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Lecture Outline
• Special Lecture on Complex Impedance:  

– Vac=εoeiωt ZR=R,  ZL=iωL,  ZC=1/iωC

• Introduction:
• resistor networks, equivalent Reff, Kirchoff’s Laws
• purpose of lecture:  same at ac for R, C, and L elements

• Complex Numbers and Functions:
• eiωt is a rotating 2D unit vector in complex plane
• complex impedances relate current & voltage for 

Resistors, Capacitors, and (L)inductors.

• Application to Any Driven LCR Circuit:
• series RLC circuit (like in last/next lecture)
• parallel RLC circuit
• any network with RLC at any freq.

• low pass filter



Introduction
• Remember good old dc circuits involving 

only batteries and resistors?
• All branch currents proportional to 

voltage across branch
• solve this with Kirchoff’s voltage & 

current laws
• resistor networks expressed as 

equivalent resistances

R3
+
- R2

R4

R1

R3
+
- R2

R4

R1

RP
+
-

R4

R1

RS
+
-

32

111
RRRP

+= 41 RRRR PS ++=



Introduction

• Problem extending this idea to ac circuits with R, L and C:
• current through R is proportional to voltage across R
• current through L and C not proportional to voltage (using real 

numbers/functions)
• phase between I and V
• for series RLC circuit phasor algebra gives a clumsy answer

• New Idea:
• represent currents and voltages in circuits as complex functions

of time

• measured value of voltage or current is real part of complex 
value you get at the end of the calculation

• current through L or C is proportional to voltage across L or C
• complex impedance plays role of resistance as in dc circuits but 

automatically contain phase shift of voltage vis a vis current
• how does this happen  ->  via rules of complex number algebra!



complex number algebra

• definition:
• so that 11 432 =−=−= iiii
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x+iy• definition:
• looks like a 2-D vector space (x,y)
• provides a natural description of phasors
• length or modulus
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• complex numbers provide solution to algebraic 
equations that have none with only real numbers
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• Next:
• including trig functions in complex functions -> cos(ωt)
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complex number algebra
• addition: (a+ib) + (c+id) = (a+c) + i(b+d)

• so that addition is component-wise or 
vectorial

a+ib

• Trigonometric functions, the unit circle:
• if z = cosθ + isinθ, then length is 1 - unit circle
• exponential representation:
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they multiply like exponents:

prove using expansion 
formulae for exp, sin 
and cos functions.

• multiplication: (a+ib) x (c+id) = (ac- bd) + i(ad+bc)
• remember i2=-1
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Expanding exponential and sin & cos functions

• Write eiθ and cosθ + i sinθ in power series 
expansion and show they are equal
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complex number algebra/circuit application

• Our sinusoidal phasor voltage and 
current functions have convenient 
exponential representations:
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Use this in a circuit, first a resistor:
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R
In general case, Io is complex 
with a magnitude and phase

Ioeiωt Here, Io is real with phase = 0, 
and magnitude = Vo/R

Capacitor and inductor are 
much more interesting….RZ R =



Impedances of capacitors and inductors
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• Consider a capacitor driven by V(t):

In this case, Io is complex 
with a magnitude and phase
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Recall that Q(t) = CV(t).  Since 
I(t)=dQ/dt,  we must differentiate 
V(t) to get current.
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Impedances of capacitors and inductors
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• Consider an inductor driven by V(t):

In this case, too, Io is complex 
with a magnitude and phase
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Recall that V(t) = LdI/dt.  Now  we 
must differentiate I(t) to get voltage.
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Complex impedances
• Make a table to show impedance for 

different circuit elements:
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Series LCR Circuit
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R• Back to the original problem:   the loop 
equation gave us before:
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• Now use complex impedances and 
assume an ac current of the form 
I(t)=Ioeiωt

• KVL gives us: 1
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Series LCR
AC Circuit

• using complex impedances and assuming 
an ac current of the form I(t)=Ioeiωt

• KVL gave us:
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• On resonance, the current is a maximum.
• If R is very small, the current will tend to go to infinity on resonance 
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Parallel LCR AC Circuit

L
C

Voeiωt R∼• Now, let’s use complex 
impedances to solve a 
new problem:

• This time figure out an equivalent impedance from the 
parallel combination of the capacitor, inductor and resistor 
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Inverse impedance 1/Z(ω)
is a complex number

Inverse impedance shows how current and 
voltage are related in this problem



Parallel LCR AC Circuit

L
C

Voeiωt R∼• Let’s examine the 
solution from previous 
slide:
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• As in the series case, there is a 
resonance at LC1=ω

• On resonance, the current is a minimum.
• If R is very large, the current will tend to go to zero on resonance 



Parallel LCR AC Circuit
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• On resonance, the current is a minimum.
• Magnitude of current is proportional to 

magnitude of 1/Z
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Low pass filter AC Circuit
• Suppose we want to limit the current 

to be at “low frequency” into a 
resistor  from an ac “current source”
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• Design a low pass filter

• Current at low ω should 
go through R

• Current at high ω should 
not go through R

• At high frequencies, the inductor will block current:  ZL=iωL

• At low frequencies, the capacitor will block current:  ZC=1/iωC

• Maximize IR/Io at low freq. and minimize it at high freq.



Low pass filter AC Circuit

• Voltage across C must 
equal voltage across L+R LC

Ioeiωt R∼

Io

IC
IR

( )RLiI
Ci

I RC += ω
ω
1

• And current through cap. is total 
current minus current through R RoC III −=

( )RCiLCII Ro ωω +−= 21





 ++=

Ci
RLiI

Ci
I Ro ω

ω
ω

11

• Solve for magnitude of IR/Io
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