Basic Error Analysis

I DON'T TRUST LINEAR REGRESSIONS WHEN ITS HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Professor Jeff Filippini
Physics 401
Spring 2020

I DON'T KNOW HOW TO PROPAGATE ERROR CORRECTLY, SO I JUST PUT ERROR BARS ON ALL MY ERROR BARS.

Today's Topics

1. Errors and Uncertainties
2. Instrument Errors
3. Accuracy and Precision
4. Systematic and Statistical Errors
5. Evaluating Fits and Parameter Errors

Appendix: More on oil drop data analysis, fitting

Redeeming some "Bad Words"

- Errors are not mistakes!
- Statistics is, in a deep sense, what science is about!
- "The discipline that concerns the collection, organization, analysis, interpretation and presentation of data" (Wikipedia)
- What conclusions can you draw about the universe from your observations?
- Careful error analysis is critical to learning from data

Errors: Everyday Life

1

ATMOSPHERIC SCIENCES

UNIVERSITY OF ILLINOIS AT URBANA.CHAMPAI

CURRENT CONDITIONS

Cloudy Skies Temperature: $43^{\circ} \mathrm{F}$ Dew Point: $43^{\circ} \mathrm{F}$ Rel. Humidity: 100\% Winds: SE at 12 mp Visibility: 5 miles
Pressure: $1010.9 \mathrm{mb}(29.84 \mathrm{in})$ unrise: 6:34AM
Sunset: 5:39PM
$\mathrm{T}=43^{\circ} \mathrm{F} \pm ? ?$
Best guess: $\Delta T \sim 0.5^{\circ} \mathrm{F}$
Wind speed $12 \mathrm{mph} \pm$??
Best guess: $\Delta v \sim 0.5 \mathrm{mph}$

Mostly cloudy until late afternoon the becoming mostly sunny. Highs in the upper 30s. Northwest winds 10 to 15 mph with gusts to around 25 mph

This forecast is provided by
National Weather Service

Today

$\substack{\text { Willard } \\ \text { Airport } \\ 43^{\circ} \mathrm{F}}$	Today
9:53AM	

National Weather Service

Errors: Industry

Tight tolerances cost \$\$\$\$!!!

Errors: Science

How fast is the universe expanding? The Hubble Constant

Hubble Constant Over Time

We seek consilience between different techniques Do we need a new model, or are we missing sources of error??

Multiple methods:

- Standard candles:

How bright do objects of known properties appear?

- Peculiar variable stars
- Largest possible red giant stars
- Standard rulers:

How big do ripples in the cosmic microwave background look?

Measurements: Reading Errors

Typical reading error: $\pm 1 / 2$ of minimum gradation or count

$$
\Delta L \cong 0.03 \mathrm{~mm}
$$

How far should we go to minimize reading error?

What do we Need? In some cases we don't care about accuracy better than 1 mm

Tools

If a ruler doesn't do the job, use a digital caliper or Vernier caliper

Intrinsic Limits

E.g. thermal expansion

CTE $\Delta L / L=7.5 \times 10^{-5} K^{-1}$
$\Delta L \sim 0.004 \mathrm{~mm} / \mathrm{K}$

Measurements: Reading Errors

Fluke 8846A multimeter

Example Vdc (reading) $=0.85 \mathrm{~V}$ on 1 V range

$$
\begin{aligned}
& \Delta V=0.85 \times\left(1.8 \times 10^{-5}\right) \\
&+1.0 \times\left(0.6 \times 10^{-5}\right) \cong 2.2 \times 10^{-5}=22 \mu V
\end{aligned}
$$

8846A Accuracy

Accuracy is given as \pm (\% measurement + \% of range)

Range	$\mathbf{2 4 ~ H o u r}$ $\left(23 \pm \mathbf{1}^{\circ} \mathrm{C}\right)$	90 Days $\left(23 \pm 5{ }^{\circ} \mathrm{C}\right)$	$\mathbf{1 ~ Y e a r}$ $\left(23 \pm 5^{\circ} \mathrm{C}\right)$	Temperature Coefficient $/{ }^{\circ} \mathrm{C}$ Outside $\mathbf{1 8}$ to $\mathbf{2 8}{ }^{\circ} \mathrm{C}$
100 mV	$0.0025+0.003$	$0.0025+0.0035$	$0.0037+0.0035$	$0.0005+0.0005$
1 V	$0.0018+0.0006$	$0.0018+0.0007$	$0.0025+0.0007$	$0.0005+0.0001$
10 V	$0.0013+0.0004$	$0.0018+0.0005$	$0.0024+0.0005$	$0.0005+0.0001$
100 V	$0.0018+0.0006$	$0.0027+0.0006$	$0.0038+0.0006$	$0.0005+0.0001$
1000 V	$0.0018+0.0006$	$0.0031+0.001$	$0.0041+0.001$	$0.0005+0.0001$

Accuracy and Precision: Conceptual

Accuracy
How close does the measurement come to the true value?

Precision
How close do individual measurements come to each other?
Repeatability, consistency

Accuracy and Precision: Conceptual

Accuracy and Precision: Reality

... but in experimental science we don't know the true value a priori!

How long does a free neutron live before decaying to a proton, an electron, and a neutrino?

Wikipedia: Free neutron decay

Two Classes of Error

- Systematic error: Reproducible inaccuracy introduced by imperfect equipment, calibration or "Bias" measurement technique.
- Random error: Indefiniteness of results due to finite precision of experiment. Measure of fluctuation

"Noise"

 in result after repeatable experimentation.Philip R. Bevington "Data Reduction and Error Analysis for the Physical sciences", McGraw-Hill, 1969

Sources of Systematic Error

- Poor calibration of equipment
- Changes in environmental conditions
- Imperfect methods of measurement
- Offsets and drifts in instruments
- ... etc.

Example \#1: measuring a DC voltage

Sources of Systematic Error

Example \#2: Measuring the speed of "second sound" in superfluid 4He

Explanation is imperfect calibration Common issue with diodes at low T, where $d V / d T$ is small

Random Errors

Systematic error
Measured value

$$
x_{\text {meas }}=x_{\text {true }}+\stackrel{e_{s}}{e_{\text {Correct value }}}
$$

Where Does Randomness Come From?

Where have you found randomness in your other physics classes?

Random Errors: Poisson Distribution

$$
P_{n}(t)=\frac{(r t)^{n}}{n!} e^{-r t}
$$

Probability to observe n events in a time interval of length t.

Sole parameter is rate r (average events/second)

Siméon Denis Poisson
(1781-1840)
Wikipedia: Poisson distribution

Number of counts

A statistical process (e.g. radioactive decay) is described through a Poisson distribution if it is/has:

- Discrete: something decays or it doesn't ($n=0,1,2, \ldots$)
- No memory: Probability for a decay is the same in any time interval, no matter how early or late
- Universal probability: the probability to decay in a given time interval is the same for all nuclei
- Independence: The decay of one nucleus does not affect the probability of a second nucleus decaying

Random Errors: Poisson Distribution

$$
P_{n}(t)=\frac{(r t)^{n}}{n!} e^{-r t}
$$

Probability to observe n events ($\mathrm{n}=0,1,2, \ldots$) in a time interval of length t.

Sole parameter is rate r (average events/second)

$$
\begin{gathered}
\text { Properties of the Poisson distribution } \\
\sum_{n=0}^{\infty} P_{n}(t)=1 \quad \text { Probabilities sum } \\
\langle n\rangle=\sum_{n=0}^{\infty} n P_{n}(t)=r t \quad \text { Mean } \\
\sigma^{2}=\sum_{n=0}^{\infty}(n-\langle n\rangle)^{2} P_{n}(t)=r t \quad \text { Variance }
\end{gathered}
$$

Poisson Distribution at large rt

$$
P_{n}(t)=\frac{(r t)^{n}}{n!} e^{-r t}
$$

Carl Friedrich Gauss

 (1777-1855)$$
P_{n}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\langle x\rangle)^{2}}{2 \sigma^{2}}}
$$

Gaussian (continuous) distribution

Gaussian (Normal) Distribution

Rules of thumb	
- $\quad \pm 1 \sigma: \quad 68.3 \%$	
- $\quad \pm 2 \sigma: \quad 95.5 \%$	
- $\quad \pm 3 \sigma: \quad 99.7 \%$	
- $\quad \pm 4 \sigma: \quad 1$ in 16 k	
- $\quad \pm 5 \sigma: \quad 1$ in 1.75 M	
- $\quad \pm 6 \sigma: \quad 1$ in 500 M	

$$
P_{n}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\langle x\rangle)^{2}}{2 \sigma^{2}}}
$$

If I measure N events, the "best" estimate of the mean is their arithmetic mean.

The error on this estimate is $\frac{\sigma}{\sqrt{N}}$

Measurements in the Presence of Noise

Expected value 5V
4.89855

Noise is often (not always!) coupling between your test setup and some thermal bath

Hence the use of cryogenic detectors!

5.25111
2.93382
4.31753
4.67903
3.52626
4.12001
2.93411

Actual measured values

Measurements in the Presence of Noise

Note that the distribution isn't getting narrower at large N.

Instead, you'd have to be more and more unlucky to have enough fluctuations in one direction to move the arithmetic mean significantly

Measurements in the Presence of Noise

$$
\text { Result } \longrightarrow U=x_{c} \pm \frac{\sigma}{\sqrt{N}} \quad \begin{aligned}
& \sigma \text { - standard deviation } \\
& \mathrm{N} \text { - number of samples }
\end{aligned}
$$

For $\mathrm{N}=10^{6} \mathrm{U}=4.999 \pm 0.001 \quad 0.02 \%$ accuracy

Fitting Errors

Beta decay of neutron-activated silver foil

Fitting a parameterized model to data means finding the set of parameter values that minimizes the residuals - distances between data points and model curve.

Further details in the appendix slides: minimize what exactly, and how?

Error estimates: how far can we wiggle the parameters before the residuals increase "significantly"?

Error estimates assume model is correct and residuals are gaussian noise. Errors not trustworthy if these aren't roughly true!

Fitting Errors

Beta decay of neutron-activated silver foil

Fitting Errors: Examining the Residuals

Test \#2: No pronounced frequencies visible

Test \#1: generally Gaussian/symmetric residuals

Fitting Errors: Examining the Residuals

Test \#3: Autocorrelation shows no prominent correlation time scales

Correlation

Auto-correlation

$$
\begin{aligned}
& y_{f g}(m)=\sum_{n=0}^{N-1} f(n) g(n-m) \\
& y_{f f}(m)=\sum_{n=0}^{N-1} f(n) f(n-m)
\end{aligned}
$$

Examining Non-Ideal Fit Residuals

	Clean experiment	Data + "noise"
$\mathbf{t}_{\mathbf{1}}(\mathbf{s})$	177.76	145.89
$\mathbf{t}_{\mathbf{2}}(\mathbf{s})$	30.32	27.94

Examining Non-Ideal Fit Residuals

1. Histogram does not resemble a normal distribution
2. Prominent component at frequency 0.03333

Examining Non-Ideal Fit Residuals

Conclusion: Fitting function needs to be modified to incorporate an additional term

$$
y(t)=y_{0}+A_{0} e^{-t / t_{1}}+A_{1} e^{-t / t_{2}}+A_{3} \sin (\omega t+\theta)
$$

Caution: "With four parameters I can fit an elephant, and with five I can make him wiggle his trunk" John von Neumann, attributed by Enrico Fermi

Examining Non-Ideal Fit Residuals

	Clear experiment	Data + noise	Modified fitting
$\mathbf{t}_{\mathbf{1}}(\mathbf{s})$	177.76	145.89	172.79
$\mathbf{t}_{\mathbf{2}}(\mathbf{s})$	30.32	27.94	30.17

Error Analysis: Millikan Oil Drop Experiment

We expect both error components in each measurement

$$
Q_{\text {meas }}=Q_{\text {true }}+e_{s}+e_{r}
$$

... and there are various sources for each

Systematic error could include uncertainties in plate separation
$\boldsymbol{e}_{\boldsymbol{s}} \quad(d)$, applied DC voltage (V), ambient temperature (T), etc.

Random errors include
$\boldsymbol{e}_{\boldsymbol{r}} \quad$ uncertainties in measurement of $t_{\text {rise }}, t_{g}$, etc.

Uncertainty of time of crossing the marker line.

Systematic Error Analysis: Millikan Oil Drop Experiment

$$
\begin{gathered}
Q_{\text {meas }}=Q_{\text {true }}+e_{s}+e_{r} \\
\left.\boldsymbol{Q}=\boldsymbol{n e}=\boldsymbol{F} S T=\frac{1}{f_{c}^{2 / 3}} \frac{9 \pi d}{V} \sqrt{\frac{2 \eta^{3} x^{3}}{g \rho}} \sqrt{\frac{1}{t_{g}}\left[\frac{1}{t_{g}^{2 / 3}} \approx 1-\left(\frac{t_{g}}{\tau_{g}}\right)^{\frac{1}{2}}\right.}+\frac{1}{t_{\text {rise }}}\right] \\
\Delta Q=\sqrt{\left(\frac{d Q}{d F}\right)^{2}(\Delta F)^{2}+\left(\frac{d Q}{d S}\right)^{2}(\Delta S)^{2}+\left(\frac{d Q}{d T}\right)^{2}(\Delta T)^{2}} \approx \sqrt{\left(\frac{d Q}{d S}\right)^{2}(\Delta S)^{2}+\left(\frac{d Q}{d T}\right)^{2}(\Delta T)^{2}} \\
=\sqrt{(F T)^{2}(\Delta S)^{2}+(F S)^{2}(\Delta T)^{2}}=Q \sqrt{\left(\frac{\Delta S}{S}\right)^{2}+\left(\frac{\Delta T}{T}\right)^{2}}
\end{gathered}
$$

Systematic Error Analysis: Millikan Oil Drop Experiment

$$
\begin{gathered}
Q_{\text {meas }}=Q_{\text {true }}+e_{s}+e_{r} \\
\boldsymbol{Q}=\boldsymbol{n e}=\boldsymbol{F} S T=\frac{1}{f_{c}^{2 / 3}} \frac{9 \pi d}{V} \sqrt{\frac{2 \eta^{3} x^{3}}{g \rho}} \sqrt{\frac{\mathbb{1}}{t_{g}}}\left[\frac{1}{t_{g}}+\frac{1}{t_{\text {rise }}}\right] \\
\Delta Q \approx Q \sqrt{\left(\frac{\Delta S}{s}\right)^{2}+\left(\frac{\Delta T}{T}\right)^{2}}
\end{gathered}
$$

$$
\frac{\Delta S}{S}=\sqrt{\left(\frac{\Delta d}{d}\right)^{2}+\left(\frac{\Delta V}{V}\right)^{2}+\left(\frac{3}{2} \frac{\Delta x}{x}\right)^{2}+\left(\frac{3}{2} \frac{\Delta \eta}{\eta}\right)^{2}+\left(\frac{1}{2} \frac{\Delta \rho}{\rho}\right)^{2}+\left(\frac{1}{2} \frac{\Delta g}{g}\right)^{2}} \approx \sqrt{\left(\frac{\Delta d}{d}\right)^{2}+\left(\frac{3}{2} \frac{\Delta x}{x}\right)^{2}}
$$

$$
\Delta T=\sqrt{\left(\frac{3 / 2}{t_{g}^{5 / 2}}+\frac{1 / 2}{t_{g}^{3 / 2}} \frac{1}{t_{\text {rise }}}\right)^{2} \Delta t_{g}{ }^{2}+\left(\frac{1}{t_{g}^{1 / 2}} \frac{1}{t_{\text {rise }}{ }^{2}}\right)^{2} \Delta t_{\text {rise }}{ }^{2}}
$$

Appendix \#1: Analyzing the Charge Data

Step 1. Origin Project For Raw Data :

Ilengr-file-03\PHYINST\APL Courses\PHYCS401\Students\2. Millikan Raw Data

Data Analysis for Millikan Oil Drop Experi...	2/22/2008 9:36 AM	Adobe Acrobat D...	59 KB
Millikan_raw data.opj	$10 / 5 / 20174: 50 \mathrm{PM}$	OPJ File	15 KB
Millikan_raw data1.opj	$9 / 25 / 20181: 38$ PM	OPJ File	14 KB
Millikan1_calc.opj	$9 / 26 / 20181: 36 \mathrm{PM}$	OPJ File	95 KB
Millikan1_no_calc.opj	$9 / 25 / 20172: 03$ PM	OPJ File	66 KB
T measurement.opj	$9 / 26 / 20181: 36 \mathrm{PM}$	OPJ File	316 KB

All project files with raw data should be stored in: \lengr-file-03\PHYINST\APL
Courses\PHYCS401\Students\2. Millikan Raw Data

Only files with raw data should be stored in this common folder. Please remove files that are unrelated to the experimental results!

All other files, including those used for calculations, should be saved in your personal folder

Appendix \#1: Analyzing the Charge Data

Step 2. Working on your personal Origin project

Make a copy of the Millikan1 project to your personal folder and open it

Appendix \#1: Analyzing the Charge Data

Step 3. Make a histogram

Plot a histogram from the data in the column of drop charges

Appendix \#1: Analyzing the Charge Data

Step 4. Histogram - set bin size

Origin will choose the bin size h automatically, but not optimally. In the plot at right, $h=0.5$.

We want bins wide enough to control bin-to-bin fluctuations that obscure the pattern, but narrow enough not to wash out the pattern.

There are several theoretical approaches to finding the optimal bin size. One example:

$$
h=\frac{3.5 \sigma}{n^{1 / 3}}
$$

... where σ is the sample standard deviation, n is the total number of observations.
For the data at right, this yields $h^{\sim} 0.1$

Bin size above is 0.5 Peaks vaguely visible, but can't determine width

Appendix \#1: Analyzing the Charge Data

Step 4. Histogram - set bìn size

To change the bin size, click on the graph the uncheck the "Automatic Binning" option

[^0]

Appendix \#1: Analyzing the Charge Data

Step 4. Histogram - find the bin worksheet
Right-clock on the histogram and choose
"Go to bin worksheet"

Appendix \#1: Analyzing the Charge Data

Appendix \#1: Analyzing the Charge Data

Step 5. Multi-peak gaussian fit

Appendix \#1: Analyzing the Charge Data

Step 5. Multi-peak gaussian fit

First peak: mean 0.882 ± 0.007

Appendix \#1: Issues with Oil Drop Data

Be careful with data selections obtained by different teams!

For more details how to create the histogram plot and do the analysis, see "Working with Histogram Graph. Millikan Oil Drop Experiment" (E.V. Colla)

Appendix \#1: Increasing Experimental Accuracy

$$
Q_{\text {meas }}=Q_{\text {true }}+e_{s}+e_{r}
$$

Systematic error could be improved with more precise knowledge of the experimental parameters: plate separation (d), applied DC $\boldsymbol{e}_{S} \quad$ voltage (V), ambient temperature (T), etc.

Usually these are limited by existing measurement equipment

Random or statistical errors can be reduced only by increasing
$\boldsymbol{e}_{\boldsymbol{r}} \quad$ the number of data points (no limit!)

Appendix \#2: Fitting Models to Data

Fitting a model to data means finding the set of parameter values that gets the model function "closest" to the data

- Data: ordered pairs $\left(x_{i}, y_{i}\right)$, often in the form of an $N \times 2$ matrix
- Independent variable x_{i}, e.g. frequency, time, etc.
- Dependent variable y_{i}, e.g. signal magnitude
- Model function: $y=f(x ; \beta)$, which takes some set of parameters β

What exactly does "closest" mean? Minimizing some cost function - most often the sum of squared deviations:

$$
S(\beta)=\sum_{i=1}^{N}\left[f\left(x_{i} ; \beta\right)-y_{i}\right]^{2}
$$

Appendix \#2: Fitting Models to Data

$$
S(\beta)=\sum_{i=1}^{N}\left[f\left(x_{i} ; \beta\right)-y_{i}\right]^{2}
$$

There are several minimization algorithms for solving such problems. Origins uses the Levenberg-Marquardt algorithm for nonlinear fitting, which is optimized for quadratic cost functions like this one.

These algorithms proceed from a starting guess and traverse the cost function "landscape" (hopefully efficiently!) to find a global minimum.

How well they do depends on the quality of the starting guess, and it's easy to get trapped in local minima.

Appendix \#2: Fitting Models to Data

Appendix \#2: Fitting Models to Data

An example of poor results from the fitting procedure

Appendix \#3: Some Reminders

1. Reports should be uploaded only to the proper folder for your activity and section

- For example, folder Frequency domain analysis_L1 should only be used by students from section L1
- Submit only one copy (no need to submit e.g. both Word and PDF)
- Show your name, and only your name, in the list of authors on the title page of the report
- I recommend the following file name style:

L1_lab5_LastName

[^0]: Bin size is now 0.1, pattern is visible!

