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Abstract

In this report, we analyze mean temperature fields in home appliances such

as ovens and refrigerators. For a holistic approach, we utilize multiple ther-

mocouples soldered to a printed circuit board to record temperature data

at multiple different points inside these appliances for different runs of data

taking. The goal of this project is an exploratory one; our purpose is to

learn more about the appliances as well as the instruments used in our

experiments by examining the temperature fields inside ovens and refriger-

ators. The number of thermocouples available to be soldered onto a single

circuit board as well as the fragility of the experimental equipment plays a

large role in the uncertainty in our data and calculations, but the behavior

of temperature profiles inside these appliances is clear.

Introduction

Ovens and refrigerators are instruments that are everyday appliances and are readily

available to almost everyone, but people rarely investigate their distinguishing features. For

instance, some of these features may be temperature profiles, thermal diffusivity, and power

efficiency which can have a non-negligible influence on their usage. Different cooking and

baking techniques may require different levels of precision of an oven - incorrect temperature

profiles and humidity may result in poor results from baking and cooking inside the oven

being used. Different types of ovens work in different ways and are equipped with a wide

range of components. Therefore both the temperature fields and gradients inside them may

be drastically different. Even in the same oven, temperature profiles are not uniform in space

and can differ by quite a lot depending on the make and condition.

In our project, we use thermocouples to measure the temperatures at a discrete set of

positions inside a plane of fixed elevation in the oven. The thermocouples are soldered onto a

printed circuit board, which supports an Arduino and other devices allowing us to read and

store the data taken. The data is stored in an SD card, which is later used to produce plots of

the temperature of each thermocouple versus time for these different positions. The gradient

of the temperature is then reconstructed by other means of modeling. In this fashion, we

hope to understand the various features of an oven. For instance, the temperature profile,

heat insulation, the error between set and actual temperature.
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Finally, we wish to compare our results to the temperature profiles of theoretical models.

In particular, we look to see if the temperature profile data taken by our thermocouples

matches well with smooth solutions to the heat equation. While they will not match exactly,

we look for similar behavior and what possible sources of error make come about from the

conditions of the experiment and oven.

1 Background

1.1 Instrumentation

1.1.1 Arduino Mega 2560

Figure 1: Arduino Mega 2560

For our project, we used the Arduino Mega 2560 microcontroller, shown in Figure 1,

as the primary device to link the Data-Acquisition together. The Arduino Mega 2560 is a

microcontroller board that has 54 digital input/output pins, 16 analog inputs, 4 hardware

serial ports, a clock speed of 16 MHz and two communication protocols which are Serial

Peripheral Interface (SPI) and Inter-Integrated Circuit communication (I2C). We mainly

use the SPI protocol to communicate with other breakout board sensors. All the chips are

soldered on the printed circuit board.

1.1.2 Thermocouple Amplifier

The K type thermocouples (Figure 2) are very sensitive temperature sensors and made

by welding together two metal wires. Because of the physical effect of two joined metals,

there is a slight voltage across the wires that increases with temperature. Base on the

voltage difference, it can measure the temperature range from −200◦C to 1350◦C in 0.25◦C

increments and have about ±2◦C to ±6◦C accuracy. This amplifier breakout board has the

chip itself, a 3.3V regulator with 10 bypass capacitors and level shifting circuitry and uses

SPI data output which requires any 3 digital I/O pins from the Arduino Mega 2560.

1.1.3 BME680

The BME680 (Figure 3) is a 4-in-1 sensor with humidity, gas, atmospheric pressure and

temperature measurement based on proven sensing principles. Main measurement character-

istics: humidity accuracy ±3 percent with response time (0− 0.63), resolution of gas sensor
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Figure 2: Adafruit MAX31855 Thermocouple and Amplifier Breakout Board

Figure 3: Adafruit BME680

resistance measurement 0.05-0.11 percent with response time (0.33−0.63), absolute tempera-

ture (0−65◦C) accuracy ±1◦C and absolute/relative pressure accuracy ±0.6hPa/±0.12hPa

(EDN Europe, 2015).BME680 equips with both SPI and I2C interfaces to connect it to the

Arduino using only 4 wires which are the serial clock (SCK), the serial data input (SDI),

the serial data output (SDO) and the chip select (CS). We mainly use BME680 to collect

the humidity inside the refrigerator while the thermocouples are collecting the temperature

data.

1.1.4 Printed Circuit Board

The printed circuit board is designed and provided by the course instructor Professor

Gollin. The challenge of making the PCB is to figure out how to arrange the thermocouple

amplifiers. The thermocouple amplifier uses SPI communication protocol which is a syn-

chronous serial communication interface primarily used in embedded systems (e.g. Arduino).

SPI devices communicate in full duplex mode which allow simultaneous data transmission in

both directions using a master-slave architecture. SPI protocol can only support one master

and multi-slaves through slave selection (SS), so we decided to put all thermocouple ampli-

fiers on one PCB. We soldered the thermocouple amplifiers on a breadboard and connected

all the chips in series. This means that we soldered all the corresponding pins together except

the chip select pins (CS). The chip select pins are directly soldered on the different digital

pins on the Arduino, because the SPI interface only can select one chip at a time.
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(a) Printed Circuit Board (b) Soldered Thermocouples

Figure 4: Our final printed circuit board and zoom in of attatched thermocouples.

1.1.5 Data Acquisition Software

Our data acquisition software (DAQ) was written entirely in Arduino and allows us to

take measurements from all thermocouples at once. In the DAQ, each thermocouple is

assigned to a different digital pin on the Arduino itself, and since the thermocouple breakout

boards function by SPI, the DAQ can record data from each thermocouple at once. Since four

thermocouples are attached to one single PCB, the data acquired from all four thermocouples,

as well as the room temperature are saved into a micro-SD card in .txt format. Then, our

Python code read and handle the data.

1.2 Technical Background

The physics in this project is relatively straightforward in its use and purpose. Each

thermocouple records the temperature relative to their internal thermometer at a given

point. This allows us to draw an analogy between our system and a simple two-dimensional

rectangular lattice. For different planes in the oven, we divide the region up into cells of

uniform area. In the center of each cell, we place a thermocouple acting as a lattice point

and assign the temperature that the thermocouple reads to the entire region within that cell.

This allows us to choose a length scale parameter Λ over which to average by. We construct

the mean temperature field TΛ(x, y) by shifting a region of area Λ2 centered at the point

(x, y) and summing over the contributions from each cell weighted by the overlap in area

between the region of interest and the cell. We can do this analytically and numerically by

integrating over each cell and only allowing the overlap to contribute to in the integral via:

TΛ(x, y) =
1

Λ2

∑
i=cells

Ti

∫
cell i

dudv θ(u−(Λ−x/2))θ(u+(Λ+x/2))θ(v−(Λ−y/2))θ(v+(Λ+y/2)),

(1)

where Ti is the temperature assigned to cell i from the thermocouple inside of it, and θ(x)
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is the Heaviside step-function. Changing the length scale Λ can greatly change how close

this constructed mean temperature field is to the real temperature profile inside the oven,

and there will be a specific length scale where the mean-field is as close to the true profile

as possible. In physics, problems involving heat flow often involve finding analytic solutions

to the heat equation in equilibrium by:

∂T

∂t
= κ∇2T (2)

for some prescribed boundary conditions. Ideally, our mean temperature field TΛ(x, y) would

solve, or at least approximately solve the heat equation with Dirichlet boundary conditions.

The error between TΛ and a relatively close solution to the heat equation will be determined

both by the crude means of constructing the mean-temperature field, properties of the oven

itself, as well as our experimental setup.

There are a few more interesting quantities we can gather from the mean-temperature

field. For convection ovens, we expect much larger temperature differences between different

regions in the oven when compared to non-convection ovens. Studying the gradient of the

temperature profile, will in theory, allow us to distinguish whether an oven is convective

or non-convective. For example, near where the air is circulated, the temperature gradient

should be much steeper in a convection oven, then in the center of a standard oven.

1.3 A Solution to the Heat Equation

In this section we present a tentative solution to the heat equation with relevant boundary

conditions. The heat equation is well-posed and in order to solve it, we must specify boundary

conditions in space and an initial condition in time. The heat equation problem that we wish

to solve is:

∂

∂t
T (x, t) = κ∇2T (x, t), ∀(x, t) ∈ Ω× [0,∞), (3)

where Ω = [0, Lx] × [0, Ly] × [0, Lz] is the domain of the oven where the heat equation is

defined and κ is a constant that represents heat diffusion. The boundary and initial boundary

conditions are: 

T (x, 0) = Tr, ∀x ∈ Ω

∂xT (0, y, z, t) = ∂xT (Lx, y, z, t) = 0, ∀t ≥ 0

∂yT (x, 0, z, t) = ∂yT (x, Ly, z, t) = 0, ∀t ≥ 0

∂zT (x, y, Lz, t) = 0, ∀t ≥ 0

T (x, y, 0, t) = To, ∀t ≥ 0

where Tr is the constant room temperature and To is the oven temperature set before each

trial. We assume the heat source is at the bottom of the oven, thus we only set the bottom of

the oven to be To. To solve the problem, we assume (due to constant boundary conditions)

the temperature inside the oven becomes independent of time in the steady state limit t→∞.

Let TE(x) be the equilibrium temperature sufficiently large t. We should have:

lim
t→∞

T (x, t) = TE(x), ∀x ∈ Ω. (4)

From which it follows that:
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∇2TE = κ
∂

∂t
TE = 0 (5)

∂xTE(0, y, z) = ∂xTE(Lx, y, z) = 0

∂yTE(x, 0, z) = ∂yTE(x, Ly, z) = 0

∂zTE(x, y, Lz) = 0

TE(x, y, 0) = To

Therefore TE is harmonic inside Ω and satisfies the above boundary conditions. We now

state the uniqueness theorem which makes our calculation of TE trivial.

Theorem 1 (Uniqueness Theorem) For a given domain Ω and above boundary condi-

tions, if TE and T ′E are two harmonic functions that satisfy the given boundary conditions

then TE = T ′E.

Clearly TE = To, the constant function, satisfies both Laplace’s equation and the boundary

conditions. Therefore we must have:

T (x) = To. (6)

Now, consider function u(x, t) := T (x, t) − TE(x), where u(x, t) satisfies the homogeneous

heat equation:

∂

∂t
u(x, t) = ∇2u(x, t) (7)



u(x, 0) = Tr − TE(x) = Tr − To, ∀~x ∈ Ω

∂xy(0, y, z, t) = ∂xu(Lx, y, z, t) = 0, ∀t ≥ 0

∂yu(x, 0, z, t) = ∂yu(x, Ly, z, t) = 0, ∀t ≥ 0

∂zu(x, y, Lz, t) = 0, ∀t ≥ 0

u(x, y, 0, t) = 0, ∀t ≥ 0

Now it is possible to assume an eigenfunction expansion of u(x, t) inside Ω. The eigenvalue

problem we are considering is the Dirichlet eigenvalue problem of the Laplacian operator:

∇2v = −λv. (8)

here v ∈ C2(Ω) has no time dependence and satisfies our boundary conditions. The solutions

for v that come from solving this eigenvalue problem are:

vn,m,` = cos
nπx

Lx
cos

mπy

Ly
sin

π(`+ 1
2
)z

Lz
(9)

It can be shown that these functions are complete with respect to the L2 norm, that is

∀f ∈ C2(Ω)
⋂

L2(Ω), ∃ {Anm` ∈ R}, s.t. lim
N,M,L→∞

∫
Ω

∣∣∣∣f − ∞∑
n=N
m=M
`=L

Anm`vnm`

∣∣∣∣2dx = 0. (10)

Expanding the solution to the homogoneous heat equation, u(x, t) yields:

u(x, t) =
∑
n,m,`

anm`(t)vnm` (11)
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Plugging u(x, t) back into the heat equation, we get a a set of first order differential equa-

tions for the coefficients anm`(t)’s, the initial condition of the heat equation gives the initial

conditions for the coefficients:

∂

∂t
anm`(t) = −λnm`anm`(t), anm`(0) =

∫
Ω

(Tr − TE(x))vnm`(x)dx∫
Ω

(vnm`(x))2dx
(12)

The solutions are clearly

anm`(t) = anm`(0)e−λnm`t (13)

Substituting the coefficients back in yields a full solution. Plugging in TE(x) = To and the

solution of vnm` into equation (12) gives anm` = 16δn0δm0/(2`+ 1)π. So the final solution to

the heat equation with our boundary conditions is:

T (~x, t) = To +
16(Tr − To)

π

∑
`∈N

1

(2`+ 1)
sin

(
π(`+ 1

2
)z

Lz

)
e−π(`+ 1

2
)κt/Lz . (14)

Methodology and Experimental Procedure

(a) Example shot of layout of thermocouples on
lower rack at front of the oven.

(b) Idealized lattice layout of thermocouples. y =
0 represents the back of the oven, while y = 3
represents the front of the oven where the oven
door is. x is in units of Lx/4 while y is in units of
Ly/3, just for clarity.

Figure 5: Lattice layout during experiment of taking down on lower rack near the front of
the oven and idealized theory layout of thermocouples.

As discussed previously, for the experimental procedure, we laid out each thermocouple

soldered to our printed circuit board in the shape of a rectangular lattice. As we have

only four thermocouples soldered to a single circuit board, we had to take three different

measurements for a single plane in the oven. The oven used has two racks, which were chosen

to be the two planes studied in this paper. Unfortunately, our thermocouples are about 1m

long, so not all four can reach the back of the oven. For these measurements, we could only

take data with two thermocouples.
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After the thermocouples were installed inside the oven, the oven is turned on with the

”Bake” mode with the temperature set to 180. The oven door is then shut and the oven

enters the ”pre-heat” procedure. This is when the oven is heated to the preset temperature.

Once heated to the preset temperature, the oven enters the baking period. After the oven is

turned on for 30 minutes, the oven is turned off and enters the cooling period. After cooling

for 30 minutes, we stop taking data. The oven we used for our experiments had a width

Lx = .61cm, a length of Ly = 41.91cm and a height of Lz = .61cm.

The data for freezer and fridge is taken using the same methodology. We place the

thermocouples in an evenly distributed line in the freezer and fridge. And again, just as the

case of the oven we do this for the front, the middle and the back of the fridge. The data

was taken for the whole night but we will only show a fraction of them.

Figure 6: Fridge and thermocouples.

Figure 7: Freezer and thermocouples.

Results and Discussion

1.4 Calibration

We first calibrated our thermocouple temperatures, and adjusted our later measurements

according to this calibration. Figure 8(a) and 8(b) are calibration plots and their respective

zoomed-in versions for thermocouple set 1, and figures 8(c) and 8(d) are for thermocouple

set 2. We put all four thermocouples as close together as possible and heat the oven up

to 180◦ C. Since all thermocouples are very close to one another, if they were perfectly

calibrated the temperatures should be exactly the same. However, because this is not the
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(a) Calibration data for first set of thermocouples. (b) Zoomed in plot of 8a between t = 600s and t = 660s.

(c) Calibration data for second set of thermocouples. (d) Zoomed in plot of 8c between t = 600s and t = 660s.

Figure 8: Plots of calibration data for both sets of thermocouples used.

case we have to choose which thermocouples we consider ”good” and shift the temperatures

according to that choice.

For thermocouple set 1, we took the mean temperature measured by thermocouples 2, 3, 4

as the actual temperature and shifted the first one temperature up by ≈ 2◦ C to match

the actual temperature. For thermocouple set 2, we took the mean temperature measured

by thermocouples 1 and 2 to be the actual temperature, and shifted the temperatured of

thermocouples 3 and 4 up by ≈ 6◦ C to match them. We used thermocouple set 1 to take

the data for the oven and freezer, and thermocouple set 2 to take data for the fridge. The

calibration data for the second set of thermocouples as seen in figures 8c and 8d were taken

using a different electric oven. This explains why the behavior once the thermocouples have

reached equilibrium with the oven is different between the plots of different thermocouple

sets.
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(a) Thermocouple temperatures for the front of the lower shelf.
(b) Thermocouple temperatures for the middle of the lower shelf.
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(c) Thermocouple temperatures for the back of the lower shelf. There are only two thermocouples shown here,
as only these two could reach into the back.

(d) Thermocouple temperatures for the middle of the upper shelf.
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(e) Thermocouple temperatures for the front of the upper shelf. Strange behavior of TC 1 discussed below.
(f) Internal thermocouple temperature.

Figure 9: Thermocouple temperature and internal temperature data versus time.
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1.5 Qualitative Analysis

1.5.1 Oven

The most defining common feature of these curves is the saw-tooth shape that they

share. We suspect this is due to natural cooling of the oven when the oven is heating

to its set temperature. In these experiments, the temperature of the oven is set at 180◦

Celsius. Therefore, to keep the temperature in the oven at the desired setting, the oven

turns the heat off once the temperature around the sensors inside the oven is too high. Once

the heat is turned off is activated, the temperature in the oven starts to drop. When the

temperature around the sensors is too low, the oven starts to heat up again to offset the

induced undershooting of the temperature from the natural cooling of the oven. This explains

the sudden drop in temperature inside the oven. In figure 9e, there is one thermocouple (TC

1) that has a much lower temperature than the rest. These measurements were taken with

the same set of thermocouples, so we have no way to explain this behavior outside of it being

an issue with the oven itself.

Another interesting piece of information is that the maximum temperature reached by

the thermocouples in different positions is not the same. Take figure 9b for instance, the

maximum temperature reached by the red curve is ≈ 225◦ C, while the green curve only

≈ 200◦ C. This occurs when the temperature in the oven is set to 180◦ C. This is likely is

because the position of the temperature sensors inside the oven is close to or on the walls

of the oven. Hence, due to the unevenness of the temperature distribution inside the oven,

we conducted the experiment with, by the time the temperature near the walls reaches the

desired setting, the temperature in the middle has already greatly increased. As shown in

the picture, this temperature difference between the center of the plane of the oven and the

sides can be quite large, even up to ∼ 50◦ C.

1.5.2 Fridge and Freezer

The data for the freezer shows similar saw-tooth shape as the oven data. The data shows

that after the door is shut, the freezer starts to cool down to approximately −12.5◦ C. Then

the compressor stopped working and restarted when the temperature rises to −9◦ C. This

pattern repeats until the thermocouples are turned off. In addition, we observed a sharp

peak in each cycle but we expect the temperature transition will be more smooth.

We can see that the plots for the fridge share similar characteristics to those of the freezer.

Just like the freezer, the fridge has cycles where the fridge cools to a desired temperature

of around 8◦ C, and then stops. This causes the temperature to rise a couple of degrees

after which the fridge starts cooling again. However the temperature of thermocouple four

which is on the left side of the fridge is significantly lower than the other three in the first 30

minutes. The reason might be that there are some heat-absorbing items, such as hot meal,

on the right side of the refrigerator, so we don’t observe very sharp peaks when the cooling

begins again.

1.6 Quantitative Analysis

We have the plots for the coarse-grained mean-temperature field TΛ(x, y) for Λ = Lx/30,

where Lx is the dimension of the oven in the x-direction. Just from the heat maps alone,

we notice a lot of interesting tidbits on how ovens operate during the cooling and heating
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(a) Temperature profile for the fridge
(b) Temperature profile of the freezer

Figure 10: Thermocouple fridge and freezer plots.

processes. For t = 300s in figure 11a, we chose the time such that the oven is in the process

of heating up, we see that the oven is much cooler near the circumference, especially the

front. This tells us that the heat source of the oven is in the middle bottom of the oven. At

t = 1200s in figure 11b, the oven reaches the equilibrium. We see the temperature is still

relatively hot in the middle compare to its surroundings. We postulate from this that the

oven is poorly insulated, thus while the oven is trying to reaming in equilibrium, there is still

a large amount of heat leaking out on the edges. Lastly, figures 11c and 11d are for t = 2100s
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(a) TΛ(x, y), t = 300s (b) TΛ(x, y), t = 1200s

(c) TΛ(x, y), t = 2100s (d) TΛ(x, y), t = 2700s

(e) Mean-field temperature in a peak. (f) Mean-field temperature in a trough.

Figure 11: Plots of the mean temperature field for different times for the lower rack. The
bottom of the plots represents the back of the oven, and the top represents the front where
the oven door is located.

and t = 2700s respectively. Figure 11c is when the oven is starting to cool down, and 11d

is when the oven has been cooled down for a while. We see the temperature of the oven is
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the hottest during the process of heating up and in equilibrium; this makes sense because

the heating source of the oven is in the middle of the bottom rack,therefore the middle heats

up first before other parts do. When the oven starts to cool down, we see the first region

that starts to cool down is the front of the oven, which matches our intuition of heat leaking

out through the front. Figures 11e and 11f are plots when the thermocouples have reached

equilibrium with the oven, where all the thermocouples are in the same peak or trough in

the temperature plots in figure 9. This is because there are some differences between each

experiment, so to get accurate mean field plots we should correct for this. In general, The

mean-temperature fields also tend to be very smooth in space, as there are no sharp drop-offs

in their values which suggests this choice of scale parameter Λ is a good choice. We expect

then that these profiles will approximately solve the heat equation.

We can learn a lot about comparing the coarse-grained temperature field TΛ to our

solution of the heat equation T (x, t). Firstly, we notice that for a plane of fixed z height in the

oven, T (x, t) is constant in space. The solution to the heat equation has no dependence in the

x- and y-directions, where we can see that this is not the case for the mean-field temperature.

We also notice that the solution to the heat equation decays in time as T (x, t) ∼ e−κt/Lz .

This is the complete opposite of the data we recorded when the oven is heating which

grows exponentially in time. This is most likely due to some incorrect choice in boundary

conditions.

Conclusion

Lastly, we see that simple data measurements taken with our thermocouples laid out

in different positions can tell us a great deal about the oven. Even if our experimental

configuration was quite simple and we did not have many thermocouples to work with. The

first thing of significance we note is that the temperature distribution inside the oven can be

very uneven. One can see this by looking at the graphs of thermocouple temperature versus

time, or through the heat map, which display the temperature distribution more vividly. For

instance, the temperature difference between different regions inside the oven can be over 30

degrees for a given time.

Secondly, we note there is a certain mechanism to prevent the oven from overshooting or

undershooting. And that is the same for our fridge and freezer. One can see this through the

saw-tooth shape in our plots above. Since our oven has no fans, we suspect this mechanism

is simply natural cooling by which we mean turning on and off the heating system. However,

even with this mechanism, the temperature in the middle still goes up to 225◦ C, even though

the oven is set at 180◦ C. Hence, we conclude the temperature sensor of the oven is on the

walls where the temperature appears to be lower.

Finally, we note the heat equation solution fits poorly with our data of the oven, which

is expected. To see this, note the solution is constant for fixed height, but this is clearly not

the case of the measurement. On the other hand, this implies the oven is not well insulated.

Because the boundary condition we solved for the heat equation assumes the oven is perfectly

insulated, and the fitting precisely implies the contrary.
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