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I. Introduction 

 
In this experiment we first study the behavior of transients in a series RLC circuit as we vary the 
resistance and the capacitance.  We find that two qualitatively different transients are possible, a 
damped oscillation and an exponential decay.  We then drive the RLC circuit with an external 
sinusoidal voltage and find that the response of the circuit depends on the driving frequency.  We 
find that the response of the circuit is greatest at one frequency.  We compare our observations to 
a simple model. 
 
A wide variety of physical systems are understood as examples of oscillating systems: the simple 
pendulum, the mass on a spring, the charged particle in a storage ring, and the series RLC circuit.  
In each of these physical systems we determine how a single variable, for example, the position 
of the mass on the spring or the charge on the capacitor, changes with time.  There are many 
elements common to the description of all oscillating systems.  For example, all of these systems 
are, in fact, described by equations of the same functional form.  Consider the two systems 
shown in Figure 1, below. 
 

 

Figure 1 Two equivalent dynamical systems 

 
For the mechanical system, ( )x t is the displacement of the mass and the equation of motion is  

 

 d dx dxM r kx F
dt dt dt
⎛ ⎞ + + =⎜ ⎟
⎝ ⎠

 (0.1) 

 
On the left hand side of this equation, M is the mass and the first term is then mass times 
acceleration; r is the coefficient of viscous friction (the frictional force is proportional to 

V
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velocity1); and k is the spring constant (the spring force is kx− ).  On the right-hand side of the 
equation, F represents an external driving force (not shown in the figure). 
 
For the RLC circuit, ( )q t is the charge on the capacitor, and Kirchoff’s voltage law (see 

Appendix I for a very brief exposition of Kirchoff’s laws) gives the equation 
 

 ( )1d dq dqL R q V t
dt dt dt C
⎛ ⎞ + + =⎜ ⎟
⎝ ⎠

 (0.2) 

 
On the left-hand side of the equation, the first term is the voltage drop across the inductor.  We 
have used the derivative of the charge on the capacitor for the current through the inductor.  The 
second term is the voltage drop across the resistor, and the third term is the voltage drop across 
the capacitor.  On the right-hand side ( )V t  is an externally applied voltage.  We find in 

comparing Equation (0.1) and Equation (0.2) that the mass behaves the same as an inductor, and 
the spring the same as an inverse capacitance.  Displacement becomes charge, and the viscous 
friction is replaced by a resistor.  Such correspondences can be found in other systems. 
 
The theory below first treats the case in which there is no externally applied voltage.  The 
solution has two qualitatively different forms.  Several important quantities are defined:  natural 
(angular) frequency for oscillation, oω , the quality factor, Q , and the logarithmic decrement,δ , 

which is also called the log decrement.  The logarithm has the basee , but no one ever calls δ  the 
ln decrement.  The concept of critical damping is also introduced.  The case in which there is an 
externally applied sinusoidal voltage is discussed only briefly.  The concept of resonance is 
introduced. 
 
 

II. Theory  

 
The simplest RLC circuit where there is no externally applied voltage is shown schematically in 
Figure 2, below.  At 0t = , the switch is closed to permit the initially charged capacitor to 
discharge through the inductor and resistor.  (In the mechanical system the spring would be 
stretched initially, and the mass would be released at 0t = .) 

                                                 
1 The figure shows a block sliding on a surface.  Unfortunately, this figure is not a good example of viscous friction, 

since the friction between the block and the surface is better described as constant, dependent on direction but 

independent of velocity.  A better example would have the block move through a fluid. 
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A. Over-damped solution  

 
If 2b is positive, then the solution is aperiodic and ( )q t falls to zero smoothly with no 

oscillations.  The solution is of the form 
 
 ( ) ( )1 1

at bt btq t e A e B e− −= + . (0.7) 

 
The constants 1A  and 1B  are determined from the initial conditions.  For the circuit in Figure 2, 
the charge on the capacitor at 0t =  is oq .  Evaluating Equation (0.7) at 0t =  gives ( )1 1oq A B= + .  

At 0t = , the current is zero.  Differentiating Equation (0.7) gives the current 
 
 ( ) ( ) ( )1 1 1 1

at bt bt at bt bti t ae A e B e be A e B e− − − −= − + + − . (0.8) 

 
Evaluating Equation (0.8) at 0t =  gives ( ) ( )1 1 1 1 0a A B b A B− + + − = .  After some algebra we 

obtain 
 

 ( ) ( ) ( )cosh sinh 1    1,
2

a b tat o
o

qa aq t q e bt bt e a b t
b b

− −− ⎛ ⎞ ⎛ ⎞= + → + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (0.9) 

 

 ( ) ( ) ( )
2 2 2 2

sinh    1.
2

a b tat o
o

qa b a bi t q e bt e a b t
b b

− −− ⎛ ⎞ ⎛ ⎞− −
= − → − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (0.10) 

 
Since 

2 0b > , from Equation (0.6) we find that a b> .  Thus, at large times the charge and current 
decay with an exponential a b a− < . 
 

B. Critically damped solution  

 
For 2 0b = , the solution is critically damped and ( )q t will fall to zero in the minimum time 

without oscillation.  There are no longer two distinct solutions to Equation (0.4), and the form of 
the solution is now 
 
 ( ) ( )2 2

atq t A B t e−= +  (0.11) 

 

2 0b >

2 0b =
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Evaluating Equation (0.11) at 0t =  gives 2 oA q= .  Differentiating Equation (0.11) gives the 

current. 
 ( ) ( )2 2 2

at ati t B e a A B t e− −= − +  (0.12) 

 
Evaluation Equation (0.12) at  gives 2 2 0B a A− = .  After some algebra we obtain 

 
 ( ) ( )1 at

oq t q at e−= + , and (0.13) 

 
 ( ) 2 .at

oi t a q t e−= −  (0.14) 

 
The charge decays with an exponential a .  The current starts at zero, goes through a maximum, 
and then also decays with an exponential a . 
 
 

C. Under-damped solution  

 
The most interesting case is for 2 0b < .  Then the two roots of Equation (0.4) are complex.  It is 
convenient to make b  real (change the signs of the factors under the radical in Equation (0.4)) 
and use 1.j = −   (We use j  because i  is the current.)  Then the solution becomes 

 
 ( ) ( )3 3

at jbt jbtq t e A e B e− −= +  (0.15) 

 
where in the above 

 
21  and 

2 2
R Ra b
L LC L

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (0.16) 

 
Evaluating Equation (0.15) at 0t =  gives ( )3 3oq A B= + .  Differentiating Equation (0.15) gives 

the current. 
 
 ( ) ( ) ( )3 3 3 3

at jbt jbt at jbt jbti t ae A e B e jbe A e B e− − − −= − + + −  (0.17) 

 
Evaluating Equation (0.17) at 0t =  gives ( ) ( )3 3 3 3 0a A B jb A B− + + − = .  After some algebra we 

obtain 
 

0t =

2 0b <
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 ( )
( ) ( )

( )
2 2 1 cos

2 cos

j bt j bt
at at

o o
a b e eq t q e q e bt

b

φ φ

φ
φ

− − −
− −⎛ ⎞+ +

= = −⎜ ⎟
⎝ ⎠

 (0.18) 

 
where tan /a bφ = .  Alternatively, 

 ( ) cos sinat
o

aq t q e bt bt
b

− ⎛ ⎞= +⎜ ⎟
⎝ ⎠

, (0.19) 

 

 ( )
2 2

sinat
o

a bi t q e bt
b

− ⎛ ⎞+
= − ⎜ ⎟

⎝ ⎠
. (0.20) 

 
The angular frequency, 1ω , of the oscillation isb , and the frequency, 1f , is 

 

 
2

1
1

1 1
2 2 2

Rf
LC L

ω
π π

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. (0.21) 

 
The solution oscillates with frequency, 1f , and the amplitude of the oscillation decays with 

exponential a .  Even in the presence of damping, the frequency can easily be determined by 
measuring the time between zeroes of charge.  Note that with no damping, 0R = ; this frequency 
of oscillation is the natural frequency of the LC oscillator. 
 

 1 1
2 2

o
of LC

ω
π π

= =  (0.22) 

 
With damping, the frequency of oscillation is shifted to a smaller value. 
 
The logarithmic decrement, δ , is the natural log of the ratio of the charge (see equation 0.19) or 
current (see equation 0.20) between two successive maxima, which are separated in time by the 
damped period, 1 11/ .T f=  
 

 ( )
( ) ( )

max
max

1max 1
max 1

ln =ln
at

a t T

q t e aT
q t T e

δ
−

− +

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

 (0.23) 

Magnetic energy is stored in the inductor, and electric energy is stored in the capacitor.  The 
energy is dissipated in the resistor.  The Q  of the circuit, or quality factor, is defined as 

 

 total stored energy2
decrease in energy per period

Q π= . (0.24) 
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(To be very clear, Q  here is not the charge.)  For an RLC circuit Q  is found to be 

 

 1LQ
R
ω π

δ
= = . (0.25) 

 
(It takes some effort to derive this result.)  For small R , the damping or logarithmic decrement is 
small, and the Q of the circuit is large.  Note also for small damping (large Q ) that the damped 
frequency, 1f , and the natural frequency, of , are approximately equal.  (We introduce a third 
frequency, f , into the experiment when we drive the RLC circuit with a sinusoidal voltage.  We 
also introduce another expression for Q .) 

 
 

III. Practical capacitors and inductors 

 
A catalog of an electronics supply company lists dozens and dozens of pages of passive 
components, i.e. resistors, capacitors, and inductors.  Practical considerations in the use of these 
components are many, but they are of little importance for this laboratory exercise.  We may 
assume that the real resistor has the behavior of the ideal resistor and that the real capacitor has 
the behavior of the ideal capacitor.  The real inductor, however, has resistance in addition to 
inductance.  The inductors are coils of copper wire, and copper has some resistivity.  In the 
circuit of Figure 2, we simply add an additional series resistance. 
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IV. Procedures for studying transient and steady-state response 
 
Figure 3  below is a circuit that closely approximates the idealized circuit of Figure 2.  The 
significant difference is that the voltage source, the Wavetek™, is coupled to the RLC circuit 
through a resistance of 50 Ω .  This 50 Ω  is an additional series resistance in the circuit. 
 
 

Figure 3 Connection of Wavetek™ to RLC circuit and oscilloscope 

 
The Wavetek™ is used to generate a 8.0 V unipolar square wave of a period of 0.10 s (frequency 
of 10 Hz) and a duty factor of 50%, as shown in the Figure 4 below.  Duty factor is defined as 
the ratio of length of the pulse (0.05 s here) to the period (0.10 s). 
 

 

Figure 4 Wavetek™ signal to excite RLC circuit 
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On the leading edge of the pulse, the capacitor charges.  On the trailing edge of the pulse, the 
capacitor discharges.  The capacitor discharges on the trailing edge of the pulse.  The transitions 
occur every 50 ms, and this time is long compared to the time constants of the transient behavior 
of the circuit.  The voltage across the capacitor is observed with the TDS3012B oscilloscope.  It 
is very convenient to use this circuit to see changes in the response of the circuit as the resistance 
and capacitance values are changed.  The inductor is actually two coils wound on the same 
bobbin.  The two inner terminals of the double coil should be connected to obtain a larger 
inductance (by roughly a factor of 4) than one coil.  The capacitor is a decade capacitor box, and 
the resistor is decade resistor box.  Make a note of the number of the coil, and measure its series 
resistance with a DMM.  In the exercises below you will change the values of the capacitance 
box and the resistance box.  Your laboratory bench has an aluminum utility box with terminal 
posts that are set up for easy connection to the circuit elements.  The box was built for an earlier 
version of the experiment which did not use the Wavetek™.  Even so, there should be little 
difficulty in making the circuit shown in Figure 3. 
 
The SYNC OUT of the Wavetek™ could be used to trigger the oscilloscope as an external 
trigger.  But in our case. it may be convenient to use channel 1 as the trigger, so that it is possible 
to see if the oscilloscope is triggering on the leading or the trailing edge of the pulse.  The 
Trigger >> Slope will make this selection.  If channel 1 is used for the trigger and channel 2 for 
the signal across the capacitor, you will have to adjust the vertical sensitivity of channel 2 and 
Horizontal sweep rate (or Time/Div) to get an optimal view of the transient.  Sometimes it will 
be useful to view only a portion of the transient and allow some portion of the transient to be off 
the screen either in the vertical or the horizontal. 
 
Recall that the accuracy of the time and voltage readings of the oscilloscope depend on the scale 
settings of the oscilloscope so recording the time per division and voltage per division are 
essential. 
 

A.  Determine dependence of frequency on capacitance 

 
The goal of this part of the laboratory exercise is to observe the damped, oscillatory behavior of 
the circuit and measure how the frequency of the oscillation depends on capacitance.  Set the 
decade resistance box to zero, and set the decade capacitance box to =1.0 FC μ .  A sweep of 2 

ms/div and a vertical sensitivity of 5 V/div should be reasonable, but you should make 
adjustments to get an optimal view of the transient.  It should be possible to see about 10 periods 
of the oscillation.  The time cursors allow you to measure accurately the period of the oscillation.  
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First you should verify that, indeed, there is a definite period in the oscillation.  Verify that the 
time between zero crossings in the transients is constant.  Then record the period of the 
oscillation for =1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05  FC μ .  You may need to adjust 

the vertical sensitivity and the time base to maintain an optimal view.  You will get a better value 
for the period if you measure the period over a number of oscillations.  Over the entire range of 
capacitance values, it should be possible to see ten oscillations.  Use ten oscillations when you 
measure the period.  It is useful to transfer a picture of the oscilloscope display for 
documentation.  Figure 5 below shows a typical oscillation. 
 

 

Figure 5 Transient response of RLC circuit 

 
From Equation (0.21) above, 
 

 
2 2

2

1 1 1
2 2

R
T LC Lπ

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (0.26) 
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so a plot of 21/T  versus 1/ C  should be a straight line.  The slope should give the inductance.  
Make a plot of 21/T  versus1/ C , and find the inductance of your coil.  (It should be about 50 
mH.)  Assuming that R  in Equation (0.26) above is the series resistance of the coil and the 
parallel combination of the 50 Ω resistor and the input impedance of the Wavetek™, show that 
the second term is, in fact, negligible.  Since the second term is negligible, a plot of 2T  versus C
should also be a straight line.  Make this plot (and the other plots described below) with Excel as 
you take the data.  Print a copy to paste in your notebook. 
 
 ( )22 2T LCπ=  (0.27) 

 
Also make a plot of 2T  versus .C  
 
An impedance meter is available in the laboratory, the Z-meter, which can measure inductances 
and capacitances.  Find the meter, read the brief instructions, and measure the inductance of your 
coil.  Your inductance from the slope of the plot and the meter reading should agree. 
 

B.  Determine the dependence of log decrement on resistance 

 
The goal of this part of the exercise is to find how the rate of damping of the transient depends 
on the resistance.  With C = 1.0 Fμ  increase the resistance of the decade resistance box, R , 
from zero to 300Ω  in large steps ( )50 Ω  while you observe the transient.  Again you will need 

to adjust the horizontal sweep and vertical sensitivity to get an optimal view.  At what resistance 
do you find it difficult to see more than one or two strongly damped oscillations?  Use the H Bar 
cursors of the oscilloscope to measure the amplitudes of the peaks of the transient.  If the 
amplitude of the first positive peak is V1 and the second positive peak is V2, the log decrement 
is ( )log 1/ 2V Vδ = .  For  = 0R Ω , verify that the log decrement is, indeed, a constant by 

measuring the voltage ratio for a few adjacent positive peaks, say, V1/V2, V2/V3, V3/V4, 
V4/V5.  Since these ratios are constant, you will get a better measurement for the log decrement 
if you measure it between several oscillations.  However, it is also possible to adjust the vertical 
sensitivity of the oscilloscope to get a good measurement of the log decrement just between 
adjacent peaks.  When changing the value of R  you should also note that the period changes, but 
only slowly.  For =100, 90, 80, 70, 60, 50, 40, 30, 10, 0 R Ω , measure the log decrement of the 

transient.   
 
From (0.24). 
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2 2

2 1
2 2 1 1

42

R R R CaT T LC R
L L L LR CR

LLC L

πδ π π⎛ ⎞ ⎛ ⎞= = = = ≈⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎛ ⎞ −− ⎜ ⎟

⎝ ⎠

. (0.28) 

 
If the period does not change much (equivalently, if 2 / 4 1R C L << ), a plot of log decrement 
versus R  then should be a straight line.  Make a plot log decrement versus R  and note that the 
line does not pass through the origin.  The offset is due to additional resistance in the circuit, for 
example, the series resistance of the coil and the 50Ω  coupling resistor in parallel with the input 
impedance of the Wavetek™.  Determine the effective additional resistance in the circuit from 
the zero intercept of your plot. 
 
 

C.  Determine the value of resistance for critical damping 

 
The goal of this part of the exercise is to observe critical damping of the circuit.  From Equation  
(0.6), critical damping occurs when 
 

 
2 1 0 2 .

2
critical

critical
R Lb R

L LC C
⎛ ⎞ ⎛ ⎞= − = → =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 (0.29) 

 
Thus the critical resistance is proportional to 1 over the square root of the capacitance.  Change 
the capacitance by a factor of 100, and the critical resistance changes by only a factor of 10.  For 
C=1.0 Fμ , increase R  until no oscillations are observed in the transient.  Adjust the vertical 

sensitivity of the oscilloscope to see a possible undershoot of the transient.  The oscilloscope has 
a feature, Save/Recall >> Save Waveform that allows easy comparison of up to 4 oscilloscope 
traces in Ref1 to Ref4.   After the traces are stored, use Recall Waveform>> Ref1 etc to 
superimpose on the existing display.  It is interesting to see a series of traces for a range of values 
of R .  The transient should go from damped oscillations to no oscillations.  To remove the 
Reference waveforms from display, press REF button and select the waveform to erase. Press 
OFF button (under VERTICAL area) to remove it. Note that the waveforms can be recalled later 
from the volatile memory. A picture of the oscilloscope display can be transferred to the PC.  
Figure 6 below shows the response for three resistance values above, below and at the critical 
value. 
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Figure 6 Critically damped response of RLC circuit 

 
Equation (0.9) shows that an over-damped RLC decays with exponent ( )a b− , and Equation 

(0.12) shows that a critically damped RLC circuit decays with exponent a .  Thus the decay time 
for the over-damped circuit is longer!  The digital oscilloscope is able to measure fall time 
directly when a signal passes from one level to another level.  In Measure mean you should find 
the fall time option.  This feature is useful when trying to find the critical resistance.  This 
measurement takes some effort.  If the resistance is too small, there will be an undershoot.  If the 
resistance is too large, the fall time will be too long.  For =1.0, 0.5,0.1, C  0.05, 0.01 Fμ , find 

the value of 0R  at which critical damping occurs.  Estimate the uncertainty in your 0R  
measurement.  It should be possible to determine the resistance at which critical damping occurs 
to ~20% for each value of C .  Plot criticalR  versus 1/ C .  You should see a straight line.  This 

exercise completes your investigation of the transient response of the RLC circuit.  Set the utility 
box aside.  Next you will study the response to a sinusoidal external voltage. 
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2 2

22
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21
o

R L
Z
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ω

ω ω
ω

+
=

⎛ ⎞
− +⎜ ⎟

⎝ ⎠

, (0.34) 

where we have introduced the natural frequency defined above in Equation (0.22).  When the 
driving frequency is equal to the natural frequency, the magnitude of the complex impedance is a 
maximum, as can be seen from Equation (0.34), assuming that the term 1oRCω .  This 
situation corresponds to small damping or large Q .  The voltage across C  is then also 

maximum.  This is called “resonance”.  Thus for small damping resonance occurs near the 
natural frequency. 
 
Set the Wavetek™ amplitude to maximum, and observe the voltage across the capacitor with the 
digital oscilloscope.  You will see a sine wave.  The measured frequency will agree with the 
Wavetek™.  Figure 9 below shows the response of the RLC circuit and the signal from the 
Wavetek™.  Note that the average mode of the oscilloscope is used.  The Wavetek is displayed 
on channel 2 and the RLC signal on channel 1.  The two signals are in phase because the 
frequency is much below the resonant frequency of the circuit. 
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Figure 9 Steady state response of RLC circuit to sinusoidal signal 

The signal is small.  / 1MZ R <<  in Equation (0.31). If rf interference is too much, use the setting 

from Quick Menu >> Bandwidth >> 20 MHz. If the noise is still present, you may use the signal 
averaging by setting Acquire >> Avg 512  to obtain a better defined trace.  The peak-to-peak 
voltage of the signal can be found either with the voltage cursors or with the  Measurement > 
Amplitude feature of the oscilloscope.  Vary the frequency, f , of the Wavetek™ from ~100 Hz 
to ~3 kHz and measure ZV .  Far from resonance steps of ~100 Hz are appropriate.  Closer to 

resonance steps of ~1-5 Hz are needed.  Typical resonance curve is shown in Figure 10. 
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Figure 10 Typical resonance curve showing definitions of LHPf , maxf , and UHPf . 

 
Find the frequency, maxf , for which ZV  is a maximum.  Measure the magnitude of ZV  at maxf .  
Then find the frequencies LHPf  and UHPf  for which the maximum value of ZV  is smaller by a 

factor of 1/ 2 .  The difference of frequencies, ( )UHP LHPf f fΔ = − , is called the bandwidth of 

the “tank” circuit.  Determine the bandwidth.  The bandwidth of an oscillator is related to its Q  
through the expression maxQ f f= Δ .  (It also takes some effort to show this result.  Thus with 
equation 0.25 we have two ways to determine the Q  of an RLC circuit.)  
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V. Report 

 
The report consists of data, plots, and discussion from the different parts of the laboratory. 
 

1. From part IV A above plot of 21/T  versus 1/ C .  Show from your data that neglect of the 
( )22R L  term in Equation (0.20) is justified.  Then plot 2T  versus C .  Use the fitting 

function in Origin to fit a line to the data. Determine the slope from the fit as well as the 
error in the fit to the slope. 

 
2. From part 2 IV B above plot the logarithmic decrement, δ , versus BR .  Determine the 

extra “series” resistance needed to account for the negative intercept of this plot.  
Compare the extra resistance to the resistance of the winding and the parallel 
combination of the coupling resistor and input impedance of the Wavetek™. 

 
3. From part IV C above use Origin to plot ( )2

criticalR  versus 1/ C  from your data.  Also 

make a plot of the prediction for ( )2
criticalR  versus 1/ C  using Equation (0.29).  Comment 

on agreement or disagreement between your data and the prediction. 
 

4. From part IV D use Origin to plot the voltage across the capacitor versus frequency.  On 
the same graph, plot Equation (0.34), the magnitude of the impedance versus frequency.  
Determine the resonant frequency, maxf , and bandwidth, fΔ  from your data.  Make a 

comparison between the theoretical expression and your experimental results. 
 

5. In general discuss agreement and discrepancies of your measurements with expectations, 
and suggest possible improvements to the laboratory exercise. 
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Figure A4 Series RLC circuit 
Figure 4A shows a series RLC circuit with a voltage source.  Going counter-clockwise around 
the loop, Kirchoff’s voltage law gives 0L C RV V V V+ + − = .  Using the voltage-current relations 

for the three circuit elements gives 1diL Q R i V
dt C
+ + = , and choosing Q  as the dependent 

variable gives the equation, ( )1d dq dqL R q V t
dt dt dt C
⎛ ⎞ + + =⎜ ⎟
⎝ ⎠

. 

 


