourier spectra with
quantitative data from spectrograms to get a more complete understanding of the data.

To give a more thorough description of a spectrogram, a spectrogram is a visual representation
of the frequencies of a signal as it varies with time. Spectrograms essentially take FFTs of small
windows of time, the center of that window being the time coordinate of the data point. Spectro-
grams are sometimes otherwise referred to as sonographs, voiceprints, or voicegrams. Examples
of the Fourier spectra and spectrograms used in analysis are present in Figures 4 and 5. While the
FFTs are capable of depicting amplitude as a function of frequency, spectrograms depict frequency
as a function of time instead. This variation in types of data representation provides many different
ways to interpret our data, and as such, it was essential to our project to include both FFT analysis
and Spectrogram analysis.
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5 Results

5.1 Fourier Transforms
Analysis of the Fourier spectra plots for stringed instruments showed that when a note is played,

even if there is no vibrato, there is still a small range of frequencies, other than the fundamental
frequency and its overtones. This is represented by the Fourier spectra plots’ peaks having bases
that cover more then one frequency. When compared to the graphs for vocals, we can clearly
see that for cases of both vibrato and no vibrato the bases for vocals are much wider on both
overtones and the fundamental. Qualitatively speaking, a clear way to distinguish between vocals
and instrumental waves is by the presence of higher overtones, as while instrumental sound waves
can produce overtones that go far beyond even the 10th overtone, human vocals tend to be limited
to only having established overtone presence up to around the 4th overtone. This is certainly due to
the mechanical nature of a string. With experience and certain skeletal structures, there are singers
that can create overtones higher than the 4th overtone, however, it is unlikely for there to be singers
that can produce as many overtones as those produced in the sound of stringed instruments. The
human body is not perfect and neither a string thus a string made to specifically produce a single
note is obviously going to be more accurate than a person’s voice.

Vibrato for instrumental samples was vastly more narrow and centered more tightly on frequen-
cies that the stringed instrument notes occurred on (i.e. violin recordings showed tight peaks with
evenly distributed sides around the frequencies of the notes G3, D4, A4, and E5). There is also a
smooth slope that is found in stringed instrument vibrato, which is most likely due to the mechan-
ical nature of stringed instruments. The vibrato in a stringed instrument can be characterized by
the narrow frequency range that surrounds the notes playable by the stringed instrument, whereas
a lack of vibrato can be characterized by an incredibly narrow frequency range that approximates
to a straight vertical line on the Fourier spectra plots

Analysis of the Fourier spectra plots for human vocals showed that vibrato for vocals could be
characterized by a vastly large range of frequencies around the fundamental and overtone frequen-
cies of notes that are singable by humans. When singing with vibrato, the frequency can span an
extremely large range with several peaks, which can easily be distinguished from the tight range
of frequencies that can be found within stringed instruments.

Note
Non-Vibrato Amplitude (Hz) Vibrato Amplitude (Hz)
Voice Cello Voice Cello

G2 22.5 21.0 28.0 21.0
D3 26.5 18.5 28.0 24.0
E4 26.0 22.5 34.5 24.0

Table 1: Frequency amplitudes of notes rounded to the nearest half-integer frequency.
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5.2 Spectrograms
While our Fourier spectra mainly provided qualitative analysis, using spectrograms for our

samples provided a way to quantitatively analyze vibrato in our samples. That is, it is quite easy to
identify the exact difference in variance between vibrato in spectrograms through the comparison
of amplitudes, periods, and from the overall sinusoidal shape of the audio sample. For example
when comparing the note E4, which has a fundamental frequency of 330Hz, from both the cello
spectrogram and the singing spectrogram, we can see that the cello varies from about 310Hz to
just below 355Hz while the singing varies from around 310Hz to 380Hz. We can also see that the
frequency of the cello modulates with a period of 0.25 seconds, while the singer modulated with a
period of 0.178 seconds. While the difference in frequency modulation is similar across all three
notes and while the period of modulation was the same between the cello and voice for both G2
and D3, We see a difference in modulation period for E4.

(a) (b)

(c)
(d)

Figure 5: Figures a) and c) are spectrograms for a cello playing an E4 note without vibrato and
with vibrato, respectively. Figures b) and d) are spectrograms for a vocalist singing an E4 note
without vibrato and with vibrato, respectively. The y-axis is frequency in Hz and the x-axis is

time in seconds, while brightness indicates intensity.

Further examination of the spectrograms for instrumental samples showed that vibrato was
characterized as a varying in the frequency around each of the main notes and respective over-
tones (similarly shown by the Fourier spectra plots). Non-vibrato samples showed no variation in
amplitude from the frequencies of the stringed instrument’s playable notes.

The analysis of spectrograms in vocals provides a much more varied and chaotic heat map due
to the large variation in frequency that human vocals produce in their vibrato. For vibrato in singing
notes, there was a positive correlation between increasing overtones and increasing amplitude of
the modulation. The fourth overtone is usually about double in amplitude of the fundamental
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frequency. This phenomena was not observed in non-vibrato samples of singing or any case of
the stringed samples. While not exactly similar, non-vibrato in vocals is characterized similarly to
non-vibrato in stringed instruments, as in vocals non-vibrato creates a narrow peak focused near a
human singable note’s frequency, but due to human imperfection there is often still a narrow but
noticeable frequency range, or shift in frequency for any sung note.

It is difficult to get a baseline from non-vibrato samples for a width using spectrograms. Spec-
trograms have a frequency and time resolution which were too large on our graphs to pick out
useful information for non-vibrato samples. Frequency resolution is equal to Sample rate/Window
size. We used a sample rate of 44,100hz and a window size of 4096, giving a frequency resolution
of about 10.8Hz. While vocal non-vibrato seemed to have a wider width than stringed non-vibrato,
it is difficult to determine exactly how much they varied due to our resolution.

From our spectrograms we have determined that vocal samples always have a wider width or
peak than stringed samples for similar vibrato or non-vibrato cases. This difference was hard to
extrapolate for non-vibrato samples, coming out to about a 4Hz difference on average. We say
this with low confidence due to the frequency resolution of our spectrograms. For vibrato samples,
the difference in amplitude comes out to 10Hz on average. This 10Hz difference is visually easy
to distinguish when looking at the spectrograms. We have also determined that the period of
fluctuation is usually around .25 seconds, regardless of how the vibrato is produced. There was
a deviation in our data for our stringed instrument vibrato for E4, however, with a period of .36
seconds.

5.3 Fourier Transform Chunks
For the purpose of determining how vibrato changes on a small timescale, we collected small

data slices of audio waves that we will refer to as ”chunks.”
We see that in the case that the audio is sliced into these small chunks of vibrato that there is

an amplitude ”shifting” that occurs between the fundamental frequency and overtone frequencies
so to speak. When examining the Fourier spectra of these chunks of vibrato, the relative amplitude
between the fundamental frequency and the first and second overtone frequencies change through
the progression of the chunks (i.e. from the graphs with end labels C1 to C5, there were slices
taken of the same audio file that divided a single period of the vibrato wave into 5 chunks). The
shifting of largest relative amplitude peaks is a strong indicator of the presence of vibrato, as in the
examination of non-vibrato waves this shifting is mainly non-existent. It is also important to note
that while the shifting mainly occurs in the fundamental frequency and first and second overtone
frequency peaks, in some samples there can be seen minuscule changes in higher overtones as
well. While this ”shifting” is an important indicator of vibrato, it appears that when examining
the chunks of human vocals and string instruments, there does not appear to be any distinguishing
features between the shifting in the two sets of chunks.
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(a) (b)

(c) (d)

(e)

Figure 6: All figures (a) through (e) above represent human vocals singing the note E4 using
vibrato. From figure (a) to figure (e) there is a relative progression in time such that figure (a) was
a chunk of a single period of a vibrato wave that occurred just before the chunk that occurred to

create figure (b) and so on.

6 Conclusion
The goal of this project was to determine a method of characterizing vibrato in human vocals

and string instruments. From analyzing the data, it can be determined that not only is the vibrato
in human vocals and string instruments detectable, but via the use of Fourier Transforms and spec-
trograms, there is a clear and distinct difference that separate human vocals, string instruments,
and their respective vibrato characteristics. The Fourier Transform graphs can, firstly, show that
human vocals and string instruments can be distinguished by the presence of higher overtone fre-
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quencies that populate the string instrument Fourier spectra. Any overtones past the 4th overtone in
human vocals tends to be deformed in the sense that they are non-existent, have minuscule ampli-
tude relative to the fundamental, or cover such a wide range of frequencies that they mix together
with other overtones. Secondly, the Fourier Transform graphs show that, in general, the bases of
peaks for the fundamental and overtone frequencies are very narrow and precise for string instru-
ments. This means that, compared to singing, a smaller range of frequencies are reached around
the fundamental frequency and overtone frequencies. In the examination of the vibrato examples,
it is important to note that while both human vocals and string instrumental peaks have wide bases
(due to the fact that they are both fluctuating), string instruments still fluctuate in frequency around
each fundamental and overtone significantly less than with human vocals.

If we take a recording with vibrato and cut it into small clips and perform Fourier Transforms on
each of them, we can see that our frequency is indeed oscillating and not just randomly fluctuating.
We can quickly do this en mass by using spectrograms. When we preform spectrogram analysis
on our recordings, we also saw a very distinct difference between vocal vibrato and stringed in-
strument vibrato, with the difference in amplitudes being anywhere from 17% larger to 44% larger
for vocal vibrato than stringed vibrato. Visually, the difference between stringed vibrato and vocal
vibrato is obvious; vocal vibrato recording are easily identifiable as sinusoidal waves while the
oscillations in stringed vibrato are more difficult to identify. Due to our frequency resolution, it
was more difficult to distinguish between non-vibrato samples using the width of the frequency.
However, there was a visual difference.

There are circumstances where human vocal vibrato and stringed instrument vibrato may ap-
pear to be similar, such as in the case where data for an extremely talented and experienced singer
is examined alongside the performance of a stringed instrument. However, if provided with enough
data over time, there will be a clear variation between the two performances, as well as in any vi-
brato techniques via the examination of their respective Fourier spectra’s relative peak widths and
the presence of very high frequency overtones.

The importance of music is known throughout society, however, the physics behind many of
musics common techniques are not. Through the analysis of the technique known as vibrato,
the difference in vibrato that can be found in both human vocals and stringed instruments can be
distinguished by analysis of their Fourier Transform graphs and spectrograms quite easily, and the
shape of the graphs that are formed can be further analyzed to provide insight on the mechanical
smoothness of instrumental vibrato as well as the fine-tuned and rare smoothness that is found
within human vocal vibrato.
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A The Fourier Transform
The Fourier Transform of a function, g(t), is given by:

F {g(t)} = G(f) =

∫ ∞
−∞

g(t)e−2πiftdt (1)

We can see that this transforms the function from the time domain to the frequency domain. G(f)
is called the spectrum of g. The inverse Fourier Transform allows us to obtain g from G.

F−1 {G(f)} =
∫ ∞
−∞

G(f)e2πiftdf = g(t) (2)

Figure A.1: A square wave function of amplitude A and width T [3].

If we analyze the square wave shown in Figure A.1 and evaluate the Fourier Transform we ob-
tain:

F {g(t)} = G(f) =

∫ ∞
−∞

g(t)e−2πiftdt

=

∫ T/2

−T/2
Ae−2πiftdt

=
AT

πfT

[
eiπfT − e−iπfT

2i

]
=

AT

πfT
sin(πfT )

= AT sinc(fT )

(3)

where we define the sinc function as sinc(t) = sin(πt)
πt

.

16



Figure A.2: The Fourier Transform of a square wave function of amplitude A and width T [3].

This leaves us with G(f) = AT sinc(πfT ), the frequency domain equivalent of the square wave,
which is plotted in Figure A.2.
If we compute F−1 {G(f)}, we obtain

F−1 {g(t)} =
∫ ∞
−∞

G(f)e2πiftdf

=

∫ ∞
−∞

AT sinc(fT )e2πiftdf

= A rect

(
T

2

) (4)

The inverse Fourier Transform of the sinc function is defined as the rect function. Thus we have
precisely what we expect as an output. The result is the square wave from Figure A.1.
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Now if we look at a periodic square wave, as seen in Figure A.3, we see the effect of a Fourier
Transform on a periodic function.

Figure A.3: A periodic square wave with an amplitude of 2 units and a width 0.1 seconds.

The Fourier series representation of the periodic square wave function is given by:

f(t) =
∞∑

n=1,3,5,...

4

nπ
sin

(
nπt

0.1

)
(5)

Taking the Fourier Transform of Eqn. 5,

F {f(t)} = F (f) =

∫ ∞
−∞

f(t)e−2πiftdt

=

∫ ∞
−∞

[
∞∑

n=1,3,5,...

4

nπ
sin

(
nπt

0.1

)]
e−2πiftdt

=
∞∑

n=1,3,5,...

4

nπ

∫ ∞
−∞

sin

(
nπt

0.1

)
e−2πiftdt

=
∞∑

n=1,3,5,...

4

nπ

∫ ∞
−∞

sin

(
nπt

0.1

)[
cos(2πft)− sin(2πft)

]
dt

=
∞∑

n=1,3,5,...

[
4

nπ

∫ ∞
−∞

sin

(
nπt

0.1

)
cos(2πft)− 4

nπ

∫ ∞
−∞

sin

(
nπt

0.1

)
sin(2πft)

]
dt

]

(6)

While it is possible to solve this analytically, it is tedious. It requires a similar computation as in
Eqn. 3 over an infinite sum. Finding a solution is aided by solving it numerically. The Fourier
Transform is shown in Fig. A.4.
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Figure A.4: The Fourier Transform of a periodic square wave function with an amplitude of 2
units and a width 0.1 seconds.

We see peaks in the Fourier spectrum of the periodic square wave function at multiples of the
fundamental frequency. The fundamental frequency is defined by T = 1

f0
=⇒ f0 =

1
0.1s

= 5Hz.
The subsequent harmonics are odd integer multiples of the fundamental frequency (the square
wave only has odd harmonics). The first few harmonics are 5Hz, 15Hz, 25Hz, and so on.
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B Data Tables
All data is presented below in tables. They are arranged by source and in consistent order of
notes.
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