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Abstract

Transient responses of RLC circuits are examined when subjected to both long
time scale (relative to the decay time) square wave voltages and sinusoidally vary-
ing voltages over a range of frequencies about the resonant frequency. In general,
a good correspondence is found between theory - describing the charge in the sys-
tem in terms of a 2nd order differential equation with a harmonic oscillator form
- and experiment. It is demonstrated that the inductance can be accurately mea-
sured using period of oscillation versus capacitance measurements. Furthermore,
the exponential decay of the response is described well by the model and the res-
onant frequency of a sinusoidal external voltage is accurately predicted. However,
some discrepancies were found though not necessarily a result of theoretical fail-
ures. One problem is the failure to predict the inductance of a circuit based on
the critical resistance variation with capacitance, although the problem could lie
in how the measurement is conducted. Additionally, the quality and bandwidth of
a RLC element is poorly predicted but this could also be a result of experimental
problems.

1 Purpose
The purpose of this experiment was to observe and measure the transient response of
RLC circuits to external voltages. We measured the time varying voltage across the
capacitor in a RLC loop when an external voltage was applied. The capacitance was
varied and the periods of the oscillations were used to determine the inductance in
the circuit. Next we measured the log decrement as a function of resistance to verify
the response is approximately linear and to estimate the total resistance of the circuit
including the inductor and the function generator. Following that we determined the
resistance required for critical damping as a function of capacitance. Using this we
verified the theoretical result that the critical resistance is proportional to 1/

√
C. Fi-

nally, we measured the voltage across the capacitor in a different RLC circuit driven by
a sinusoidally varying voltage. The peak-to-peak voltage was measured as a function
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of frequency to determine the resonant frequency, the bandwidth, and the quality factor
Q. We also compared the resonant frequency with the theoretical value.

2 Theory
The governing equation for a resistor, inductor and capacitor in series with a voltage
source is

L
d2q

dt2
+R

dq

dt
+
q

C
= V (t) (1)

This is the equation for an oscillator with damping and a driving function. Solving the
characteristic equation gives two roots s1, s2 = a± b with

a =
R

2L
(2)

b =

√(
R

2L

)2

−
(

1
LC

)
(3)

There are three distinct types of solutions depending on whether b2 is positive, negative
or zero.

When b2 = 0 the circuit is said to be critically damped. In this case the two roots
of the characteristic equation are real and the same value. Therefore, the charge in the
capacitor falls to zero exponentially and quicker than for any other value of b.

When b2 > 0 the two roots of the characteristic equation are real and again the
charge drops to zero in an exponential fashion. However, the falloff of charge is slower
than for b2 = 0. This can be seen by observing that at later times the decay constant is
(a− b) < a. With this type of response the circuit is said to be over-damped.

Finally, when b2 < 0 the two roots are imaginary and thus the charge oscillates
about 0 before finally decaying to 0 (assuming a 6= 0). Under these conditions the
circuit is said to be under-damped. The frequency of the oscillation is

f1 =
1
T1

=
(

1
2π

)√(
1
LC

)
−
(
R

2L

)2

(4)

where T1 is the period of the oscillation. Because the charge is still decaying the
logarithmic decrement δ can be defined as the natural log of the ratio between two
successive peaks of charge

δ = ln
q(tmax)

q(tmax + T1)
= aT1 (5)

The last equality in equation 5 can be made based on the form of q(t) where e−at is the
attenuating factor. Lastly, the quality factor Q of the circuit is defined as

Q = 2π
total stored energy

decrease in energy per period
=
π

δ
=
ω1L

R
(6)

with ω1 = 2πf1 being the damped angular frequency. As can be seen, a lower resis-
tance leads to a higher quality while a higher inductance increases Q.
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Figure 1: Circuit layout for parts A, B, and C.

3 Experiment

3.1 Equipment
A decade capacitor and decade resistor were used in parts A-C. The serial number for
the capacitor was A-1678 and for the resistor was 48288. A HP 34401A Digital Multi-
meter (DMM) with serial number Phys-943034 was used to measure the resistance of
the inductor coil #7. A Wavetek function generator was used in all parts and had the
serial number Phys-943026. Additionally a Tektronix TDS3012B oscilloscope with
serial number F28819 was used to measure the transient response in all parts.

3.2 Part A: Frequency dependence on capacitance
In this section, along with parts B and C, the Wavetek and circuit were connected as
shown in Figure 1. VC was measured using the Tektronix scope andRout was assumed
to be 50 Ω. R in the figure was a decade resistance box and C was a decade capacitance
box. L was a large coil inductor (#7) which we measured the resistance of using the
DMM before turning on the Wavetek. The resistance was found to be 19.36 Ω. The
Wavetek was set to output a 8 V unipolar square waveform with a frequency of 10 Hz
and a duty cycle of 50%. The oscilloscope was set to trigger on the leading edge of the
unipolar output of the Wavetek.

After all the elements had been setup, the resistance box was set to 0 Ω and it
was verified that the period was constant for each oscillation as shown in Table 1.
Additionally a representative scope output is shown in Figure 2.

Table 1: Verification of constant period.
Cycle # Period (ms)

1 1.86 ± .02
2 1.86 ± .02
3 1.86 ± .02

Then we measured the period of oscillation for different capacitances by determin-
ing the time to complete multiple cycles and dividing the result by the number of cycles
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Figure 2: Representative transient signal of voltage across capacitor in this part of the
experiment.

used. This was done for 11 different capacitances over the range of 0.05-1 µF . The
results are shown in Table 2. The error for the total time was taken to be the resolution

Table 2: Measurement of period of oscillation as a function of capacitance.
C (µF ) # of periods Total time (ms) Single period (ms)

1 5 9.40±.08 1.88±.02
0.9 5 8.86±.04 1.77±.01
0.8 4 6.72±.04 1.68±.01
0.7 5 7.82±.04 1.56±.01
0.6 6 8.64±.04 1.44±.01
0.5 5 6.62±.04 1.32±.01
0.4 6 7.08±.04 1.18±.01
0.3 7 7.14±.04 1.02±.01
0.2 9 7.70±.04 0.856±.004
0.1 13 7.64±.04 0.588±.004

0.05 9 3.75±.02 0.417±.002

of horizontal axis of the Tektronix multiplied by 2. We assumed that this large range
gives a 95% confidence in the value. Then the error of the single period was just the
error of the total time divided by the numer of periods for that measurement.

According to equation 4 a plot of 1/T 2 versus 1/C should give a straight line with a
slope

m =
1

4π2L
(7)

Figure 3 shows this relationship along with the best fit line. The error bars were calcu-
lated using the propagation of errors formula:

Error =

√
4
T 6
T 2

error (8)
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Figure 3: Plot of 1/T 2 versus 1/C showing a straight line as predicted by theory.

In this plot the ’Error’ column refers to the standard error and it can be seen that the R
value indicates a strong linear relationship. Using the relationship in equation 7 it was
determined that the inductance of the circuit was 90±1 mH to 95% confidence1.

Based on this value for the inductance it is determined that for C = 1 µF and
R = 70 Ω (

1
LC

)
= 1.11x107 � 1.51x105 =

(
R

2L

)2

(9)

and therefore, according to equation 4

T 2 ≈ (2π)2LC (10)

This relationship is plotted in Figure 42. Again, the R value shows a strong linear
relationship between the values as predicted and the error in the slope is only 0.9%
with a 95% confidence interval.

Finally, the inductance of the coil was measured using a Z-meter and found to be
92±1 mH. This is in good agreement with the value determined from the 1/T 2 versus
1/C relationship.

3.3 Part B: Log decrement dependence on resistance
For this section of the experiment the same circuit and waveform was used as in part
A. The capacitance was set to 1 µF . First we observed the voltage transient at R =
0, 50, 100, 150, 200, 250, and 300 Ω. Above 100 Ω it became difficult to see more
than 2 oscillations. Next we verified that the log decrement (δ) did not change going
from one set of peaks to the next. We did this by setting the resistance to 0 Ω and
measuring the height of the first 4 peaks allowing 3 successive δs to be calculated. The
results are summarized in Table 3 with the errors in voltage determined by multiplying
the minimum change by 2.3 The error becomes worse as the peak number increases

1Error determined using 1
4π2m2 1.812 ∗merror

2Error bars determined using 2TTerror
3Error for δ calculated using

√
1/V 2

1 ∗ V1error + 1/V 2
2 ∗ V2error
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Figure 4: Plot of T 2 versus C showing a straight line as predicted by theory.

Table 3: Verification of constant δ
Peak # Voltage (V) δ

1 7.48 ± .04 N/A
2 3.44 ± .04 0.78 ± 0.01
3 1.56 ± .04 0.79 ± 0.03
4 0.76 ± .04 0.72 ± 0.06

because the data was only acquired once with a set vertical resolution on the scope, and
thus the uncertainty as a percentage of the value increased as well.

With the consistency of δ established we proceeded to measure δ as a function of R.
The first and second peaks were measured and used to determine δ. This data appears
in Table 4. Again the error was determined by multiplying the smallest change in V on
the scope by 2. Plugging equations 2 and 4 to equation 5 gives

δ =
(
R

2L

)
2π√

1
LC −

(
R
2L

)2 = π
R

L

√
LC

1√
1− R2C

4L

≈ π
√
C

L
R (11)

when R2C/4L � 1. In this experiment, the maximum value of R2C/4L is 0.08 and
can fairly safely be ignored to test for linearity. Figure 5 shows δ versus R and a strong
linear relationship is observed. Based on the fitting parameters the x intercept of the line
is not R = 0 Ω. This is because R is referring only to the resistance of the decade box
and ignores the resistance of the coil and the function generator output. This residual
resistance is calculated to be 70 ± 4 Ω with 95% confidence. The combined resistance
of the inductor coil with the stated output resistance of the Wavetek is 69.4 Ω giving a
good agreement with the above measurement.

6



Table 4: δ versus resistance.
R (Ω) V1 (V) V2 (V) δ
100 -6.28 ± .04 -1.00 ± .04 1.84 ± .04
90 -6.72 ± .04 -1.24 ± .04 1.69 ± .03
80 -7.16 ± .04 -1.46 ± .04 1.59 ± .03
70 -7.56 ± .04 -1.70 ± .04 1.49 ± .02
60 -8.00 ± .04 -2.00 ± .04 1.39 ± .02
50 -8.44 ± .04 -2.36 ± .04 1.27 ± .02
40 -8.96 ± .08 -2.80 ± .08 1.16 ± .03
30 -9.44 ± .08 -3.28 ± .08 1.06 ± .03
20 -10.1 ± .2 -3.88 ± .08 0.96 ± .03
10 -10.6 ± .2 -4.52 ± .08 0.85 ± .03
0 -11.1 ± .2 -5.24 ± .08 0.75 ± .02

Figure 5: Graph of δ versus R showing a good fit and match to theory.

3.4 Part C: Dependence of resistance for critical damping on ca-
pacitance

For this part of the experiment the same circuit and waveform is used as in part B. The
critical resistance is the resistance at which the circuit is critically damped. Therefore
b2 = 0 and by solving equation 3 we find

Rcritical = 2

√
L

C
(12)

So a plot of R vs 1/
√
C should be linear. We determined the critical resistance by ad-

justing the decade resistance box and observing the resulting waveform. Three exam-
ple waveforms are shown in Figure 6. To find where the circuit was critically damped
we allowed it to be slightly under-damped and then increased the resistance until no
overshoot was observed. We did this for 5 different capacitances and our results are
summarized in Table 5. Unfortunately we did not have one definitive way to deter-
mine the error in our measurement. However, when the resistances were adjusted by
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Figure 6: Sample circuit response for this part of the experiment

Table 5: Rcritical versus capacitance.
C (µF ) Rcritical (Ω)

1 460 ± 10
0.5 678 ± 10
0.1 1620 ± 30

0.05 2320 ± 30
0.01 5300 ± 100

the error values a change in the response was observed that we believe was significant
enough to warrant a high degree of confidence (assumed to be 95%) in that range.

A plot of these critical resistances versus 1/
√
C is shown in Figure 7. Additionally,

the ideal behavior is plotted using L = 90 mH. The first result to notice is that the linear
fit is very strong and that the error in the slope is only 2.3% with 95% confidence.
However, it is also clear that the plot implies a different value for the inductance of
the circuit than previously found. Based on the slope of the fit, the inductance of the
circuit is 72 ± 3 mH with 95% confidence4. This gives a 20% difference and based on
this it would seem all of our measurements of Rcritical were too low by at least 15%.
However, when the resistance is adjusted upwards that much it is readily apparent that
the circuit has moved into being over-damped based on the waveform. Therefore, it
must be concluded that this is not a reliable way to measure an inductance at least
partially due to the subjectivity of the measurement.

3.5 Part D: RLC response to sinusoidal signal
For this section a different circuit was used than in parts A, B, and C. The circuit is
shown in Figure 8. RM was 101 kΩ, L was 93 mH, RB was 5.69 Ω, and C was 1.03
µF . Also, the Wavetek was set to output a sine wave with an amplitude of 16 V.

4L = B2/4 and the error is B
2

1.812Berror
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Figure 7: Plot ofRcritical versus 1/
√
C showing a strong linear relationship. Addition-

ally, a plot of the theoretical behavior given the measured inductance is shown.

Figure 8: Circuit layout for part D

9



When analyzing AC circuits it is convenient to use impedances to determine various
aspects of the response. For example, with this circuit, the impedance can be used to
determine the magnitude of the voltage across the RLC element as

VC = V0
R

RM + Z
(13)

Impedances are complex numbers in general and for a capacitor Z = 1/jωC, for an
inductor Z = jωL, and for a resistor Z = R where j =

√
−1. As can be seen in

Figure 8 the RLC loop has the capacitor in parallel with a series addition of the resistor
and inductor. Using the addition rules for circuits the result is that

| Z |=
√
R2 + (ωL)2√(

1− ω2

ω2
0

)2

+ (ωRC)2
(14)

where ω0 is the resonant frequency.
With this in mind we set out to observe this response by measuring the peak to

peak voltage across the capacitor as a function of frequency. We observed frequencies
between 100 and 1000 Hz and set the oscilloscope to average 16 samples and measure
the amplitude automatically. The results are shown in Table 6. These values are then

Table 6: Voltage versus frequency. Errors for all values are ± 2 mV.
Frequency (Hz) Vpp (mV) Frequency (Hz) Vpp (mV) Frequency (Hz) Vpp (mV)

100 59 450 142 600 138
200 72 480 149 630 129
270 86 490 150 650 123
300 94 500 151 680 114
330 103 510 152 690 112
340 106 515 150 700 110
350 109 520 152 710 107
360 113 530 150 720 105
370 117 540 150 770 92
380 121 550 149 800 85
400 126 560 147 900 71
410 130 580 143 1000 59
430 137

plotted along with equation 14 in Figure 9. Equation 14 is important because RM is
so large that the peak to peak voltage (Vpp) should approximately equal V0Z/RM and
thus is directly related Vpp. Using this plot we found the resonant frequency to be
515 ± 10 Hz. Based on the measurements of the inductor, resistor, and capacitor the
theoretical resonance occurs at 514 Hz which is in good agreement with our data. We
also measured the bandwidth by finding the two frequencies at which Vpp fell to 70.7%
of its peak value. These two frequencies were 350 ± 10 Hz and 710 ± 10 Hz giving a
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Figure 9: Peak to peak voltage across capacitor as a function of frequency. The data
points go to the left axis and the Ideal Z goes with the right axis.

bandwidth of 360 ± 15 Hz5. Then, using Q = f0/∆f it was found that the quality of
the circuit was 1.4 ± 0.1.

The theoretical Q is 52.8 and it is therefore quite obvious why the theoretical
impedance curve is much sharper than the measured curve. The plot shows a poor
agreement between the theoretical response and the actual results. The peak is much
sharper for the ideal case and the bandwidth is much lower as seen in a comparison of
Q values. These discrepancies are due to components not behaving ideally and other
loses in the circuit such as resistance in the wires or imperfect connections on the bread
board. Additionally, the actual voltage falls off faster than expected for the same rea-
sons. Building on this idea, if we assume that the inductance and capacitance of the
circuit are the same as measured and fit the function to the data by changing the re-
sistance in equation 14, we find the best fit around R = 202 Ω. This fit is shown in
Figure 10. It can be seen that this does shift the resonance from where measured (to
485 Hz) but the Q factor is the same as in the experiment. So while not entirely respon-
sible for the difference between measurement and theory, as evidenced by the resonant
frequency difference, uncounted resistances play a part in the disparity.

4 Conclusions
RLC circuit behavior is described well by oscillating system theory which describes
the charge on the capacitor as a 2nd order differential equation. It is demonstrated in
this experiment that the theory can be used to reliably find the inductance of a RLC
loop by measuring the period of oscillation as a function of capacitance. The predicted
exponential damping dependence on resistance is also verified and it is shown that
that total resistance of the circuit can be found accurately using a resistance versus log
decrement plot. However, when applying the theory to measure the inductance using

5Error calculated using
√

102 + 102
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Figure 10: Peak to peak voltage across capacitor as a function of frequency with theo-
retical voltage fit to data with R = 202 Ω.

the critical resistance as a function of capacitance there is a problem. But the issue is
most likely due to the nature of the measurement as it is difficult to tell exactly when the
circuit transitions from under-damped to over-damped. Finally, the model accurately
predicts the resonant frequency of a RLC circuit, however, other details of the behavior
such as the Q factor are not described correctly in this experiment.
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