Having established that ray tracing is a valid way to think about some aspects of reflection and refraction, we now set out to create a lens.

What is a lens? In the simplest case, it is an interface between two media that takes rays from one point and focuses them to another:

\[n_1 \frac{SA}{n_2 \frac{AP}{C}} = C \]

What shape should the interface be? Applying Fermat's principle, a ray will follow the path of minimum time, i.e., the minimum OPL.

Q1: How can all the rays from the same location end up at the same point?

A: If all those paths take the same time, i.e., have the same optical path length, for the above situation, this means

\[n_1 \frac{SA}{n_2 \frac{AP}{C}} = C \]

If you write it out, the above expression is the equation for a hyperbola.

Sadly, hyperbolas are extremely difficult to make. Lenses are usually ground, which essentially always yields a surface shaped like a sphere. So, the question then is whether spherical shapes can be used as lenses, and when?

Consider, then, a spherical interface:
The center line in such an arrangement is called the optic axis. We will start by considering the case where the ray crosses the optic axis at point \(P \) (we will relax this assumption shortly).

In this case, the optical path length is

\[
\text{OPL} = n_1 l_0 + n_2 l_i
\]

Now apply the law of cosines:

For angle SCA:

\[
l_0 = \left[(s_0 + R)^2 + R^2 - 2R(s_0 + R) \cos \phi \right]^{1/2}
\]

For angle ACP:

\[
l_i = \left[(s_i - R)^2 + R^2 + 2R(s_i - R) \cos \phi \right]^{1/2}
\]

where we have used the fact that

\[
\cos(\pi - \phi) = -\cos \phi
\]

what we would like to know which path the light takes from \(S \) to \(P \). In other words, we want to know which value of \(\phi \) minimizes the transit time, i.e., that satisfies the following condition:

\[
\frac{d\text{OPL}}{d\phi} = 0
\]

Doing this derivative gives

\[
\frac{n_1 R(s_0 + R) \sin \phi}{l_0(\phi)} - \frac{n_2 R(s_i - R) \sin \phi}{l_i(\phi)} = 0
\]

or

\[
\frac{n_1}{l_0} + \frac{n_2}{l_i} = \frac{1}{R} \left(\frac{n_2 s_i - n_1 s_0}{l_i} \right)
\]

In an ideal lens, this expression would be independent of \(\phi \). In the current case, different rays converge to different locations, and the imaging is imperfect. These imperfections are termed **spherical aberrations**.

Gaussian Optics

Things simplify if we stay near the optic axis. In this case \(\phi \) is small; \(\cos \phi \approx 1 \), and

\[
l_0 \approx s_0
\]
\[l_i \approx s_i \]

In this case, our expression reduces to

\[\frac{n_1}{s_0} + \frac{n_2}{s_1} = \frac{n_2-n_1}{R} \]

Comments:

1. This expression is independent of \(\theta \).
2. This expression is reversible, i.e., it is valid for rays emerging from \(S \) and arriving at \(P \) (for small angles, at least).

And invert the curvature

\[R \Rightarrow -R \]

It is useful to consider the two limiting cases of 1) the rays being

Focused at \(\infty \) and 2) parallel rays focusing to \(P \).

In the former case, \(s_i = \infty \) so

\[\frac{n_1}{s_0} + \frac{n_2}{\infty} = \frac{n_2-n_1}{R} \]

This gives

\[s_0 = \frac{n_1}{n_2-n_1} R \equiv f_o \text{ object focal length} \]

In the latter case, \(s_o = \infty \) and

\[\frac{n_1}{\infty} + \frac{n_2}{s_i} = \frac{n_2-n_1}{R} \]

or

\[s_i = \frac{n_2}{n_2-n_1} R \equiv f_i \text{ image focal length} \]

Earlier we made the assumption that the rays converge to point \(P \). But our expressions are valid even if the rays
never cross the optic axis:

\[S_0 \rightarrow f_0 \rightarrow P \]

\[n_1 \rightarrow n_2 \]

In the latter case, \(S_0 < f_0 \) and \(S_1 < 0 \). In this case we have a virtual focus at \(P \) on the left side.

Discussion topic: what is a virtual focus?

It is time to close the other side to make a real lens

\[\text{(c)} \]

we will start by considering the specific case where \(S_{01} < f_0 \) for the left face. In this case the image is virtual and resides at \(P' \):

\[\frac{n_m}{S_{01}} + \frac{n_s}{S_{01}} = \frac{n_s - n_m}{R_1} \]

\(P' \) acts like the object for the right face, at object distance

\[S_{02} = |S_{z1}| + d = -S_{z1} + d \]
since $s_i < 0$. Now apply our formula to the right face:

\[
\frac{n_e}{-s_{i1} + d} + \frac{n_m}{s_{i2}} = \frac{n_m - n_e}{R_2}
\]

where we recall that $R_2 < 0$ the way the picture is drawn. Add the two expressions together:

\[
\frac{n_m}{S_0} + \frac{n_e}{-s_{i1} + d} + \frac{n_m}{s_{i2}} = \frac{n_e - n_m}{R_1} + \frac{n_m - n_e}{R_2}
\]

\[
\frac{n_m}{S_0} + \frac{n_m}{s_{i2}} = (n_e - n_m) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) + \frac{n_e d}{s_{i1}(d-s_{i1})}
\]

Finally, we will assume our lens is thin, i.e., $d < s_{i1}$, so we can neglect the last term. We are left with the Thin Lens Equation or Lensmaker's formula:

\[
\frac{n_m}{S_0} + \frac{n_m}{s_{i2}} = (n_e - n_m) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) = \frac{1}{f}
\]

Most of the time $n_m = 1$, so we will often just write

\[
\frac{1}{S_0} + \frac{1}{s_{i2}} = (n_2 - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)
\]

when we have also dropped the 1 and 2 subscripts, since we are not interested in the intermediate image.

Comments:

1. We derived this formula for the case $S_0 < S_0$, but - like before - this is not true.

2. The signs of R_1 and R_2 define the type of lens:

 - $R_1 > 0$, $R_2 > 0$: $R_1 < 0$, $R_2 < 0$, $R_1 > 0$, $R_2 > 0$, $R_1 = \infty$, etc.
Like before, it is useful to examine some limits:

$$s_0 = \infty$$

$$\frac{1}{s_i} = \left(n_e - 1 \right) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

$$s_i = \infty$$

$$\frac{1}{f_0} = \left(n_e - 1 \right) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

Evidently,

$$\frac{1}{f_0} = \frac{1}{f_i} = \frac{1}{\frac{1}{s_i}} = \left(n_e - 1 \right) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

Extended Images

$$\Theta = \frac{1}{f} \text{ magnification power}$$

The value of lenses, of course, is that they can make images. One can deduce how simply by recognizing that rays passing through the center of a thin lens do not bend (or more precisely, they bend, but bend right back):

Clearly, \(\frac{y_i}{y_0} = - \frac{s_i}{s_0} \)

or \(\frac{y_i}{y_0} = - \frac{s_i}{s_0} = M_T \text{ Transverse magnification.} \)

The - sign symbolizes the image being inverted.

Mirrors

Imaging can also be carried out...
with mirrors. Like lenses, ground mirrors are usually spherical, but can be used for imaging in the paraxial region.

\[\frac{1}{s_0} + \frac{1}{s_c} = -\frac{2}{R} = \frac{1}{f} \]

Mirror formula

$s_c < 0 \Rightarrow$ real image on the left hand side of the mirror

$s_c > 0 \Rightarrow$ virtual image on the right