Outline

• Ferromagnetism
• Measurement of the magnetic properties of the materials
• Lab experimental setup and experiments
• Some results
Ferromagnetism. Definition.

Some materials below a certain temperature (T_c) give rise to the magnetic field in absence of an applied field.

This magnetization is called spontaneous, the phenomenon – ferromagnetism and materials exhibiting this feature – ferromagnetics.

The main parameter of the ferromagnetic phase transition is spontaneous magnetization

Typical behavior of spontaneous magnetization as function of temperature

![Graph](image_url)
Ferromagnetic materials.

Aleksandr Stoletov (1839–1896) performed pioneer works in the area of ferromagnetic materials but better known by his research in photoelectric effect.

<table>
<thead>
<tr>
<th>Material</th>
<th>Curie temp. (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>1388</td>
</tr>
<tr>
<td>Fe</td>
<td>1043</td>
</tr>
<tr>
<td>Fe₂O₃⁺</td>
<td>948</td>
</tr>
<tr>
<td>FeOFe₂O₃⁺</td>
<td>858</td>
</tr>
<tr>
<td>NiOFe₂O₃⁺</td>
<td>858</td>
</tr>
<tr>
<td>MgOFe₂O₃⁺</td>
<td>713</td>
</tr>
<tr>
<td>MnBi</td>
<td>630</td>
</tr>
<tr>
<td>Ni</td>
<td>627</td>
</tr>
<tr>
<td>MnSb</td>
<td>587</td>
</tr>
<tr>
<td>MnOFe₂O₃⁺</td>
<td>573</td>
</tr>
<tr>
<td>Y₃Fe₅O₁₂⁺</td>
<td>560</td>
</tr>
<tr>
<td>CrO₂</td>
<td>386</td>
</tr>
<tr>
<td>MnAs</td>
<td>318</td>
</tr>
<tr>
<td>Gd</td>
<td>292</td>
</tr>
</tbody>
</table>

\[\chi = \frac{dM}{dH} \]
Domains. Hysteresis loop.

\[M \sim M_s \]

\[M = 0 \]

Courtesy Wikipedia
Domains

Several grains of NdFeB with magnetic domains made visible via contrast with a Kerr microscope.

Courtesy of Wikipedia

Kerr microscope
Courtesy of University of Uppsala (Sweden)
Moving domain walls in a grain of silicon steel caused by an increasing external magnetic field.

Courtesy of Wikipedia
Hysteresis Loops.
Remagnetization loses

\[W = V \int H dB \]

Energy of the magnetic field

By cycling around the loop

\[W_{\text{loop}} = V \oint H dB = V \times \text{Loop area} \]
“Hard” materials. Application.

RAM memory

Permanent magnets

Hard drives, floppy, magnetic tape

Chokes, inductors

Power transformers
Magnetic Field, Susceptibility etc.

\[B = \mu_0 (H + M) \]

\(B \) – magnetic induction

\(M \) – magnetization, in general \(M(H) \)

\[M = \chi H \]

\(\chi \) – magnetic susceptibility, in general \(\chi(H) \)

\[B = \mu_0 (1+\chi)H = \mu_0 \mu_r H = \mu H \]

\(\mu_r = 1 + \chi \)

\[\mu = \mu_0 \mu_r = \frac{dB}{dH} ; \quad \mu_r = \frac{1}{\mu_0} \frac{dB}{dH} \]
Modulation Spectroscopy

\[B = f(H) \quad H = H_0 + H_1 \sin \omega t \]

\[B = f(H_0) + \frac{df}{dH}(H_1 \sin \omega t) + ... \]

\[H_1 = \text{const} \]

\[B_\omega \sim \frac{dB}{dH} \]

\[H = H_0 + H_1 \sin \omega t \]
Measuring the magnetic permeability

By applying a small modulation of the H field we can measure the derivative of the B-H hysteresis loop or dependence of the magnetic permeability on H field.

$$\mu(H_0, \omega) = \mu_0 (1 + \chi(H_0, \omega)) = \frac{dB}{dH}_{H_0, \omega}$$
Setup #1. Investigation of the hysteresis loops.
Setup #1. Investigation of the hysteresis loops.

\[H = \frac{N_p I_p}{2\pi r} \]

\[H = H_0 + H_1 \cos \omega t \]
Major/minor loops. Demagnetization

Waveform of H-field
Demagnetization

Demagnetization of 4C65 toroid from Ferroxcube
Hysteresis Loops

Fig. A family of AC hysteresis loops for grain-oriented electrical steel (B_R denotes remanence and H_C is the coercivity). Courtesy Zureks (Wikipedia)
Measuring the magnetic permeability

DC current profile and magnetic permeability of Magnetics ZW44715TC
From permeability to B-H hysteresis loop

Step#1. Performing one fast IDC scan the based on the result preparing the “smart” IDC profile

Step#2. Performing precise scan the. Plotting raw data based

Voltage units measured by SR830

Current in primary coil in A
Step #3. What we are measuring? Calibration.

Lock-in measures emf on the pickup coil

\[V_{\text{lock-in}} = -\frac{d\Phi}{dt} ; \Phi = \vec{B} \cdot \vec{S} \]

Here \(I_p \) is ac current in primary coil L3; \[I_p = \frac{V_0 \sin(\omega t)}{R_2} \]
From permeability to B-H hysteresis loop

Step#3. What we are measuring? Calibration.

Primary coil of \(N_p \) turns supplied by current \(I_p \) creates magnetic field \(H \) and flux \(d\Phi \)

For toroid: \[
H = \frac{N_p I_p}{2\pi r}
\]

\[
d\Phi = \mu \int \vec{H} \cdot d\vec{a} = \frac{\mu I N t}{2\pi} \int_{R_1}^{R_2} \frac{dr}{r} = \frac{\mu I N t}{2\pi} \ln \frac{R_2}{R_1}
\]

\(da=dr*t \)
From permeability to B-H hysteresis loop

Step#3. What we are measuring? Calibration.

Total flux detected by pickup coil:

\[\Phi = N_{\text{pickup}} d\Phi = \frac{\mu N_{\text{pickup}} N_p I_p t}{2\pi} \ln \frac{R_2}{R_1} \]

Np and Ip number of turns of AC primary coil and AC rms current

Inductance of the toroid:

\[L = \frac{\Phi}{I}; \quad L = \mu_r L_0 = (\mu' - i\mu'')L_0 \]

\[L_0 = \frac{\mu_0 N_{\text{pickup}} N_p t}{2\pi} \ln \frac{R_2}{R_1} \]
From permeability to B-H hysteresis loop

\[V_{\text{lock-in}} = \mu_r L_0 \frac{dI_p}{dt} \]

\[H_0 = \frac{N_p I_{DC}}{2\pi r} \]
From permeability to B-H hysteresis loop

Step#4. From $\mu_r(H)$ to B-H

$$\mu(H_0) = \mu_0 \mu_r(H_0) = \frac{dB}{dH} \bigg|_{H_0}$$

After integrating

$$B(H) = \mu_0 \int \mu_r(H) dH$$
Software issue

1. Icon on the desktop
 - Magnetic Lab v9.2
 - Preparation of the profile of the experiment
 - B-H measurement
 - Demagnetization

2. Experiment
 - 1st week experiment
 - 2nd week experiment
 - Preparation
 - Measurement
 - Demagnetization

3. Main menu
 - Experiment
 - Temperature scan

4. EXIT Program
Software issue
Measuring profile preparation. Using profile template

B-H PROFILE

The shown profile is a saved one from the previous experiment.
You can use it, load saved profile or create a new one.

- Open a new file
- Create a new file
- Save file
- Exit

Open a new file
Create a new file
Save prepared file for future use
Software issue

Software issue

Measuring profile preparation

Example of simple protocol

Frequency and AC modulation level will stay constant during the measurements.

Advanced profile

Frequency and AC modulation level will stay constant during the measurements.
Software issue

Measurement Window

Lock-in amplifier response

The profile of the applied DC current

Structure of the data file (B-H experiment)
Data analysis using Origin

To calculate the permeability better to use the template:

\`\`\\engr-file-03\\phyinst\\APL Courses\\PHYCS401\\Common\\Origin templates\\AC magnetic Lab\\MU_CALCULATION.otw\\``

It does not contain the equations – you have to write them

<table>
<thead>
<tr>
<th>N</th>
<th>time (s)</th>
<th>f (Hz)</th>
<th>UacVrms(Y)</th>
<th>Idc(A)</th>
<th>X(Y)</th>
<th>Y(Y)</th>
<th>R(Y)</th>
<th>A(L)</th>
<th>E(Y)</th>
<th>L0(Y)</th>
<th>mu1(Y)</th>
<th>mu2(Y)</th>
<th>H(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.125</td>
<td>1000</td>
<td>3.535</td>
<td>0.00444</td>
<td>1.31876E-5</td>
<td>7.73077E-5</td>
<td>7.73189E-5</td>
<td>0.00825</td>
<td>3.35179E-7</td>
<td>51.92141</td>
<td>0.88571</td>
<td>0.00789</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12.028</td>
<td>1000</td>
<td>3.535</td>
<td>0.00416</td>
<td>1.16975E-5</td>
<td>7.72332E-5</td>
<td>7.72421E-5</td>
<td>0.00825</td>
<td>3.35179E-7</td>
<td>51.87137</td>
<td>0.78563</td>
<td>0.00739</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>13.203</td>
<td>1000</td>
<td>3.535</td>
<td>0.00751</td>
<td>1.1325E-5</td>
<td>7.67563E-5</td>
<td>7.67647E-5</td>
<td>0.00825</td>
<td>3.35179E-7</td>
<td>51.55108</td>
<td>0.76061</td>
<td>0.01335</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>13.578</td>
<td>1000</td>
<td>3.535</td>
<td>0.00980</td>
<td>1.03584E-5</td>
<td>7.65999E-5</td>
<td>7.66069E-5</td>
<td>0.00825</td>
<td>3.35179E-7</td>
<td>51.44604</td>
<td>0.69556</td>
<td>0.01756</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13.938</td>
<td>1000</td>
<td>3.535</td>
<td>0.01205</td>
<td>1.15485E-5</td>
<td>7.02646E-5</td>
<td>7.02733E-5</td>
<td>0.00825</td>
<td>3.35179E-7</td>
<td>51.22084</td>
<td>0.77562</td>
<td>0.02143</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>14.313</td>
<td>1000</td>
<td>3.535</td>
<td>0.01395</td>
<td>1.15425E-5</td>
<td>7.59815E-5</td>
<td>7.59875E-5</td>
<td>0.00825</td>
<td>3.35179E-7</td>
<td>51.03071</td>
<td>0.61549</td>
<td>0.0248</td>
<td></td>
</tr>
</tbody>
</table>

Raw data

<table>
<thead>
<tr>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Npickup</td>
</tr>
<tr>
<td>R(m)</td>
</tr>
<tr>
<td>r2</td>
</tr>
<tr>
<td>r1</td>
</tr>
<tr>
<td>Ndc primary</td>
</tr>
</tbody>
</table>

Calculated results
Data analysis using Origin. Integrating.

\[B(H) = \mu_0 \int \mu_r(H) dH \]
Data analysis using Origin. Integrating.

$$B(H) = \mu_0 \int \mu_r(H) dH + \text{offset}$$
References

• Information about magnetic materials can be found in:

`\\engr-file-03\phyinst\APL Courses\PHYCS401\Experiments\AC_Magnetization\Magnetic Materials`

• **SR830 manual:** `\\engr-file-03\phyinst\APL Courses\PHYCS401\Common\EquipmentManuals\SR830m.pdf`