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l. Introduction

In this experiment we first study the behavior of transients in a series RLC circuit as we vary the
resistance and the capacitance. We find that two qualitatively different transients are possible, a
damped oscillation and an exponential decay. We then drive the RLC circuit with an external
sinusoidal voltage and find that the response of the circuit depends on the driving frequency. We
find that the response of the circuit is greatest at one frequency. We compare our observations to
a simple model.

A wide variety of physical systems are understood as examples of oscillating systems: the simple
pendulum, the mass on a spring, the charged particle in a storage ring, and the series RLC circuit.
In each of these physical systems we determine how a single variable, for example, the position
of the mass on the spring or the charge on the capacitor, changes with time. There are many
elements common to the description of all oscillating systems. For example, all of these systems
are, in fact, described by equations of the same functional form. Consider the two systems
shown in Figure 1, below.
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Figure 1 Two equivalent dynamical systems

For the mechanical system, x(t) is the displacement of the mass and the equation of motion is

M i(%j+ r%+kx: F (0.2)
dt\ dt dt

On the left hand side of this equation, M is the mass and the first term is then mass times
acceleration; ris the coefficient of viscous friction (the frictional force is proportional to
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velocity®); and k is the spring constant (the spring force is —kx ). On the right-hand side of the
equation, F represents an external driving force (not shown in the figure).

For the RLC circuit, q(t) is the charge on the capacitor, and Kirchoff’s voltage law (see

Appendix | for a very brief exposition of Kirchoff’s laws) gives the equation

d(dg dg 1
L—|—|+R—+=q=V(t 0.2
dt(dt}r dtJrCq () ©2)

On the left-hand side of the equation, the first term is the voltage drop across the inductor. We
have used the derivative of the charge on the capacitor for the current through the inductor. The

second term is the voltage drop across the resistor, and the third term is the voltage drop across
the capacitor. On the right-hand side V (t) is an externally applied voltage. We find in

comparing Equation (0.1) and Equation (0.2) that the mass behaves the same as an inductor, and
the spring the same as an inverse capacitance. Displacement becomes charge, and the viscous
friction is replaced by a resistor. Such correspondences can be found in other systems.

The theory below first treats the case in which there is no externally applied voltage. The
solution has two qualitatively different forms. Several important quantities are defined: natural
(angular) frequency for oscillation, «,, the quality factor, Q, and the logarithmic decrement, 5 ,
which is also called the log decrement. The logarithm has the basee, but no one ever calls ¢ the
In decrement. The concept of critical damping is also introduced. The case in which there is an
externally applied sinusoidal voltage is discussed only briefly. The concept of resonance is
introduced.

1. Theory

The simplest RLC circuit where there is no externally applied voltage is shown schematically in
Figure 2, below. At t=0, the switch is closed to permit the initially charged capacitor to
discharge through the inductor and resistor. (In the mechanical system the spring would be
stretched initially, and the mass would be released att =0.)

! The figure shows a block sliding on a surface. Unfortunately, this figure is not a good example of viscous friction,
since the friction between the block and the surface is better described as constant, dependent on direction but

independent of velocity. A better example would have the block move through a fluid.
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Figure 2 RLC circuit with voltage on capacitor initially

Application of Kirchhoff’s law gives

Li(d—q)+ r44, 9 o (0.3)
dtldt ) dt C

where :I_? has been used for current. This equation is a homogeneous, linear, second-order

differential equation and has solutions of the form q(t) = Ae”, where Ais an arbitrary constant.

Substituting this function into Equation (0.2) produces a quadratic equation fors:

52+(Ejs+—:0, (0.4)

which must be satisfied for q(t) = Ae* to be a solution. The two roots of Equation (0.4) are

S, S, :_(iji\/(ijz_(i) =-a+b (0.5)
2L 2L LC
where a:[ij and b= J(ﬁj_(i) 08
2L 2L LC

The nature of the solution depends on whether the first term under the radical is greater than,
equal to, or less than the second term, or equivalently on whether b*> > 0 (over-damped solution,
b® = 0 (critically damped solution), or b* <0 (under-damped, or oscillatory solution).
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A. Over-damped solution b? >0

If b?is positive, then the solution is aperiodic and q(t) falls to zero smoothly with no

oscillations. The solution is of the form
q(t)=e™ (A" +Be™). (0.7)

The constants A and B, are determined from the initial conditions. For the circuit in Figure 2,
the charge on the capacitor at t =0 isq,. Evaluating Equation (0.7) at t =0 givesq, = (Al + Bl).

At t =0, the current is zero. Differentiating Equation (0.7) gives the current

i(t)=—ae ™ (Ae" +Be™)+be™ (Ae" —Be™). (0.8)

Evaluating Equation (0.8) at t =0 gives —a(Al + Bl) + b(Al - Bl) =0. After some algebra we

obtain
q(t)=q,e ™| coshbt + %sinh btj - q?"(l+ %) e ™ (a-b)t>1, (0.9)

2 2

2 2
i(t)=-g,e™ a ;b Jsinhbte—%[a ;b ]e‘(a‘b)‘ (a-b)t>1. (0.10)

Since b’ > 0, from Equation (0.6) we find thata >b. Thus, at large times the charge and current
decay with an exponentiala—b<a.

B. Critically damped solution b? =0

Forb® =0, the solution is critically damped and q(t) will fall to zero in the minimum time

without oscillation. There are no longer two distinct solutions to Equation (0.4), and the form of
the solution is now

q(t)=(A +B,t)e™ (0.11)
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Evaluating Equation (0.11) at t =0 gives A, =q,. Differentiating Equation (0.11) gives the
current.
i(t)=B,e™ —a(A, +B,t)e™ (0.12)
Evaluation Equation (0.12) at t=0 gives B, —a A, =0. After some algebra we obtain
q(t)=gq,(1+at)e™, and (0.13)

i(t)=—a’g, te™. (0.14)

The charge decays with an exponential a. The current starts at zero, goes through a maximum,
and then also decays with an exponential a.

C. Under-damped solution b? <0

The most interesting case is for b> < 0. Then the two roots of Equation (0.4) are complex. Itis
convenient to make b real (change the signs of the factors under the radical in Equation (0.4))
and use j =+/—1. (Weuse j because i is the current.) Then the solution becomes

q(t)=e™(Ae™ +Be ™) (0.15)

() o)

Evaluating Equation (0.15) at t =0 gives q, = (A3 + Ba). Differentiating Equation (0.15) gives

where in the above

the current.

i(t)=—ae ™ (Ae™ +B,e ™)+ jbe ™ (Ae™ -Be ™) (0.17)

Evaluating Equation (0.17) at t =0 gives —a( A, +B,)+ jb(A,—B,)=0. After some algebra we

obtain
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m plt-4) | o-ilbt=9) 1
t)= e ™ =q, ——e “cos(bt - 0.18
q(t) =0, — 5 % osg (bt—¢) (0.18)
wheretan g =a/b. Alternatively,
q(t)=g,e™ [cos bt +%sin btj : (0.19)
2 2
i(t):_qoe"“[a gb Jsinbt. (0.20)

The angular frequency, @, , of the oscillation isb, and the frequency, f,, is

-GN ) o
Yoor 2z )\ LC 2L ) '

The solution oscillates with frequency, f,, and the amplitude of the oscillation decays with

exponential a. Even in the presence of damping, the frequency can easily be determined by
measuring the time between zeroes of charge. Note that with no damping, R =0 this frequency
of oscillation is the natural frequency of the LC oscillator.

fo2 11 (0.22)
2z 2z \LC

With damping, the frequency of oscillation is shifted to a smaller value.

The logarithmic decrement, J , is the natural log of the ratio of the charge (see equation 0.19) or

current (see equation 0.20) between two successive maxima, which are separated in time by the
damped period, T, =1/ f..

q (tmax) : e*a‘max B
o [ At +T1)J—In (ea(tmax”” - 023

Magnetic energy is stored in the inductor, and electric energy is stored in the capacitor. The
energy is dissipated in the resistor. The Q of the circuit, or quality factor, is defined as

total stored energy

Q=27 . —.
decrease in energy per period

(0.24)
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(To be very clear, Q here is not the charge.) For an RLC circuit Q is found to be

(0.25)

(It takes some effort to derive this result.) For small R, the damping or logarithmic decrement is
small, and the Q of the circuit is large. Note also for small damping (large Q) that the damped

frequency, f, and the natural frequency, f,, are approximately equal. (We introduce a third
frequency, f, into the experiment when we drive the RLC circuit with a sinusoidal voltage. We
also introduce another expression for Q)

111. Practical capacitors and inductors

A catalog of an electronics supply company lists dozens and dozens of pages of passive
components, i.e. resistors, capacitors, and inductors. Practical considerations in the use of these
components are many, but they are of little importance for this laboratory exercise. We may
assume that the real resistor has the behavior of the ideal resistor and that the real capacitor has
the behavior of the ideal capacitor. The real inductor, however, has resistance in addition to
inductance. The inductors are coils of copper wire, and copper has some resistivity. In the
circuit of Figure 2, we simply add an additional series resistance.
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IV. Procedures for studying transient and steady-state response
Figure 3 below is a circuit that closely approximates the idealized circuit of Figure 2. The

significant difference is that the voltage source, the Wavetek™, is coupled to the RLC circuit
through a resistance of 50 Q. This 50 Q is an additional series resistance in the circuit.
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Figure 3 Connection of Wavetek™ to RLC circuit and oscilloscope

The Wavetek™ is used to generate a 8.0 V unipolar square wave of a period of 0.10 s (frequency
of 10 Hz) and a duty factor of 50%, as shown in the Figure 4 below. Duty factor is defined as
the ratio of length of the pulse (0.05 s here) to the period (0.10 s).
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Figure 4 Wavetek™ signal to excite RLC circuit
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On the leading edge of the pulse, the capacitor charges. On the trailing edge of the pulse, the
capacitor discharges. The capacitor discharges on the trailing edge of the pulse. The transitions
occur every 50 ms, and this time is long compared to the time constants of the transient behavior
of the circuit. The voltage across the capacitor is observed with the TDS3012B oscilloscope. It
is very convenient to use this circuit to see changes in the response of the circuit as the resistance
and capacitance values are changed. The inductor is actually two coils wound on the same
bobbin. The two inner terminals of the double coil should be connected to obtain a larger
inductance (by roughly a factor of 4) than one coil. The capacitor is a decade capacitor box, and
the resistor is decade resistor box. Make a note of the number of the coil, and measure its series
resistance with a DMM. In the exercises below you will change the values of the capacitance
box and the resistance box. Your laboratory bench has an aluminum utility box with terminal
posts that are set up for easy connection to the circuit elements. The box was built for an earlier
version of the experiment which did not use the Wavetek™. Even so, there should be little
difficulty in making the circuit shown in Figure 3.

The SYNC OUT of the Wavetek™ could be used to trigger the oscilloscope as an external
trigger. But in our case. it may be convenient to use channel 1 as the trigger, so that it is possible
to see if the oscilloscope is triggering on the leading or the trailing edge of the pulse. The
Trigger >> Slope will make this selection. If channel 1 is used for the trigger and channel 2 for
the signal across the capacitor, you will have to adjust the vertical sensitivity of channel 2 and
Horizontal sweep rate (or Time/Div) to get an optimal view of the transient. Sometimes it will
be useful to view only a portion of the transient and allow some portion of the transient to be off
the screen either in the vertical or the horizontal.

Recall that the accuracy of the time and voltage readings of the oscilloscope depend on the scale

settings of the oscilloscope so recording the time per division and voltage per division are
essential.

A. Determine dependence of frequency on capacitance

The goal of this part of the laboratory exercise is to observe the damped, oscillatory behavior of
the circuit and measure how the frequency of the oscillation depends on capacitance. Set the
decade resistance box to zero, and set the decade capacitance box to C=1.0 uF. A sweep of 2
ms/div and a vertical sensitivity of 5 VV/div should be reasonable, but you should make
adjustments to get an optimal view of the transient. It should be possible to see about 10 periods
of the oscillation. The time cursors allow you to measure accurately the period of the oscillation.
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First you should verify that, indeed, there is a definite period in the oscillation. Verify that the
time between zero crossings in the transients is constant. Then record the period of the
oscillation for C=1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05 x«F. You may need to adjust
the vertical sensitivity and the time base to maintain an optimal view. You will get a better value
for the period if you measure the period over a number of oscillations. Over the entire range of
capacitance values, it should be possible to see ten oscillations. Use ten oscillations when you
measure the period. It is useful to transfer a picture of the oscilloscope display for
documentation. Figure 5 below shows a typical oscillation.
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Figure 5 Transient response of RLC circuit

From Equation (0.21) above,

N eIE)
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so a plot of 1/T? versus 1/C should be a straight line. The slope should give the inductance.
Make a plot of 1/T? versus1/C, and find the inductance of your coil. (It should be about 50
mH.) Assuming that R in Equation (0.26) above is the series resistance of the coil and the
parallel combination of the 50 Q resistor and the input impedance of the Wavetek™, show that
the second term is, in fact, negligible. Since the second term is negligible, a plot of T? versus C
should also be a straight line. Make this plot (and the other plots described below) with Excel as
you take the data. Print a copy to paste in your notebook.

T?=(2x) LC (0.27)
Also make a plot of T? versus C.
An impedance meter is available in the laboratory, the Z-meter, which can measure inductances

and capacitances. Find the meter, read the brief instructions, and measure the inductance of your
coil. Your inductance from the slope of the plot and the meter reading should agree.

B. Determine the dependence of log decrement on resistance

The goal of this part of the exercise is to find how the rate of damping of the transient depends
on the resistance. With C = 1.0 uF increase the resistance of the decade resistance box, R,

from zero to 300Q2 in large steps (50 Q) while you observe the transient. Again you will need

to adjust the horizontal sweep and vertical sensitivity to get an optimal view. At what resistance
do you find it difficult to see more than one or two strongly damped oscillations? Use the H Bar
cursors of the oscilloscope to measure the amplitudes of the peaks of the transient. If the

amplitude of the first positive peak is V1 and the second positive peak is V2, the log decrement
iso =log (Vl/V 2). For R =0 Q, verify that the log decrement is, indeed, a constant by

measuring the voltage ratio for a few adjacent positive peaks, say, V1/V2, V2/V3, V3/V4,
V4/V5. Since these ratios are constant, you will get a better measurement for the log decrement
if you measure it between several oscillations. However, it is also possible to adjust the vertical
sensitivity of the oscilloscope to get a good measurement of the log decrement just between
adjacent peaks. When changing the value of R you should also note that the period changes, but
only slowly. For R=100, 90, 80, 70, 60, 50, 40, 30, 10, 0 2, measure the log decrement of the

transient.

From (0.24).
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s=aT =(EJT :(3)2—”45\&0 . 72'\/§R . (0.28)
2L 2L 1 R 2 L 1 R2C L
=) a

Lc \a

If the period does not change much (equivalently, if R*C /4L << 1), a plot of log decrement
versus R then should be a straight line. Make a plot log decrement versus R and note that the
line does not pass through the origin. The offset is due to additional resistance in the circuit, for
example, the series resistance of the coil and the 50Q coupling resistor in parallel with the input
impedance of the Wavetek™. Determine the effective additional resistance in the circuit from
the zero intercept of your plot.

C. Determine the value of resistance for critical damping

The goal of this part of the exercise is to observe critical damping of the circuit. From Equation
(0.6), critical damping occurs when

2
b — Rcritical _(ij =0 Rcritical =2 L (029)
2L LC C

Thus the critical resistance is proportional to 1 over the square root of the capacitance. Change

the capacitance by a factor of 100, and the critical resistance changes by only a factor of 10. For
C=1.0 uF , increase R until no oscillations are observed in the transient. Adjust the vertical

sensitivity of the oscilloscope to see a possible undershoot of the transient. The oscilloscope has
a feature, Save/Recall >> Save Waveform that allows easy comparison of up to 4 oscilloscope
traces in Refl to Ref4. After the traces are stored, use Recall Waveform>> Ref1 etc to
superimpose on the existing display. It is interesting to see a series of traces for a range of values
of R. The transient should go from damped oscillations to no oscillations. To remove the
Reference waveforms from display, press REF button and select the waveform to erase. Press
OFF button (under VERTICAL area) to remove it. Note that the waveforms can be recalled later
from the volatile memory. A picture of the oscilloscope display can be transferred to the PC.
Figure 6 below shows the response for three resistance values above, below and at the critical
value.
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Figure 6 Critically damped response of RLC circuit

Equation (0.9) shows that an over-damped RLC decays with exponent (a—b) , and Equation

(0.12) shows that a critically damped RLC circuit decays with exponent a. Thus the decay time
for the over-damped circuit is longer! The digital oscilloscope is able to measure fall time
directly when a signal passes from one level to another level. In Measure mean you should find
the fall time option. This feature is useful when trying to find the critical resistance. This
measurement takes some effort. If the resistance is too small, there will be an undershoot. If the
resistance is too large, the fall time will be too long. For C=1.0,0.5,0.1, 0.05, 0.01 xF, find
the value of RO at which critical damping occurs. Estimate the uncertainty in your RO

measurement. It should be possible to determine the resistance at which critical damping occurs
to ~20% for each value of C. Plot R .., Versus v1/C . You should see a straight line. This

exercise completes your investigation of the transient response of the RLC circuit. Set the utility
box aside. Next you will study the response to a sinusoidal external voltage.
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D. Measure the response of an RLC circuit to a sinusoidal signal

The goal of this part of the exercise is to measure the response of the RLC circuit to a sinusoidal
signal. When the series RLC circuit is driven by a voltage source, V, coswt, the voltage across

a circuit element (for example, the capacitor) is at the same frequency, shifted in phase, with a
certain amplitude, V, cos(a)t — ¢) . Connect the circuit shown in Figure 7 below using the
breadboard provided. For this exercise, use a C =1.0 uF capacitor, R; =5, and an inductance

between 20-50 mH. Air filled inductors are used to minimize dissipation and obtain high Q’s.
Check the values of the capacitor and resistor using the hand-held DMM. The value of the
inductor should be checked using the impedance analyzer. Note the position of the common
ground for the Wavetek™ and the oscilloscope in the circuit. The Sync Out of the Wavetek™ is
used for the external trigger of the scope. The voltage across the capacitor is observed on the
oscilloscope.

R,=0.1MQ

Wavetek | c v

Figure 7 Circuit to study steady state RLC response

A simplified version of the circuit is shown in Figure 8. The box labeled with Z denotes the
complex impedance of the RLC circuit.
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Figure 8 Simplified version of circuit to study steady state RLC response

The two elements, R,, and Z are a voltage divider, and the voltage across Z is

V, =V 0.30
:=Vor 7 (0.30)

If R, >>Z, this expression simplifies
v, z;/—oz; (0.31)

M
Z is the complex impedance. From Figure 7 we see that we have the parallel combination of a
capacitor and a resistance plus inductance in series. This complex impedance is

_al)c.[ja)L+ R]
Y ‘1 , (0.32)
jo

where R in the above expression is the resistance of the coil and the decade resistance box.
Then

1 .
= L+R
_ joC Lot +R]

R+ joL
7 - _
L P S A
cHioL+R 1“1y juRe

(0.33)

jo ?
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(R) +(oL)’

[+t

where we have introduced the natural frequency defined above in Equation (0.22). When the

Z|= (0.34)

driving frequency is equal to the natural frequency, the magnitude of the complex impedance is a
maximum, as can be seen from Equation (0.34), assuming that the term @, RC <« 1. This

situation corresponds to small damping or large Q. The voltage across C is then also

maximum. This is called “resonance”. Thus for small damping resonance occurs near the
natural frequency.

Set the Wavetek™ amplitude to maximum, and observe the voltage across the capacitor with the
digital oscilloscope. You will see a sine wave. The measured frequency will agree with the
Wavetek™. Figure 9 below shows the response of the RLC circuit and the signal from the
Wavetek™. Note that the average mode of the oscilloscope is used. The Wavetek is displayed
on channel 2 and the RLC signal on channel 1. The two signals are in phase because the
frequency is much below the resonant frequency of the circuit.
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Figure 9 Steady state response of RLC circuit to sinusoidal signal
The signal is small. Z/R,, <<1 in Equation (0.31). If rf interference is too much, use the setting
from Quick Menu >> Bandwidth >> 20 MHz. If the noise is still present, you may use the signal

averaging by setting Acquire >> Avg 512 to obtain a better defined trace. The peak-to-peak

voltage of the signal can be found either with the voltage cursors or with the Measurement >
Amplitude feature of the oscilloscope. Vary the frequency, f , of the Wavetek™ from ~100 Hz

to ~3 kHz and measure V, . Far from resonance steps of ~100 Hz are appropriate. Closer to

resonance steps of ~1-5 Hz are needed. Typical resonance curve is shown in Figure 10.
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Vz versus frequency
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Figure 10 Typical resonance curve showing definitions of f ., f . ,and f,..

Find the frequency, f

max !

for which V, is a maximum. Measure the magnitude of V, at f__, .

Then find the frequencies f . and f,, for which the maximum value of V, is smaller by a
factor of 1/+/2 . The difference of frequencies, Af =( fy,, — ., ), is called the bandwidth of
the “tank” circuit. Determine the bandwidth. The bandwidth of an oscillator is related to its Q

through the expressionQ = f

max

equation 0.25 we have two ways to determine the Q of an RLC circuit.)

/Af . (It also takes some effort to show this result. Thus with
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V. Report
The report consists of data, plots, and discussion from the different parts of the laboratory.

1. From part IV A above plot of 1/T? versus 1/C . Show from your data that neglect of the
(R/ZL)2 term in Equation (0.20) is justified. Then plot T? versus C. Use the fitting

function in Origin to fit a line to the data. Determine the slope from the fit as well as the
error in the fit to the slope.

2. From part 2 IV B above plot the logarithmic decrement, &, versus R, . Determine the

extra “series” resistance needed to account for the negative intercept of this plot.
Compare the extra resistance to the resistance of the winding and the parallel
combination of the coupling resistor and input impedance of the Wavetek™.

3. From part IV C above use Origin to plot (R )2 versus 1/C from your data. Also
make a plot of the prediction for (R, )2 versus 1/C using Equation (0.29). Comment

on agreement or disagreement between your data and the prediction.

4. From part IV D use Origin to plot the voltage across the capacitor versus frequency. On
the same graph, plot Equation (0.34), the magnitude of the impedance versus frequency.
Determine the resonant frequency, f__ , and bandwidth, Af from your data. Make a

max !

comparison between the theoretical expression and your experimental results.

5. In general discuss agreement and discrepancies of your measurements with expectations,
and suggest possible improvements to the laboratory exercise.



Physics 401 Experiment 5 Page 21/23 Transients in RLC Circuits

Appendix |
Derivation of series RLC equation.

Elementary circuit analysis uses two laws: Kirchoff’s current law and Kirchoff’s voltage
law. In Figure Al below three currents enter the node denoted by the dot.
it
il

It

Figure A1 Example for Kirchoff’s current law

Kirchoff’s current law states that the sum of all currents entering a node is zero. For this
example then, i, +1i, +i, =0. For each current the arrow indicates the direction of positive

current. In Figure A2 below a circuit is formed by three elements.

V, £

Figure A2 Example for Kirchoff’s voltage law
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Kirchoff’s voltage law states that the sum of all voltage drops around a loop is zero. For this
example then, V, +V, +V, =0. For each voltage drop the + and — signs indicate the direction of

the voltage drop.
The voltage-current relation for the three circuit elements, the resistor, capacitor and
inductor are shown in Figure A3.

+|1i +|1f +|lf

vV " v
V=R‘ £V=lf V:Lif
dd C dt

Figure A3 Voltage current relation for resistor, capacitor and inductor

The relation V =Q/C for the capacitor, where +Q is the charge on the capacitor plates, is also
useful. Recall that i =dQ/dt.

. N
f —
b1+ +
V. v
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Figure A4 Series RLC circuit

Figure 4A shows a series RLC circuit with a voltage source. Going counter-clockwise around
the loop, Kirchoff’s voltage law gives V, +V. +V, =V =0. Using the voltage-current relations

for the three circuit elements gives L%+éQ +Ri=V, and choosing Q as the dependent

variable gives the equation, Li(d—qj + Rd—q+lq =V (t).
dt\ dt dt C



