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* The reading error

* Accuracy and precession
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* Fitting errors

* Presentation of the results



Introduction

* Uncertainties exist in all experiments

* The final goal of any experiment 1s to obtain reproducible results.
Knowing errors and uncertainties 1s an essential part for ensuring
reproducibility.

* To know the uncertainties, we use two approaches:

(1) Repeat each measurement many times and determine how well the
result reproduces itself. The results are always at least slightly
different. These differences represent statistical errors.

(2) Measure the quantity of interest using a different method. The
results, if correct, are independent of the measurement technique.
If the results are consistently different then there are systematic
errors in one of the methods or in both.

(3) Presenting the result of your experiment: Use the right number
of significant digits, in agreement with the estimated
uncertainty.
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Left: statistical errors. Right: statistical and systematic errors.
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Systematic vs. Statistical Uncertainties

« Systematic uncertainty

— Uncertainties associated with imperfect knowledge of
measurement apparatus, other physical quantities needed for the
measurement, or the physical model used to interpret the data.

— Generally correlated between measurements. Cannot be reduced
by multiple measurements.

— Better calibration, or measurements employing different
techniques or methods can reduce the uncertainty.

 Statistical Uncertainty

— Uncertainties due to stochastic fluctuations of molecules and
photons and vibrations etc.

— Generally, there 1s no correlation between stocastic errors of
successive measurements.

— Multiple measurements can be used to reduce this uncertainty.

I
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Example of Systematic Error

« For example, 1f your measuring tape has been stretched out,
your results will always be lower than the true value.
Similarly, if you’re using scales that haven’t been set to zero
beforehand, there will be a systematic error resulting from the
mistake in the calibration. Such errors cannot be reduced
simply by repeating the measurement and averaging the
results. Such errors can be reduced by analyzing the
instrument(s) used for the measurement and by using different
instruments.

1
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Example: Systematic errors in electrical measurements

Sources of systematic errors: poor calibration
of the equipment, changes of environmental
conditions, imperfect method of observation,
drift and some offset in readings etc.

Example #1: measuring of the DC voltage

L]
Current |
U
source

actual result

[U = R+l + Voff }

Vi = Offset Voltage

expectation

| u=rer |
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Measuring of the speed of the
second sound in superfluid He4
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Definitions (NIST)

The standard uncertainty O of a measurement result x is the estimated

standard deviation of x.

(The relative standard uncertainty ¢, of a measurement result x 1s defined by
o, = 6 /|x|, where x 1s not equal to 0.)

In statistics, the standard deviation (SD, also represented by the Greek
letter sigma o) is a measure that is used to quantify the amount of variation
or dispersion of a set of data values. 4 low standard deviation indicates that
the data points tend to be close to the mean value of the set (u=<x>), while
a high standard deviation indicates that the data points are spread out over
a wider range of values.

1 & 1
7= ﬁZ(mi—u)z, where #:ﬁ;ﬂ:i

1=1

I
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Pn(x) —

The interval representing two standard deviations contains
95.4% of all possible true values.
] Confidence interval <x> + 36 contains 99.7% of possible outcomes.

illinois.edu



T Y B G

(o
o)
| bt (@

Notations

o ittt

Use of concise notation:

If, for example the average value of the speed i1s v =1 234.567 89 m/s
and and the standard deviation is Av = 0.000 11 m/s (here m/s are the
units of v), then we write v =(1234.567 89 £ 0.000 11) m/s.

A more concise form of this expression, and one that 1s used
sometimes, 1s v =1 234.567 89(11) m/s, where 1t understood that the
number 1n parentheses is the numerical value of the standard
uncertainty referred to the corresponding last digits of the quoted
result.

Examples of results which do not make sense (too many digits):
v =(1234.5678934534940945 + 0.011) m/s
orv=(1234.56 £ 2) m/s

I
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Significant digits

][ ATMOSPHERIC SCIENCES U

WEHSIT‘I" OF ILLINOIS AT URBANA-CHAMPAIGH

Department of Atmospheric Sciences = Urbana-Champaign WWeather

CURRENT CONDITIONS

Willard Rest Of today

Airport
10:53AM

Partly sunny with izolated showers.
Highs in the mid 60s. Northwwest winds 5
to 10 mph. Chance of precipitation 20
percent.

Partly Cloudy Skies
Temperature: 63°F
Dew Point: 43°F
Eel. Homudity: 47%
‘F.Tu:_l.d_s :. LETES 4. s Thiz forecast is provided by
‘u“lSihilﬂj,’: 10 miles Nafionsl Weather Service
Prezzure: 10193 mb (§0N0 in)
Sunrize: 6:41AM

Sunset: 6:40PM

T = 63°F+? —> Best guess AT~0.5°F

Wind speed 4mph+? —> Best guess +0.5mph

If they say T=63.32456 F, that would be wrong
] since it is not possible to predict or even measure the temperature at our campus

with such high precision.
illinois.edu physics 403 12



Measurement of the speed
of the light

1675 Ole Roemer: 220,000 Km/sec

Ole Christensen Rogmer
1644-1710

Does it make sense?
What is missing?

Fia. 70.

Maxwell’s theory prediction:
| The speed of light does not depend on the light wavelength, frequency or
IH color. It is a universal constant.
= NIST Bolder Colorado ¢ = 299,792,456.2+1.1 m/s.
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-
L=53mmzAL(?) AL = 0.03mm

A

! / Acrylicrod
ﬁ

How far we have to go in reducing the reading error?
Wooden ruler is not very

you do not care about need to use accurate because it has a large
digital calipers thermal expension coefficient.

accuracy better than
/

1mm
o

. 1 < . .
][ Reading Error = 3 (least count or minimum gradation).

physics 403 14
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The accuracy of an experiment Precision refers to how closely

is a measure of how close the individual measurements agree
result of the experiment comes with each other
to the true value

I
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Accurate, Precise

Accurate, Not Precise
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Reading error. Digital meters.
Fluke 8845A multimeter
Example Vdc (reading)=0.85V
AV
=0.85%x(1.8x107%) +1
X (6 X 1076)~ 20uV
8846A Accuracy
Accuracy is given as * (% measurement + % of range)
Temperature
24 Hour 90 Days 1 Year -
Range o 5 R Coefficient/ °C
(23 £1 °C) (23 £5°C) (23+5°C) Outside 18 to 28 °C
100 mV 0.0025 +0.003 0.0025 + 0.0035 0.0037 +0.0035 0.0005 + 0.0005
1V 0.0018 + 0.0006 0.0018 + 0.0007 0.0025 + 0.0007 0.0005 + 0.0001
10V 0.0013 + 0.0004 0.0018 + 0.0005 0.0024 + 0.0005 0.0005 + 0.0001
100V 0.0018 + 0.0006 0.0027 + 0.0006 0.0038 + 0.0006 0.0005 + 0.0001
1000 V 0.0018 + 0.0006 0.0031 + 0.001 0.0041 + 0.001 0.0005 + 0.0001

I
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Figure 3.Magnetization (M/Ms) of Mn3 single
crystal versus applied magnetic field with the
sweeping rate of 0.003 T/s at different
temperatures. The inset shows ZFC and FC curves.

Phys. Rev. B 89, 184401

T
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o/ o (300K)

06
Density, n

04} 420°C 0.0694 1.3021*10* 3.35

460 °C 0.99 - 3.63
o 500 °C 1.56 1.5625*10* 266

0 s i s i i
0 50 100 150 200 250 300
T (K)

Figure 2. Normalized conductivity vs temperature for
three 250-nm-thick KO0.33WO03-y films on YSZ
substrates. The films are annealed in vacuum at
different temperatures, with properties shown in the
inset table. The units of T, are degrees Celcius,
00 is given in 1/mQcm, n in /cm3, and Tc in degrees

Kelvin.

Phys. Rev. B 89, 184501
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Events /(0.16 )

-8 -6 -4 -2 0 2 4 6 8
dE/dx Combined Residual

Figure 1. Normalized residuals of the combined dE/dx for antideuteron candidates in the Onpeak Y(2S)
data sample, with fit PDFs superimposed. Entries have been weighted, as detailed in the text. The solid

(blue) line is the total fit, the dashed (blue) line is the d™ signal peak, and the dotted (red) line is the
background.

Phys. Rev. D 89, 111102(R)

i
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NewFunction5 (User) Fit lamda

Model NewFunction5 (User)
20000 o somaes Model  NewFunction5 (User)

Chi-Sq |

Adj. R-Square 0.90931 Value Standard Error Eq u at I O n A/( 1 -(X/b ) A4) A | 5

e T Reduced Chi-Sqr ~ 4.0762E6

Adj. R-Square 0.90931

10000

lamda (nm)

lamda A 527.99346  142.5365
. = " lamda b 3.38882 0.00619

3.37 3.38 3.39

Tp(K)
Figure 10(ii): lambda versus T for indium film with
thickness 300 nm. Input voltage is 0.2v. Critical

temperature(b) and penetration depth(A) at 1. Units must be written
t t 0 K is det ined ]
L 2. Number of digits must be reasonable

Formula for the fitting curve must be provided

I
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| ribut
e" n-= 012}

t: time interval [s)

Siméon Denis Poisson

I': decay rate (number of events per second) [counts/s]

= P,,,(rt) : Probability to have n decays in time interval £

(1781-1840)

0 j 5 10 15 20
" number of counts

illinois.edu

A

statistical process is described

through a Poisson Distribution if:

©)

random process > for a given
nucleus probability for a decay to
occur is the same in each time
interval.

universal probability 2> the
probability to decay in a given time
interval is same for all nuclei.
Number of nuclei assumed constant.

no correlation between two instances
(the decay of on nucleus does not
change tlHe probability for a second
nucleus to decay )




distribut

I': decay rate [counts/s] {: time interval [s]

rt)”
P, (t) - ( ) e " n= 0’1’2"" > 4 P,,(rt) : Probability to have n decays in

time interval t

0 5 10 15 20

number of counts

i
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Properties of the Poisson distribution:
>'P,(rt)=1 , probabilities sum to 1

<n>=>n-P,(rt)y=rt , the mean
n=0

o= \/ijo(n— <n>)?P,(rt) =/rt=\Jn ,

standard deviation

physics 403 22
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Poisson and Gaussian distributions

- 0.1
o .
> g 0.08 ]f\ - "Poisson
= g, 0.06 ], \ distribution"
8 3 0.04 / \ — "Gaussian o
o 8 0.02 S distribution" Carl Friedrich Gauss
S L 4/ " (1777-1855)
0 10 20 30 40
number of counts

1 P (x) = 1 e—(’;?z Gaussian distribution:
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Source of noisy signal

4.89855
5.25111
't 2.93382
4.31753
4.67903  Expected value 5V
3.52626
of 4.12001
T T 2.93411

sample i

][ Actual measured values

U(v)
————
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Error in the mean is given as 3_—1?, (This is called standard quantum limit
][ or the shot noise limit or “standard error”)
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5.7 ¢ 502 Q@
5.6 sotg
st 2 °
5.5 L %
5.4 ;_ | 498 E [
S53E 9w | | 12]
~ E T T e [
S 52 o)
51F
BE — - — = = — - -9 -9--
<9 -0 ® [ 133 1.016  1.013  1.011
49 1 10l 0-39 Qo Qo Qo
10° 10" 10* 10* 10* 10° 10° 10 10" 10 10* 10* 10° 10°
Counts Counts
Result == U = X, oo- standard deviation
\ / N — number of samples

1 For N=10° U=4.999+0.001 0.02% accuracy
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Heisenberg limit measurments

According to Heisenberg uncertainty,

h

the ultimate precision of the energy measurement is AE~—

If N is the number of measurements performed then t=N*t,, where t, is the time
needed to perform one measurement.

h 1
Thus the precision can be as good as AEN B

t, N

To achieve this high precision, one must use a quantum system, such as a qubit.

I
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Count

800

600

400

200

- 0
©
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E ©
(7]

Model ExpDec2 ()
Equation y = AT*exp(-x/t1) + 14
A2%exp(-x/t2) + y0O
I Reduced Chi-Sqr 1.43698
Adj. R-Square 0.96716
B Value Standard Error
C y0 0.02351 0.95435
L C A1 104.87306 12.77612
C t1 177.75903 18.44979
C A2 710.01478 25.44606
B C t2 30.32479 1.6525
0 200 400 600 800 .
[=
- =
time (s) 3
(&)
Al — |+ 42 !
y=Aleexp| — [+ A2eexp| — [+ ¥,
tl t2

illinois.edu

time (s)
Model Gauss
Equation y=Y0 + (Al(w'sq
(PI/2)))exp(-2
*((x-xC)w)'2)
Reduced Chi-S 477021
Adj. R-Square 0.93464
Value Standard Error
20 T Counts yo 1.44204 0.48702
Counts xc 1.49992 0.19171
Counts w 5.93398 0.40771
Counts A 219.24559 14.47587
Counts sigma 2.96699
Counts FWHM 6.98673
Counts Height 29.4798
-
[(FENENNNN MY NN S
physics 403 28
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20 -

0
=20
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20-
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Magnitude

0.000 0.027 0.054 0.081 0.108
Frequency

No pronounced frequencies found

physics 403
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Residuals

Count

Test 1. Autocorrelation function

illinois.edu
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40
Ag B decay
20
o — | 4
5|
-20 | § 2 ' ‘ ‘ ‘ ‘
0 50 100 150 0— ”WMWWU’A
0000 o0 o0 2000000500
I time (s)
20, — Correlation function V(M) = Z f(n)g(n—m)
e n=0
g §§ M-1
o=l === autocorrelation function y(m) = Z f (n) f (n—m)
Residual n=0
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count

Fitting. Analysis of the residuals. Nen “ideal” case

800

Ag B decay
]

i 0y
Model ExpDec2 |0
y = Al*exp(-x/t1) + A2*ex
g Equation p(-x/t2) + yO r
600 | — C
r Reduced 100.10041 :
Chi-Sqr L
Adj. R-Square 0.99181 20 - »
Value Standard Erro r L "] a ' 5 n
C y0 5.18284 1.99542 "] C " g . iy
400 ul = _ =g 5 . ey Em g
C At 130.85655  20.27379 s [ = s "F = s "m"Eg m'E H
F 1 145.80449  21.82649 ° t -~ L = n
A2 702.82197  19.21953 ] BHE el n . = u
t2 27.93939 1.30697 © o .——5-4..'—.-+ - = "
F B - -- - L™ =
L & C I
b LI | . . g " I tm I B
\V«.,“ el i - . " .
o %Wﬁ"’?‘:‘?&f“"‘a 0 it .j. ™
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
time (s) time (s)

_ Clear experiment Data + “noise”

t,(s) 177.76 145.89
t,(s) 30.32 27.94

I
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Note: deleting data is not allowed of course
40 } . - , . , |

Deleting data point might confirm any

model, but such data manipulation is strictly
forbidden in science.

40 [

0 100 200

20
300 400 500 600 700 800 [

0
I
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100 200 300 400 500

600 700 800
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20 [ -

residuals
[ |
L |

g |

E
.
"..f

20 | L

0 100 200 300 400 500 600 700 800
time (s)

4 Histogram does not follow the
normal distribution and there is
frequency of 0.333 is present in
spectrum

\

/

T
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Magnitude

900

540 [

360 -

20F L]

AN
0 M\\\\\ \T\Sk‘\‘—

-30 -20 -10 0 10 20 30 40 50
Regular residual

720 [

180 |-

0.03333
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of . R R R 20000gAutocorreIation function
205_ i | 100003—
% 5 l.u-‘ """" " >
QR e => 5 AR
g of .- - ---'li"hT'-'—'—.'— 2 : ,nlllH“Hll “”llllm,
L a | "s wua fege e 0 UV OTT T vy
ol DR N
S0 O 36 Do o G fl oDy i B T o0 o ETR 1000
time (s) Time

Conclusion: fitting function should be modified by adding an additional term:
—t —t .
y(t)=y,+ A exp - + A, exp - + A, sin(wt + 6)

1 2

T
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Fitting. Analysis of the residuals. Nen “ideal” case

800 - - T ; 35
[ expdec2sine (User) %
25
Y=Y0+AT"exp(-xt1 H+A2"exp(-x/12)+A3sin(f0"x+te
ta) w 20
600 — S 15
u 1.38135 2
i-Sqr o 10
are 097307 « .
Value Standard Error %
¥ 252302 0.92374 4 0
400 A1 106.84755 13.12427 14 5
t 172.79267 17.64555 )
A2 707.94055 25.0644 -10
12 301719 1.64703
A -11.28082 061892 =15
200 b f0 20964 4 2

L 1 A 1 1
r T T T 1 teta -9.5583 0.13923 0 200 400 800
[ | Independent Variable
[ K |
: WIAAAAHA ‘
0 ERSPADAADESS
b ‘
YTTY PYTETTTTTY [TTTTTVTTY FOTTTTTIT, | TP

IIIIIIIIIIIIIIIIII Eailbibngs ; ; : g :
8000
0 100 200 300. 400 500 600 700 800 FT "}
time (s) 192 E

“

«; autocorrelation
é’ 3

0.000 0.027 0.054 0.081 0.108 -2000 L L L
-1000 -500 0 500 1000
Frequency

Time

_ Clear experiment Modified fitting

t,(s) 177.76 145.89 172.79
t,(s) 30.32 27.94 30.17

I
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y = f(x1, x2 ... xn)

Af (x,,Ax,) = n [ai} - Ax?

/ | .

1.15
_
X
(Tt

XAX

illinois.edu
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1 1
Derive resonance frequency f S C) = 27z N LC
from measured inductance
L+AL and capacitance C+AC L1 =10+1mH, Cl =10£2pF
Af(L,C,AL,AC)=\/[ il ] AL’ + [ gl } AC’?
oL oC
of -1 - -2
oL arx C L% Results:
of -1 1 3 f(L,,C,)=503.29212104487Hz
=—L2C? —
5C _ ar Af=56.26977Hz
f(L,,C,)=503156Hz
]
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THE END
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