Quantum Entanglement and Applications

Trent Graham

Advisor: Paul Kwiat December 3, 2013

Entanglement is a feature of compound quantum systems

- States that can be written $|\Psi\rangle_{AB} = |\phi^1\rangle_A |\phi^2\rangle_B$ are separable
- States that <u>cannot</u> be written this way are entangled

Example: the *Bell states* $|\Phi^{\pm}\rangle = \frac{1}{\sqrt{2}}(|0\rangle |0\rangle \pm |1\rangle |1\rangle)$ & $|\Psi^{\pm}\rangle = \frac{1}{\sqrt{2}}(|0\rangle |1\rangle \pm |1\rangle |0\rangle)$ are inseparable

$$\Phi' \rangle = (\alpha |0\rangle + \beta |1\rangle) (\gamma |0\rangle + \delta |1\rangle) = \alpha \gamma |0\rangle |0\rangle + \alpha \delta |0\rangle |1\rangle + \beta \gamma |1\rangle |0\rangle + \beta \delta |1\rangle |1\rangle$$

No solution!

Measurement outcomes are random and correlated

What's so special about entanglement?

Classical things can be random and correlated, too...

- ... but not entangled!
- How is this different from an entangled state?
- Each marble has a defined color from the beginning (local hidden variable)
- The processes are <u>distinguishable</u> in principle
- There is no conjugate measurement basis

Entangled systems give random and correlated measurement outcomes in every measurement basis!

Spontaneous Parametric Down Conversion

- Nonlinear crystals (such as BBO) have a small chance of splitting a high-energy photon into two lowenergy photons*.
- Daughter photons diverge in a cone from the source because of energy and momentum conservation.

* Burnham and Weinberg, PRL 25, 84 (1970)

Polarization Entanglement

- A polarization entangled state can be created by pumping two orthogonally oriented crystals with a superposition of H and V polarization*.
- The two-photon state can be controlled by manipulating the pump polarization state.
- * Kwiat et al., PRA 60, R773 (1999)

Temporal-Mode Entanglement*

• A temporal-mode entangled state can be created by pumping a nonlinear crystal with a coherent superposition of pulses.

* Brendel et al., PRL 82, 2594 (1999)

Orbital Angular Momentum Entanglement*

- Conservation of orbital angular momentum → photons are always correlated in spatial mode.
- A combination of fibers and holograms are used to filter out all but the ± 1 orbital angular momentum modes.
- * Barreiro et al., PRL 95, 260501 (2005)

Hyperentanglement

- By combining these techniques, we create states simultaneously entangled in multiple degrees of freedom*.
- * Barreiro et al., PRL 95, 260501 (2005)

Super-Dense Coding

- Super-dense coding may be used to communicate a 2-bit message with a single transmitted qubit*.
- Bob can only distinguish three Bell states limiting this technique to 1.59 bits/photon**.

* Bennett and Wiesner, PRL 69, 2881 (1992)

** Mattle et al., PRL 76, 4656–4659 (1996)

Quantum Teleportation

- Quantum teleportation can be used to teleport a qubit with a 2-bit message over classical communication channel*.
- The utility of this technique is limited because of the required Bell state measurement**.

* Bennett and Wiesner, PRL 69, 2881 (1992) ** Vaidman and Yoran, PRA 59, 116 (1999)

Summary

- Entangled systems cannot be completely described independently
- Entanglement is a type of correlation between quantum systems that is stronger than any classical correlation
- Entanglement is fairly easy to create in the lab
- Entanglement plays a central role in quantum information applications