The Tiny Muon versus the Standard Model

Paul Debevec Physics 403 November 14th, 2017

BNL E821 Muon g-2 Collaboration

G.W. Bennett², B. Bousquet⁹, H.N. Brown², G. Bunce², R.M. Carey¹,
P. Cushman⁹, G.T. Danby², P.T. Debevec⁷, M. Deile¹¹, H. Deng¹¹, S.K. Dhawan¹¹,
V.P. Druzhinin³, L. Duong⁹, E. Efstathiadis¹, F.J.M. Farley¹¹, G.V. Fedotovich³,
S. Giron⁹, F. Gray⁷, D. Grigoriev³, M. Grosse-Perdekamp¹¹, A. Grossmann⁶,
M.F. Hare¹, D.W. Hertzog⁷, X. Huang¹, V.W. Hughes¹¹, M. Iwasaki¹⁰,
K. Jungmann⁵, D. Kawall¹¹, B.I. Khazin³, F. Krienen¹, I. Kronkvist⁹,
A. Lam¹, R. Larsen², Y.Y. Lee², I. Logashenko^{1,3}, R. McNabb⁹, W. Meng²,
J. Mi², J.P. Miller¹, W.M. Morse², D. Nikas², C.J.G. Onderwater⁷, Y. Orlov⁴,
C.S. Özben², J.M. Paley¹, Q. Peng¹, C. Polly⁷, J. Pretz¹¹, R. Prigl²,
G. zu Putlitz⁶, T. Qian⁹, S.I. Redin^{3,11}, O. Rind¹, B.L. Roberts¹, N. Ryskulov³,
P. Shagin⁹, Y.K. Semertzidis², Yu.M. Shatunov³, E.P. Sichtermann¹¹,
E. Solodov³, M. Sossong⁷, A. Steinmetz¹¹, L.R. Sulak¹, A. Trofimov¹,
D. Urner⁷, P. von Walter⁶, D. Warburton², and A. Yamamoto⁸.

¹Department of Physics, Boston University, Boston, Massachusetts 02215

²Brookhaven National Laboratory, Upton, New York, 11973

³Budker Institute of Nuclear Physics, Novosibirsk, Russia

⁴Newman Laboratory, Cornell University, Ithaca, New York 14853

⁵ Kernfysisch Versneller Instituut, Rijksuniversiteit Groningen, NL 9747AA Groningen, The Netherlands

⁶ Physikalisches Institut der Universität Heidelberg, 69120 Heidelberg, Germany

⁷ Department of Physics, University of Illinois at Urbana-Champaign, Illinois 61801

⁸ KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan

⁹Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455 ¹⁰ Tokyo Institute of Technology, Tokyo, Japan

¹¹ Department of Physics, Yale University, New Haven, Connecticut 06520

Muon g-2 Collaboration 8 Countries, 35 Institutions, 185 Collaborators

Standard Model of Particle Physics

Components of the Standard Model of Particle Physics

Quarks
$$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$$
our focusLeptons $\begin{pmatrix} e \\ v_e \end{pmatrix} \begin{pmatrix} \mu \\ v_e \end{pmatrix} \begin{pmatrix} \tau \\ v_e \end{pmatrix} \begin{pmatrix} \tau \\ v_e \end{pmatrix}$ 207 × electron mass
"point" particle
decays in 2.2 µs
charged
intrinsic "spin"Gauge Bosons $\gamma \begin{pmatrix} W^{\pm} \\ Z^o \end{pmatrix} \begin{pmatrix} g \\ \cdot \\ g \end{pmatrix}$ $\begin{pmatrix} g \\ \cdot \\ g \end{pmatrix}$

Standard Model of Particle Physics

magnetic moment of a current loop

ĥ

S

in classical electricity and magnetism current loop has a magnetic dipole moment

$$\vec{\mu} = I A \hat{n}$$

magnetic dipole creates a magnetic field

current from orbital motion of a charge

 g_ℓ

magnetic moment proportional to orbital angular momentum

$$\mu = e \frac{v}{2\pi R} \pi r^2 = \frac{e}{2M} M v r$$
$$\vec{L} = M \vec{r} \times \vec{v}$$

$$I = e \frac{v}{2\pi r} \quad A = \pi r^2$$

$$\vec{\mu} = g_{\ell} \frac{e}{2M} \vec{L} \quad g_{\ell} = 1$$

constanct of proportionality is gyromagnetic ratio or g-factor

quantization of angular momentum

from atomic structure-- quantum numbers

orbital angular momentum azimuthal angular momentum $\ell = 0, 1, 2, ...$ $m_{\ell} = 0, \pm 1, \pm 2, ..., \pm \ell$ integral quantum numbers

E

spin angular momentum and spin magnetic moment

$$s = 1/2$$
$$m_s = \pm 1/2$$

$$\vec{\mu} = g_s \frac{e}{2M} \vec{S} \quad g_s = 2$$

$$\mu = 2\frac{e}{2M}\frac{1}{2}\hbar = \frac{e\hbar}{2M}$$

magnetic moment is one Bohr magneton

spin g-factor is beyond classical physics

arbitrary matter/charge distribution gives g = 1

$$\vec{L} = \int \rho_{matter} \left(\vec{r} \right) \left[\vec{r} \times \vec{v} \left(\vec{r} \right) \right] dV$$

$$\vec{\mu} = \int \left[\vec{r} \times \vec{J} \left(\vec{r} \right) \right] dV$$
$$\vec{J} \left(\vec{r} \right) = \rho_{charge} \left(\vec{r} \right) \vec{v} \left(\vec{r} \right)$$

$$\rho_{charge}\left(\vec{r}\right) = \frac{e}{M} \rho_{matter}\left(\vec{r}\right)$$

$$\vec{\mu} = \frac{e}{2M}\vec{L} \implies g = 1$$

spin g-factor is quantum mechanical

Schrodinger equation

Dirac equation

point particle with spin 1/2 in E and B fields has g = 2

Field theory

(these results are not elementary)

magnetic moment in a magnetic field

potential energy $U = -\vec{\mu} \cdot \vec{B}$

torque
$$\vec{\tau} = \vec{\mu} \times \vec{B}$$

magnetic moment precesses in magnetic field

$$\vec{\tau} = \vec{\mu} \times \vec{B} = \frac{d}{dt}\vec{S}$$

$$\left|\vec{\mu} \times \vec{B}\right| = \left|\vec{\mu}\right| \left|\vec{B}\right| \sin \theta = g_s \frac{e}{2M} \left|\vec{S}\right| \left|\vec{B}\right| \sin \theta$$

$$\left|\frac{d}{dt}\vec{S}\right| = \omega_s \sin \theta \left|\vec{S}\right|$$

$$\omega_s = g_s \frac{e}{2M}B$$

precession (angular) frequency proportional to B and g_s measure B and ω_s to determine g_s

magnetic moments and g-factors of selected particles

$$\mu = g_s \frac{e}{2M} S = g_s \frac{e\hbar}{2M} \frac{S}{\hbar}$$

electron	$g_{e} = 2 \times 1.001$	"noint" particles	
muon	$g_{\mu} = 2 \times 1.001$	point purtieles	
proton	$g_{p} = 2 \times 2.79$	composito particlas	
neutron	$g_n = 2 \times -1.91$	composite particles	

g-factor anomaly

anomaly defined

$$a \equiv \frac{g-2}{2}$$

anomaly explained

all particles are surrounded by virtual particles and fields

(this figure is a cartoon)

spin direction is quantized

add perturbation of virtual fields and particles

with perturbation energy levels repel so g must increase

g-factor anomaly

(this figure is a Feynman diagram)

Standard Model contributions to g-factor anomaly QED + hadronic + weak

Interaction	Field	Particles
QED	photons	$e^+ e^- \mu^+ \mu^- etc$
strong	gluons	π^+ $\pi^ \pi^o$ quarks etc
weak	$W^+ \ W^- \ Z$	$e^+ e^- \mu^+ \mu^- etc$
		$V_e \overline{V}_e V_\mu \overline{V}_\mu$

measure the g-factor anomaly to search for new physics

QED + **WEAK** + **HADRONIC**

What is the sensitivity to new physics? How accurate is the experiment? How accurate is the theory?

muon anomaly versus electron anomaly

- •Electron is stable and common
- •Electron anomaly ha been measured to 4 parts in 1,000,000,000
- •Hadronic contribution only 2 ppb
- •Weak contribution only 0.03 ppb
- •Coupling to virtual particles is

$$\propto \left(\frac{M_{\ell}}{M_{X}}\right)^{2} \quad \ell = e / \mu$$

•So, muon anomaly is 40,000 more sensitive

Standard Model calculation of muon anomaly - QED

QED contribution is well known and understood dominant contribution 99.9930% of anomaly

a(QED)=11 658 470.57(0.29)×10⁻¹⁰ (0.025 ppm)

representative diagrams--hundreds more

Standard Model calculation of muon anomaly - Weak

Weak contribution is also well known and understood 1.3 parts per million contribution

a(Weak)=15.1(0.4)×10⁻¹⁰ (0.03 ppm)

representative diagrams--many more

Standard Model calculation of muon anomaly - Hadronic

Hadronic contribution cannot be calculated from QCD (yet)

Standard Model calculation of muon anomaly - Hadronic

Speculations of physics beyond the Standard Model

Elements of g-2 experiment

• Polarized muons

pion decay produces polarized muons

• Precession gives (g-2)

in a storage ring the spin precesses relative to the momentum at a rate \propto (g-2)

Parity violation

positron energy indicates the direction of the muon spin

• P_{μ} The magic momentum

at one special momentum, the precession is independent of the electric focussing fields

Polarized Muons

•Pion decay is the source of polarized muons

Precession in Uniform Field of Storage Ring

cyclotron frequency

$$\omega_c = \frac{e}{M} \frac{1}{\gamma} B$$

Difference Frequency ω_a

difference frequency \propto g-2, not g, independent of γ !

Measuring the Spin Direction

High energy positrons in the LAB frame are emitted at forward angles in the CM frame

Storing the Muons The Magic Momentum

Problem: Orbiting particles hit the top or bottom Solution: Build a trap with electric quadrupoles

Moving muons "see" electric field like another magnetic field...and their spins react...

$$\vec{\omega}_a = \frac{e}{M} \left[a \vec{B} - \left(a - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{v}}{c^2} \times \vec{E} \right] \qquad \gamma = 29.3$$
$$\tau = 64 \ \mu s$$

vanishes at 3.094 GeV/c

$$B = \frac{\hbar \omega_{\rm p}}{2\mu_{\rm p}} \qquad \qquad a_{\mu} = \frac{\omega_{\rm a}}{\frac{e}{m_{\mu}}B}$$

BNL E821 Analysis Strategy

Storage Ring / Kicker

Radius	7112 mm
Aperture	90 mm
Field	1.45 T
P _m	3.094 GeV/c

Fast Rotation

Magnetic Field

Measured *in situ* using an NMR trolley

Continuously monitored with > 360 fixed probes mounted above and below the storage region

Field Contours Averaged around Ring

	Systematic Entons for	wр	
		•	Size [ppm]
1)	absolute calibration		0.05
2)	trolley probe calibration		0.15
3)	trolley measurement of B_0		0.10
4)	interpolation with fixed probe		0.10
5)	muon distribution		0.03
6)	others		0.15

Systematic Errors for "".

Total Systematic Error $\delta \omega_p = 0.24 \text{ ppm}$

Measuring the difference frequency

< 20 ps shifts

< 0.1% gain change

"

One Analysis Challenge: Pileup Subtraction

Phase shift can be seen here

Two are close; we can still separate these

With two software deadtimes, we extrapolate to zero deadtime and make a pileup-free histogram

Systematic Errors for " ω_a "

		Size [ppm]
1)	coherent betatron oscillations	0.21
2)	pileup	0.13
3)	gain changes	0.13
4)	lost muons	0.10
5)	binning and fitting procedure	0.06
6)	others	0.06

Total Systematic Error $\delta \omega_a = 0.31 \text{ ppm}$

Results from the 2000/2001 runs & World Average

World average $a_{\mu} = 11659208(6) \times 10^{-10}$

Muon anomalous magnetic moment, a_u.

 a_{μ}^{SM} = 116 591 802 (49) x 10⁻¹¹ (0.42 ppm) a_{μ}^{EX} = 116 592 089 (63) x 10⁻¹¹ (0.54 ppm) longstanding 3.5σ discrepancy with standard model prediction.

 goal of FNAL g-2 expt to reduce the experimental uncertainty by fourfold.

The Big Move from Brookhaven to Fermilab

http://muon-g-2.fnal.gov/bigmove/gallery.shtml

count / 2*149 ns 🗕 data — fit 10³ 10² 10 Fermilab Muon g-2 collaboration μ Commissioning Run, June 2017 PRELIMINARY 1 20 30 60 10 40 50 70 80 0 time modulo 80 µs

Number of high energy positrons as a function of time