Basic Error Analysis

Physics 401
Fall 2016
Eugene V Colla
• Errors and uncertainties
• The Reading Error
• Accuracy and precession
• Systematic and statistical errors
• Fitting errors
• Appendix. Working with oil drop data
 • Nonlinear fitting
What and when we need to know about errors. Everyday life.

\[T = 63^\circ F \pm ? \quad \text{Best guess } \Delta T \sim 0.5^\circ F \]

\[\text{Wind speed } 4\text{mph} \pm ? \quad \text{Best guess } \pm 0.5\text{mph} \]
What and when we need to know about errors. Industry.

Clearance fit

- **Fastener**
 - MMC = 0.747
 - LMC = 0.744

- **Hole**
 - MMC = 0.750
 - LMC = 0.753

(a) Unilateral tolerance
(b) Bilateral tolerance.
Measurement of the speed of the light

1675 Ole Roemer: 220,000 Km/sec

Does it make sense?
What is missing?

NIST Bolder Colorado \(c = 299,792,456.2 \pm 1.1 \) m/s.
We do not care about accuracy better than 1mm

If ruler is not okay, we need to use digital caliper

Probably the natural limit of accuracy can be due to length uncertainty because of temperature expansion. For 53mm $\Delta L \approx 0.012\text{mm}/K$

Reading Error = $\pm \frac{1}{2}$ (least count or minimum gradation).

How far we have to go in reducing the reading error?
Fluke 8845A multimeter

Example Vdc (reading) = 0.85V

\[
\Delta V = 0.83 \times (1.8 \times 10^{-5}) \\
+ 1.0 \times (0.7 \times 10^{-5}) \approx 2.2 \times 10^{-5} \\
= 22\mu V
\]

8846A Accuracy

Accuracy is given as ± (% measurement + % of range)

<table>
<thead>
<tr>
<th>Range</th>
<th>24 Hour (23 ±1 °C)</th>
<th>90 Days (23 ±5 °C)</th>
<th>1 Year (23 ±5 °C)</th>
<th>Temperature Coefficient/ °C Outside 18 to 28 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mV</td>
<td>0.0025 + 0.003</td>
<td>0.0025 + 0.0035</td>
<td>0.0037 + 0.0035</td>
<td>0.0005 + 0.0005</td>
</tr>
<tr>
<td>1 V</td>
<td>0.0018 + 0.0006</td>
<td>0.0018 + 0.0007</td>
<td>0.0025 + 0.0007</td>
<td>0.0005 + 0.0001</td>
</tr>
<tr>
<td>10 V</td>
<td>0.0013 + 0.0004</td>
<td>0.0018 + 0.0005</td>
<td>0.0024 + 0.0005</td>
<td>0.0005 + 0.0001</td>
</tr>
<tr>
<td>100 V</td>
<td>0.0018 + 0.0006</td>
<td>0.0027 + 0.0006</td>
<td>0.0038 + 0.0006</td>
<td>0.0005 + 0.0001</td>
</tr>
<tr>
<td>1000 V</td>
<td>0.0018 + 0.0006</td>
<td>0.0031 + 0.001</td>
<td>0.0041 + 0.001</td>
<td>0.0005 + 0.0001</td>
</tr>
</tbody>
</table>
The accuracy of an experiment is a measure of how close the result of the experiment comes to the true value.

Precision refers to how closely individual measurements agree with each other.
Accuracy and precession

- Not Precise, Not Accurate
- Precise, Not Accurate
- Accurate, Not Precise
- Accurate, Precise
- Errors

[Diagram showing targets for accuracy and precision]
• **Systematic Error**: reproducible inaccuracy introduced by faulty equipment, calibration or technique.

• **Random errors**: Indefiniteness of results due to finite precision of experiment. Measure of fluctuation in result after repeatable experimentation.

Systematic errors

Sources of systematic errors: poor calibration of the equipment, changes of environmental conditions, imperfect method of observation, drift and some offset in readings etc.

Example #1: measuring of the DC voltage

\[U = R \cdot I \]

\[E_{off} = f(time, temperature) \]

\[U = \frac{R \cdot I - \left(\frac{R}{R_{in}} \right) E_{off}}{1 + \left(\frac{R}{R_{in}} \right)} \]
Example #3: poor calibration

LHe

10μA

Resonator

HP34401A
DMM

Temperature sensor

Measuring of the speed of the second sound in superfluid He4

Published data

\[T_\lambda = 2.17 \text{K} \]

P403 results

\[T_\lambda = 2.1 \text{K} \]
Random errors

\[X_{\text{meas}} = X_{\text{true}} + e_s + e_r \]

Result of measurement

Correct value

Systematic error

Random error

\[e_s = 0 \]
Random errors. Poisson distribution

\[P_n(t) = \frac{(rt)^n}{n!} e^{-rt} \quad n = 0, 1, 2, \ldots \]

- **r**: decay rate [counts/s]
- **t**: time interval [s]
- \(P_n(rt) \): Probability to have \(n \) decays in time interval \(t \)

A statistical process is described through a Poisson Distribution if:

- **random process** \(\rightarrow \) for a given nucleus probability for a decay to occur is the same in each time interval.
- **universal probability** \(\rightarrow \) the probability to decay in a given time interval is same for all nuclei.
- **no correlation between two instances** (the decay of one nucleus does not change the probability for a second nucleus to decay.)
The Poisson distribution is given by:

\[P_n(t) = \frac{(rt)^n}{n!} e^{-rt} \quad n = 0, 1, 2, \ldots \]

where:
- \(r \): decay rate [counts/s]
- \(t \): time interval [s]

\(P_n(rt) \) : Probability to have \(n \) decays in time interval \(t \)

Properties of the Poisson distribution:

- \(\sigma = \sqrt{rt} \)
- \(<n> = rt \)
- \(\sum_{n=0}^{\infty} P_n(rt) = 1 \), probabilities sum to 1
- \(<n> = \sum_{n=0}^{\infty} n \cdot P_n(rt) = rt \), the mean
- \(\sigma = \sqrt{\sum_{n=0}^{\infty} (n - <n>)^2 P_n(rt) = \sqrt{rt} \), standard deviation
Poisson distribution at large rt

$$P_n(t) = \frac{(rt)^n}{n!} e^{-rt} \quad n = 0,1,2,...$$

Poisson and Gaussian distributions

Gaussian distribution:

$$P_n(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\bar{x})^2}{2\sigma^2}}$$

Carl Friedrich Gauss (1777–1855)
Error in the mean is given as \(\frac{\sigma}{\sqrt{N}} \)
Measurement in presence of noise

Source of noisy signal

Expected value 5V

Actual measured values

- 4.89855
- 5.25111
- 2.93382
- 4.31753
- 4.67903
- 3.52626
- 4.12001
- 2.93411
Measurement in presence of noise

10

$x = 5.2924V$

100

$x = 5.139V$

10^4

$x = 4.992V$

10^6

$x = 5.003V$
Measurement in presence of noise

Result

\[U = x_c \pm \frac{\sigma}{\sqrt{N}} \]

\(\sigma \) - standard deviation
\(N \) – number of samples

For \(N=10^6 \) \(U=4.999\pm0.001 \) 0.02% accuracy
Ag β decay

108Ag $t_{1/2} = 157\text{s}$

110Ag $t_{1/2} = 24.6\text{s}$

Model: ExpDec2

Equation:

$$y = A_1 \cdot \exp\left(\frac{-t}{t_1}\right) + A_2 \cdot \exp\left(\frac{-t}{t_2}\right) + y_0$$

Reduced Chi-Sqr: 1.43698

Adj. R-Square: 0.96716

<table>
<thead>
<tr>
<th>Value</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>C y0</td>
<td>0.02351</td>
</tr>
<tr>
<td>C A1</td>
<td>104.87306</td>
</tr>
<tr>
<td>C t1</td>
<td>177.75903</td>
</tr>
<tr>
<td>C A2</td>
<td>710.01478</td>
</tr>
<tr>
<td>C t2</td>
<td>30.32479</td>
</tr>
</tbody>
</table>

Residuals

<table>
<thead>
<tr>
<th>Counts</th>
<th>Value</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>1.44004</td>
<td>0.48702</td>
</tr>
<tr>
<td>χ</td>
<td>1.49992</td>
<td>0.0171</td>
</tr>
<tr>
<td>sigma</td>
<td>5.53338</td>
<td>0.40771</td>
</tr>
<tr>
<td>A</td>
<td>219.24559</td>
<td>14.47587</td>
</tr>
<tr>
<td>sigma</td>
<td>3.99939</td>
<td></td>
</tr>
<tr>
<td>FWHM</td>
<td>6.98273</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>26.4788</td>
<td></td>
</tr>
</tbody>
</table>
Fitting. Analysis of the residuals

Ag β decay

Test 1. Fourier analysis

No pronounced frequencies found
Fitting. Analysis of the residuals

Ag β decay

Test 1. Autocorrelation function

Correlation function

\[y(m) = \sum_{n=0}^{M-1} f(n)g(n-m) \]

Autocorrelation function

\[y(m) = \sum_{n=0}^{M-1} f(n)f(n-m) \]
Fitting. Analysis of the residuals. Non “ideal” case

Ag β decay

- Model: $y = A_1 \exp(-x/t_1) + A_2 \exp(-x/t_2) + y_0$
- Reduced Chi-Sqr: 100.10041
- Adj. R-Square: 0.69181

<table>
<thead>
<tr>
<th>F</th>
<th>Value</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_0</td>
<td>5.18284</td>
<td>1.96542</td>
</tr>
<tr>
<td>A_1</td>
<td>130.85655</td>
<td>20.27379</td>
</tr>
<tr>
<td>t_1</td>
<td>145.89449</td>
<td>21.82649</td>
</tr>
<tr>
<td>A_2</td>
<td>792.62197</td>
<td>19.21953</td>
</tr>
<tr>
<td>t_2</td>
<td>27.83933</td>
<td>1.30667</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>time (s)</th>
<th>Clear experiment</th>
<th>Data + “noise”</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_1(s)$</td>
<td>177.76</td>
<td>145.89</td>
</tr>
<tr>
<td>$t_2(s)$</td>
<td>30.32</td>
<td>27.94</td>
</tr>
</tbody>
</table>
Ag β decay

Histogram does not follow the normal distribution and there is frequency of 0.333 is present in spectrum
Conclusion: fitting function should be modified by adding an additional term:

\[y(t) = y_0 + A_1 \exp \left(\frac{-t}{t_1} \right) + A_2 \exp \left(\frac{-t}{t_2} \right) + A_3 \sin(\omega t + \theta) \]
Fitting. Analysis of the residuals. Non “ideal” case

<table>
<thead>
<tr>
<th></th>
<th>Clear experiment</th>
<th>Data + noise</th>
<th>Modified fitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1(s))</td>
<td>177.76</td>
<td>145.89</td>
<td>172.79</td>
</tr>
<tr>
<td>(t_2(s))</td>
<td>30.32</td>
<td>27.94</td>
<td>30.17</td>
</tr>
</tbody>
</table>
In general we could expect both components of errors

\[Q_{\text{meas}} = Q_{\text{true}} + e_s + e_r \]

\(e_s \) - systematic error comes from uncertainties of plates separation distance, applied DC voltage, ambient temperature etc.

\[V = V_{\text{DC}} \pm \Delta V, \quad d = d_0 \pm \Delta d \quad ... \]

\(e_r \) - random errors are related to uncertainty of the knowledge of the actual \(t_g \) and \(t_{\text{rise}} \).

Uncertainty of time of crossing the marker line. It is random.

\[Q = F \cdot S \cdot T = \left(\frac{1}{f_c^{3/2}} \right) \frac{9 \pi d}{V} \sqrt{\frac{2\eta^3 x^3}{g \rho}} \frac{1}{\sqrt{t_g}} \left(\frac{1}{t_g} + \frac{1}{t_{\text{rise}}} \right) \]

\[\Delta Q = \sqrt{(S \cdot T)^2 \Delta F^2 + (F \cdot T)^2 \Delta S^2 + (F \cdot S)^2 \Delta T^2} \]

\[T = \frac{1}{\sqrt{t_g}} \left(\frac{1}{t_g} + \frac{1}{t_{\text{rise}}} \right) \]

\[\Delta T = \sqrt{\left(\frac{3/2}{t_g^{5/2}} + \frac{1/2}{t_g^{3/2}} \frac{1}{t_{\text{rise}}} \right)^2 + \left(\frac{1}{t_g^{1/2}} \frac{1}{t_{\text{rise}}^2} \right)^2} \Delta t_{\text{rise}}^2 \]
Step 1. Collect your data + parameters of the experiment in:
\enr{-03\PHYINST\APL Courses\PHYCS401\Students\1. Millikan Oil Drop experiment\Section L1m.opj

Use different columns for each student or team. This Origin project is for data collecting only but not for data analysis. For data analysis you have to copy these data and experiment parameters obtained by different students/team and paste it in one in your personal Origin project.

<table>
<thead>
<tr>
<th>Long Name</th>
<th>A(L)</th>
<th>B(Y)</th>
<th>C(Y)</th>
<th>D(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>Par</td>
<td>tg</td>
<td>tr</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>student1, student2</td>
<td>765</td>
<td>15.56521</td>
<td>16.7815</td>
<td></td>
</tr>
<tr>
<td>student1, student2</td>
<td>0.00145</td>
<td>23.07825</td>
<td>31.8955</td>
<td></td>
</tr>
<tr>
<td>student1, student2</td>
<td>0.00317</td>
<td>20.14243</td>
<td>11.70129</td>
<td></td>
</tr>
<tr>
<td>student1, student2</td>
<td>500</td>
<td>26.97377</td>
<td>22.47531</td>
<td></td>
</tr>
<tr>
<td>student1, student2</td>
<td>20</td>
<td>16.34362</td>
<td>16.44208</td>
<td></td>
</tr>
<tr>
<td>student1, student2</td>
<td>25.93429</td>
<td>25.02886</td>
<td></td>
<td></td>
</tr>
<tr>
<td>student1, student2</td>
<td>15.34338</td>
<td>9.27446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>student1, student2</td>
<td>29.3815</td>
<td>19.6161</td>
<td></td>
<td></td>
</tr>
<tr>
<td>student1, student2</td>
<td>26.0786</td>
<td>24.3434</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setup and environmental parameters

Raw data
Step 1. Slightly Modified Origin Project For Data Collection:

```
\\engr-file-03\PHYINST\APL Courses\PHYCS401\Students\1. Millikan Oil Drop experiment\Section L1m.opj
```

<table>
<thead>
<tr>
<th>A(L)</th>
<th>B(Y)</th>
<th>C(Y)</th>
<th>D(Y)</th>
<th>Y(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>parameter label</td>
<td>Par</td>
<td>tg</td>
<td>tr</td>
<td>(n = \frac{Q}{1.602 \times 10^{-19}})</td>
</tr>
<tr>
<td>student1, student2</td>
<td>student1, student2</td>
<td>student1, student2</td>
<td>student1, student2</td>
<td>student1, student2</td>
</tr>
<tr>
<td>(\eta)</td>
<td>(\Delta \eta / \Delta T)</td>
<td>(\rho_1)</td>
<td>(\rho_2)</td>
<td>(\rho_1 - \rho_2)</td>
</tr>
<tr>
<td>g</td>
<td>p</td>
<td>x</td>
<td>d</td>
<td>V</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Extra column for number of elementary charges.
Appendix #1. Analyzing of the statistical data.

Step 2. Working on personal Origin project

Make a copy of the Millikan1 project to your personal folder and open it.

<table>
<thead>
<tr>
<th>A(L)</th>
<th>D(L)</th>
<th>E(X)</th>
<th>F(Y)</th>
<th>G(Y)</th>
<th>C(Y)</th>
<th>E(Y)</th>
<th>H(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>comments</td>
<td>Par</td>
<td>tr</td>
<td>rc</td>
<td>tau_g</td>
<td>your data</td>
<td>your data</td>
</tr>
<tr>
<td>Long Name</td>
<td>Parameter names</td>
<td>parameter label</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient of viscosity</td>
<td>(\Delta \eta / \Delta \pi)</td>
<td>(4.8 \times 10^{-8})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density of oil (kg/m³)</td>
<td>(\rho_1)</td>
<td>886</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density of air (kg/m³)</td>
<td>(\rho_2)</td>
<td>1.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density difference (kg/m³)</td>
<td>(\rho_1 - \rho_2)</td>
<td>884.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acceleration due to gravity (m/s²)</td>
<td>(g)</td>
<td>9.801</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient pressure (mmHg)</td>
<td>(p)</td>
<td>765</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall distance (m)</td>
<td>(x)</td>
<td>0.000145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plate separation (m)</td>
<td>(d)</td>
<td>0.00317</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage across the plates (V)</td>
<td>(V)</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air temperature (°C)</td>
<td>(T_a)</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual air viscosity</td>
<td>(\eta)</td>
<td>(1.8478 \times 10^{-5})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[r_c[m] = \frac{6.18 \times 10^{-2}}{\rho [\text{mmHg}]} \]

\[r_g = \frac{2 \eta x}{\rho g r_c^2} \]

\[F = \frac{1}{r_c^{1.5}} \approx 1 \]

Prepare equations calculations of data in next columns (Set column values...), Switch Recalculate in Auto mode

Paste these 5 parameters and raw data from Section L1-L4.opj projects

Calculate manually the actual air viscosity
Step 3. Histogram graph

First use the data from the column with drop charges and plot the histogram.

Millikan oil drop experiment
Step 4. Histogram. Bin size

Origin will automatically but not optimally adjust the bin size h. In this page figure $h=0.5$. There are several theoretical approaches how to find the optimal bin size.

$$h = \frac{3.5\sigma}{n^{1/3}}$$

σ is the sample standard deviation and n is total number of observation. For presented in Fig.1 results good value of $h \sim 0.1$
Appendix #1. Analyzing of the statistical data.

Step 4. Histogram. Bin size

To change the bin size click on graph and unplug the “Automatic Binning” option.

Bin size in this histogram is 0.1

Millikan oil drop experiment
Appendix #1. Analyzing of the statistical data.

Step 4. Multipeak Gaussian fitting

To do this you have to add an extra plot to the graph

Counts vs. Bin Center
Be careful with data selection obtained by different teams!
Write-up, page 7. mistype in some copies

<table>
<thead>
<tr>
<th>quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity of air</td>
<td>(\eta = 1.8478 \times 10^{-5} \text{ kg/m\cdot s (25 °C)})</td>
</tr>
<tr>
<td>Density of oil</td>
<td>(\rho_{\text{oil}} = 886 \text{ kg/m}^3)</td>
</tr>
<tr>
<td>Density of air</td>
<td>(\rho_{\text{air}} = 1.29 \text{ kg/m}^3)</td>
</tr>
<tr>
<td>Acceleration due to gravity</td>
<td>(g = 9.801 \text{ m/s}^3)</td>
</tr>
</tbody>
</table>

\[\Delta \eta / \Delta T = 4.8 \times 10^{-8} \text{ kg / m \cdot s / °C} \]

\[\eta(T) = \eta(25^\circ C) + 4.8 \times 10^{-8} \times (T - 25)(\text{kg/ m\cdot s/ °C}) \]
Appendix #1. Analyzing of the statistical data.

Step 4. Multipeak Gaussian fitting

This plot can be used for peak fitting.

Millikan oil drop experiment
Appendix #1. Analyzing of the statistical data.

Step 4. Multipeak Gaussian fitting

This plot can be used for peak fitting.

Final result for first two peaks:

\[
\frac{Q}{e} = 0.93 \pm 0.01 \\
\frac{Q}{e} = 1.87 \pm 0.07
\]

This pretty close to \(e \) and \(2e \)

Physics 401

Here \(w = 2\sigma \) and error of the mean = \(\frac{\sigma}{\sqrt{N}} \sim \frac{\text{sigma}}{\sqrt{A}} \)
(xᵢ, yᵢ) is an experimental data array. xᵢ is an independent variable and yᵢ - dependent

f(x, β) is a model function and β is the vector of fitting (adjustable) parameters

The goal of the fitting procedure is to find the set of parameters which will generate the function f closest to the experimental points.

To reach this goal we will try to minimize the sum of squared deviation function (S):

\[S(\beta) = \sum_{i=1}^{m} [y_i - f(x_i, \beta)]^2 \]
Appendix #1. Fitting. The Choice of Parameters.

The goal of fitting is not only to find the curve best matching the experimental data but also to find the corresponding parameters which in majority cases are the important physical parameters.

There are several known mathematical algorithms for optimizing these parameters but in general the fitting procedure could have not only unique solution and the choice of initial parameters is very important issue.

\[
S(\beta) = \sum_{i=1}^{m} [y_i - f(x_i, \beta)]^2
\]
Appendix #1. Fitting. The Choice of Parameters.

Let we have the S function dependent on parameter β_i as shown on this graph.

Local minimum

Main minimum