Basic Error Analysis

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

XKCD #1752

Professor Jeff Filippini Physics 401 Spring 2020

ILLINOIS

I DON'T KNOW HOW TO PROPAGATE ERROR CORRECTLY, SO I JUST PUT ERROR BARS ON ALL MY ERROR BARS.

XKCD #2110

Today's Topics

- 1. Errors and Uncertainties
- 2. Instrument Errors
- 3. Accuracy and Precision
- 4. Systematic and Statistical Errors
- 5. Evaluating Fits and Parameter Errors

Appendix: More on oil drop data analysis, fitting

Redeeming some "Bad Words"

• Errors are not mistakes!

- **Statistics** is, in a deep sense, what science is about!
 - "The discipline that concerns the collection, organization, analysis, interpretation and presentation of data" (<u>Wikipedia</u>)
 - What conclusions can you draw about the universe from your observations?

• Careful error analysis is critical to learning from data

Errors: Everyday Life

I UNIVERSITY OF ILLI	ERIC SCIENCES U
CURRENT CONDITIONS	Urbana-Champaign Weather
Willard Airport 43°F 9:53AM	Today
Cloudy Skies Temperature: 43°F Dew Point: 43°F Rel. Humidity: 100% Winde: SE at 12 mph	Mostly cloudy until late afternoon then becoming mostly sunny. Highs in the upper 30s. Northwest winds 10 to 15 mph with gusts to around 25 mph.
Visibility: 5 miles Pressure: 1010.9 mb (29.84 in) Sunsie: 6:34AM Sunset: 5:39PM	This forecast is provided by National Weather Service

T = 43°F ± ?? Best guess: $\Delta T \sim 0.5$ °F

> Wind speed 12 mph \pm ?? Best guess: $\Delta v \sim 0.5$ mph

4

) נ

Physics 401

Errors: Industry

 $20^{+\ 0.002}_{-\ 0.002}$ (a) Unilateral tolerance (b) Bilateral tolerance.

Tight tolerances cost \$\$\$!!!

Errors: Science

How fast is the universe expanding? The Hubble Constant

We seek <u>consilience</u> between different techniques Do we need a new model, or are we missing sources of error??

Multiple methods:

• Standard candles:

How bright do objects of known properties appear?

- Peculiar variable stars
- Largest possible red giant stars

• Standard rulers:

How big do ripples in the cosmic microwave background look?

Measurements: Reading Errors

$\Delta L \cong 0.03mm$

How far should we go to minimize reading error?

What do we Need?

In some cases we don't care about accuracy better than 1mm

Tools

If a ruler doesn't do the job, use a digital caliper or Vernier caliper

Intrinsic Limits

E.g. thermal expansion CTE $\Delta L/L = 7.5 \times 10^{-5} K^{-1}$ $\Delta L \simeq 0.004 \text{ mm/K}$

Measurements: Reading Errors

Fluke 8846A multimeter

Example Vdc (reading)=0.85V on 1V range $\Delta V = 0.85 \times (1.8 \times 10^{-5})$ $+1.0 \times (0.6 \times 10^{-5}) \cong 2.2 \times 10^{-5} = 22 \mu V$

8846A Accuracy

Accuracy is given as \pm (% measurement + % of range)

Range	24 Hour (23 ±1 °C)	90 Days (23 ±5 °C)	1 Year (23 ±5 °C)	Temperature Coefficient/ °C Outside 18 to 28 °C
100 mV	0.0025 + 0.003	0.0025 + 0.0035	0.0037 + 0.0035	0.0005 + 0.0005
1 V	0.0018 + 0.0006	0.0018 + 0.0007	0.0025 + 0.0007	0.0005 + 0.0001
10 V	0.0013 + 0.0004	0.0018 + 0.0005	0.0024 + 0.0005	0.0005 + 0.0001
100 V	0.0018 + 0.0006	0.0027 + 0.0006	0.0038 + 0.0006	0.0005 + 0.0001
1000 V	0.0018 + 0.0006	0.0031 + 0.001	0.0041 + 0.001	0.0005 + 0.0001

Accuracy and Precision: Conceptual

Accuracy How close does the measurement come to the true value? Precision How close do individual measurements come to each other? Repeatability, consistency

Accuracy and Precision: Conceptual

Accuracy and Precision: Reality

... but in experimental science we don't *know* the true value *a priori*!

How long does a **free neutron** live before decaying to a proton, an electron, and a neutrino?

Wikipedia: Free neutron decay

Two Classes of Error

• Systematic error: Reproducible inaccuracy introduced by imperfect equipment, calibration or measurement technique.

"Bias"

 Random error: Indefiniteness of results due to finite precision of experiment. Measure of fluctuation in result after repeatable experimentation.

"Noise"

Philip R. Bevington "Data Reduction and Error Analysis for the Physical sciences", McGraw-Hill, 1969

Sources of Systematic Error

- Poor calibration of equipment
- Changes in environmental conditions
- Imperfect methods of measurement
- Offsets and drifts in instruments

Sources of Systematic Error

Example #2: Measuring the speed of "second sound" in superfluid 4He

where dV/dT is small

2.2

Random Errors

) [

Where Does Randomness Come From?

Where have you found randomness in your other physics classes?

Coupling to large ensembles

Thermal fluctuations

Coupling through

Ignorance

complicated functions

Chaos Psueodo-random #s

Quantum mechanics

Measurement

Random Errors: Poisson Distribution

$$P_n(t) = \frac{(r t)^n}{n!} e^{-rt}$$

Probability to observe *n* events in a time interval of length *t*.

Sole parameter is rate *r* (average events/second)

Siméon Denis Poisson

A statistical process (*e.g.* radioactive decay) is described through a Poisson distribution if it is/has:

- **Discrete**: something decays or it doesn't (*n*=0,1,2,...)
- **No memory**: Probability for a decay is the same in any time interval, no matter how early or late
- Universal probability: the probability to decay in a given time interval is the same for all nuclei
- Independence: The decay of one nucleus does not affect the probability of a second nucleus decaying

Random Errors: Poisson Distribution

$$P_n(t) = \frac{(r t)^n}{n!} e^{-rt}$$

Probability to observe *n* events (n=0, 1, 2, ...) in a time interval of length *t*.

Sole parameter is rate *r* (average events/second)

Poisson Distribution at large rt

$$P_n(t) = \frac{(r t)^n}{n!} e^{-rt}$$

Carl Friedrich Gauss (1777–1855)

$$P_n(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\langle x\rangle)^2}{2\sigma^2}}$$

Gaussian (continuous) distribution

Gaussian (Normal) Distribution

$$P_n(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\langle x \rangle)^2}{2\sigma^2}}$$

If I measure *N* events, the "best" estimate of the mean is their arithmetic mean.

The error on this estimate is $\frac{\sigma}{\sqrt{N}}$

Measurements in the Presence of Noise

Actual measured values

Physics 401

Measurements in the Presence of Noise

Note that the distribution isn't getting *narrower* at large *N*.

Instead, you'd have to be more and more unlucky to have enough fluctuations in one direction to move the arithmetic mean significantly

Measurements in the Presence of Noise

For N=10⁶ U=4.999±0.001 0.02% accuracy

Fitting Errors

Beta decay of neutron-activated silver foil

Fitting a parameterized model to data means finding the set of parameter values that minimizes the residuals – distances between data points and model curve.

Further details in the appendix slides: minimize what exactly, and how?

Error estimates: how far can we wiggle the parameters before the residuals increase "significantly"?

Error estimates assume model is correct and residuals are gaussian noise. Errors not trustworthy if these aren't roughly true!

Fitting Errors

Beta decay of neutron-activated silver foil

Fitting Errors: Examining the Residuals

Physics 401

Fitting Errors: Examining the Residuals

Physics 401

	Clean experiment	Data + "noise"
t1(s)	177.76	145.89
t ₂ (s)	30.32	27.94

residuals

1.

2.

Physics 401

Frequency

Conclusion: Fitting function needs to be modified to incorporate an additional term

$$y(t) = y_0 + A_0 e^{-t/t_1} + A_1 e^{-t/t_2} + A_3 \sin(\omega t + \theta)$$

Caution: "With four parameters I can fit an elephant, and with five I can make him wiggle his trunk" John von Neumann, attributed by Enrico Fermi

	Clear experiment	Data + noise	Modified fitting
t1(s)	177.76	145.89	172.79
t ₂ (s)	30.32	27.94	30.17

Error Analysis: Millikan Oil Drop Experiment

We expect both error components in each measurement

 $Q_{meas} = Q_{true} + e_s + e_r$

... and there are various sources for each

*e*_s

Systematic error could include uncertainties in plate separation (*d*), applied DC voltage (*V*), ambient temperature (*T*), etc.

Random errors include e_r uncertainties in measurement of t_{rise} , t_q , etc.

Systematic Error Analysis: Millikan Oil Drop Experiment

$$Q_{meas} = Q_{true} + \boldsymbol{e_s} + \boldsymbol{e_r}$$

$$Q = ne = F S T = \frac{1}{f_c^{2/3}} \frac{9\pi d}{V} \sqrt{\frac{2\eta^3 x^3}{g\rho}} \sqrt{\frac{1}{t_g} \left[\frac{1}{t_g} + \frac{1}{t_{rise}}\right]}$$
$$\frac{1}{f_c^{2/3}} \approx 1 - \left(\frac{t_g}{\tau_g}\right)^{\frac{1}{2}}$$

$$\Delta Q = \sqrt{\left(\frac{dQ}{dF}\right)^2 \left(\Delta F\right)^2 + \left(\frac{dQ}{dS}\right)^2 \left(\Delta S\right)^2 + \left(\frac{dQ}{dT}\right)^2 \left(\Delta T\right)^2} \approx \sqrt{\left(\frac{dQ}{dS}\right)^2 \left(\Delta S\right)^2 + \left(\frac{dQ}{dT}\right)^2 \left(\Delta T\right)^2}$$

Generally negligible

$$=\sqrt{\left(FT\right)^{2}\left(\Delta S\right)^{2}+\left(FS\right)^{2}\left(\Delta T\right)^{2}}=Q\sqrt{\left(\frac{\Delta S}{S}\right)^{2}+\left(\frac{\Delta T}{T}\right)^{2}}$$

Systematic Error Analysis: Millikan Oil Drop Experiment

$$Q_{meas} = Q_{true} + \boldsymbol{e_s} + \boldsymbol{e_r}$$

$$Q = ne = FST = \frac{1}{f_c^{2/3}} \frac{9\pi d}{V} \sqrt{\frac{2\eta^3 x^3}{g\rho}} \sqrt{\frac{1}{t_g}} \left[\frac{1}{t_g} + \frac{1}{t_{rise}}\right]$$
$$\Delta Q \approx Q \sqrt{\left(\frac{\Delta S}{S}\right)^2 + \left(\frac{\Delta T}{T}\right)^2}$$

$$\frac{\Delta S}{S} = \sqrt{\left(\frac{\Delta d}{d}\right)^2 + \left(\frac{\Delta V}{V}\right)^2 + \left(\frac{3}{2}\frac{\Delta x}{x}\right)^2 + \left(\frac{3}{2}\frac{\Delta \eta}{\eta}\right)^2 + \left(\frac{1}{2}\frac{\Delta \rho}{\rho}\right)^2 + \left(\frac{1}{2}\frac{\Delta g}{g}\right)^2} \approx \sqrt{\left(\frac{\Delta d}{d}\right)^2 + \left(\frac{3}{2}\frac{\Delta x}{x}\right)^2}$$

$$\Delta T = \sqrt{\left(\frac{3/2}{t_g^{5/2}} + \frac{1/2}{t_g^{3/2}}\frac{1}{t_{rise}}\right)^2 \Delta t_g^2 + \left(\frac{1}{t_g^{1/2}}\frac{1}{t_{rise}^2}\right)^2 \Delta t_{rise}^2}$$

Step 1. Origin Project For Raw Data :

\\<u>engr-file-03\PHYINST\APL</u> Courses\PHYCS401\Students\2. Millikan Raw Data

🗾 Data Analysis for Millikan Oil Drop Experi	2/22/2008 9:36 AM	Adobe Acrobat D	59 KB
🙆 Millikan_raw data.opj	10/5/2017 4:50 PM	OPJ File	15 KB
🙆 Millikan_raw data1.opj	9/25/2018 1:38 PM	OPJ File	14 KB
🙆 Millikan1_calc.opj	9/26/2018 1:36 PM	OPJ File	95 KB
🙆 Millikan1_no_calc.opj	9/25/2017 2:03 PM	OPJ File	66 KB
🞯 T measurement.opj	9/26/2018 1:36 PM	OPJ File	316 KB

All project files with raw data should be stored in:
\\engr-file-03\PHYINST\APL
Courses\PHYCS401\Students\2. Millikan Raw Data

Only files with **raw data** should be stored in this **common** folder. Please remove files that are unrelated to the experimental results!

All other files, including those used for calculations, should be saved in your personal folder

Step 2. Working on your personal Origin project

Make a copy of the Millikan1 project to your personal folder and open it

Section L1-L4.opj projects

Manually calculate the actual air viscosity Prepare equations calculations of data in next columns (*Set column values...*). Switch *Recalculate* in *Auto* mode

•	
Recalculate	None 🔻
Before Form	None Auto
;(Eta)	Manual actual aj
;x fall	.∕rise dia

Step 3. Make a histogram

Plot a histogram from the data in the column of drop charges

HIE Ealt VIEW	v Plot Column	worksneet A	naiysis statistics i	mage	10015 101	rmat wind	low Help					
	1 🖬 🖻 🔚 🍙	🖻 🚰 🗟 I	a 🔒 🖀 🎬 📸	¢	\$ 100%	- 8 5	2 🖸 💋		۲ 🗖 🖬	1 📝 🍕	+]₩ = :
15 C C 	Tr Default: A 👻	9 ▼ B	\mathbf{I} \mathbf{U} \mathbf{x}^2 \mathbf{x}_2 \mathbf{x}_1^2 (ιβA	(∡≣ -	IIII - <u>A</u> -	r 🛛 🏝 👻	∕	—— Sc 🔻	0.5	•	N 👻 🛛 🔻
Image: Long Name Long Name Long Name Units Comments 1 3 4 5 6 7 8 9 10 12 13 4 5 6 7 12 13 14 15 16 112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 26 28 29 30 31 32 33 33 34 35 36 37 38 39	Interference Constraint Image: Constraint Image: Constraint <t< th=""><th>Plot Plot Plot Plot Copy Copy (full Copy (full Set As """ Set Colum Sort Colum Mask Colls Move Colu Reverse Or Show X Co Slide Show Swap Colu Add Sparkl Go <u>1</u>o Mask Set as Cate</th><th>nk precision) a C A C A C A C A C A C A C A C A C A C</th><th></th><th>Image: constraint of the second se</th><th></th><th>abilities</th><th></th><th>a a final and a second second</th><th>Probab ograms Chart -Binned -Raw Da ik</th><th>B +∃</th><th></th></t<>	Plot Plot Plot Plot Copy Copy (full Copy (full Set As """ Set Colum Sort Colum Mask Colls Move Colu Reverse Or Show X Co Slide Show Swap Colu Add Sparkl Go <u>1</u> o Mask Set as Cate	nk precision) a C A C A C A C A C A C A C A C A C A C		Image: constraint of the second se		abilities		a a final and a second	Probab ograms Chart -Binned -Raw Da ik	B +∃	
42 43 44		Properties. Set Style		•	-							
44 45 46		1.40294 1.41492	0.8757 0.8832	5	_							
17		1 / 15/0	0 8835	Q								

Step 4. Histogram – set bin size

Origin will choose the bin size h *automatically*, but not *optimally*. In the plot at right, h=0.5.

We want bins wide enough to control bin-to-bin fluctuations that obscure the pattern, but narrow enough not to wash out the pattern.

There are several theoretical approaches to finding the optimal bin size. One example:

 $h = \frac{3.5\sigma}{n^{1/3}}$

... where σ is the sample standard deviation, n is the total number of observations. For the data at right, this yields $h^{\sim}0.1$

Bin size above is 0.5 Peaks vaguely visible, but can't determine width

Step 4. Histogram – set bin size

To change the bin size, click on the graph the uncheck the "*Automatic Binning*" option

Bin size is now 0.1, pattern is visible!

Step 4. Histogram - find the bin worksheet

Right-clock on the histogram and choose "Go to bin worksheet"

Step 5. Add counts-vs-bin plot

Plot	Setup: Configure	e Dat	a Plots in Lay	er						N	<u>4</u> .4
Availabl	e Data:		Long Name	Sheet	Cols	Bows	File Name	File Date	Created		Modified
Worksł	neets in Folder	•	Book1	Sheet1	1	1260			10/6/20	008 12:43:53	10/2/2017 14
/ei	ide Shortcuts		Book1	Book1_B Bins	4	60			10/6/20	008 12:43:53	10/2/2017 14
ne Right-cli to bring	ick on various pan up context menus.	els									
Plot Typ	e:		Show(S) [B	ook1]"Book1_B	Bins''						
Line		*	× xEr	Y yEr	L Co	lumn	Long Name	,	Commen	its Sampli	ng Interval
Scatter	ſ				ka	utoX>	From/Step	-			
Line +	Symbol		V		A		Bin Centers		Bins		
Columr	n / Bar				В		Counts		Bins		
Area	1.4	=			C		Cumulative	Sum	Bins		
Stacke	d Area				D		Cumulative	Percent	Bins		
Fill Are	a Low Close										
Floating	a Column										
- WAM	y Column Vector										
XXXX	Vector										
Bubble	,										
Color M	Ianned										
Bubble	+ Color Manned	-									
, Plot List	: Drag entries in 1s	st colu	umn to reorder (or to move betwe	en laye	ers. Righl	t click for oth	ier options.			
Plot					Ran	je			Show	Plot Type	Legend
E L	.ayer 1						🗖 Res	cale			
		DM)			[1×-1	241×1			7	Histogram	B
- W	🖌 [Book1]Sheet1!	DUU			1					rnstogram	

Step 5. Multi-peak gaussian fit

n=Q/1.602e-19

Appendix #1: Issues with Oil Drop Data

Be careful with data selections obtained by different teams!

For more details how to create the histogram plot and do the analysis, see "Working with Histogram Graph. Millikan Oil Drop Experiment" (E.V. Colla)

Appendix #1: Increasing Experimental Accuracy

 $Q_{meas} = Q_{true} + e_s + e_r$

Systematic error could be improved with more precise knowledge of the experimental parameters: plate separation (d), applied DC voltage (V), ambient temperature (T), etc.
Usually these are limited by existing measurement equipment

Random or statistical errors can be reduced only by increasing the number of data points (*no limit!*)

 e_r

Fitting a model to data means finding the set of *parameter values* that gets the *model function* "closest" to the data

- **Data**: ordered pairs (x_i, y_i) , often in the form of an $N \times 2$ matrix
 - Independent variable x_i , e.g. frequency, time, etc.
 - Dependent variable y_i , e.g. signal magnitude
- Model function: $y = f(x; \beta)$, which takes some set of parameters β

What exactly does "closest" mean? Minimizing some *cost function* – most often the sum of squared deviations:

$$S(\beta) = \sum_{i=1}^{N} [f(x_i; \beta) - y_i]^2$$

$$S(\beta) = \sum_{i=1}^{N} [f(x_i; \beta) - y_i]^2$$

There are several minimization algorithms for solving such problems. Origins uses the <u>Levenberg-Marquardt algorithm</u> for nonlinear fitting, which is optimized for quadratic cost functions like this one.

These algorithms proceed from a starting guess and traverse the cost function "landscape" (hopefully efficiently!) to find a global minimum.

How well they do depends on the quality of the starting guess, and it's easy to get trapped in local minima.

An example of poor results from the fitting procedure

Appendix #3: Some Reminders

- 1. Reports should be uploaded *only* to the **proper folder** for your activity and section
 - For example, folder Frequency domain analysis_L1 should only be used by students from section L1
 - Submit only one copy (no need to submit e.g. both Word and PDF)
 - Show your name, and only your name, in the list of authors on the title page of the report
 - I recommend the following file name style:

L1_lab5_LastName