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Reporting measurement results

• Always include uncertainty estimates in your 
results

• Have the correct number of significant digits

• Examples:

– Origin fit result:
V = 0.122349 m/s, σ = 0.01298 m/s
You should report V = 0.122 ± 0.013 m/s 

– Measurement result:
T = 3.745 x 10-3 s, σ = 0.0798 ms
You should report T = (3.75 ± 0.08) x 10-3 s 



Types of Uncertainties

• Statistical
– Uncertainties due to stochastic fluctuations
– Generally there is no correlation between successive 

measurements. 
– Multiple measurements can be used to reduce the 

uncertainty. 

• Systematic
– Uncertainties associated with imperfect knowledge of 

measurement apparatus, other physical quantities needed 
for the measurement, or the physical model used to 
interpret the data. 

– Generally correlated between measurements. Cannot be 
reduced by multiple measurements.

– Better calibration, or measurement of other variable can 
reduce the uncertainty.



background subtracted data 

vanadium irradiation with fit
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Measurement:

• observe radioactive decay

• measure counts/∆t vs t

• exponential fit to determine 
decay constant (or lifetime)

Example: Statistical, Error Propagation

Lifetime Measurement



Examples of probability 
density functions



Poisson Distribution
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A statistical process is described 
through a Poisson Distribution if:

• random process  for a given 
nucleus probability for a decay to 
occur is the same in each time 
interval

• universal probability  the 
probability to decay in a given time 
interval is same for all nuclei

• no correlation between two 
instances  the decay of one 
nucleus does not change the 
probability for a second nucleus to 
decay

r: decay rate [counts/s]

The Poisson Distribution

t: time interval [s]

Pn(rt): Probability to have n decays in time interval t!



Poisson Distribution
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Is nuclear decay a random process?

Yes, follows Poisson Distribution!

(Rutherford and Geiger, 1910)

The Poisson Distribution

r: decay rate [counts/s] t: time interval [s]

Pn(rt): Probability to have n decays in time interval t!



Poisson Distribution
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The Poisson Distribution

r: decay rate [counts/s] t: time interval [s]

Pn(rt): Probability to have n decays in time interval t!
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Poisson and Gaussian distributions
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The Poisson Distribution at large rt



Poisson and Gaussian distributions
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<n> true average 
count rate with σ

Single measurement Nm = rmt = 24
And σm = √Nm = √24 = 4.5

Experimental result: <n> = 24 +/- 4.5

Measured count rate and errors
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Error propagation

for one variable:
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Error propagation

for  two variables:

Propagation of errors



Example I, Error on Half-Life
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background subtracted data 

vanadium irradiation with fit
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Propagate error in decay constant λ

into half life:



Measured coincidence rate:  S’ = S + B, ΔS’ = √S’

Measured background rate:  B, ΔB = √B

Signal:  S = S’ – B

Error:  
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Example II, Rates for gg Correlations



Some of you will be comparing a slightly low lifetime with the real one of 2.2 ms.
Yours will usually be lower due to negative muon capture.  

dof
dof

#

2
1/

2 

Here, 0.73 ± 0.18; a 

bit “low” but okay.

Too low means 

errors are 

underestimated

Too high means fit is 

bad

2.08 ± 0.05 ms

Interpreting fitting results

2: the extent to which the data match the assumed distribution



A table is helpful; consider how you might develop and fill in a table for the
Quantum Eraser (or other optics) experiment

Error Value Method to determine

Synchronization of the 
reconvergence of the split 
beams

Instability of interference 
pattern due to air 
fluctuations

__% in 
reading 
high/low

Stability of reading vs time

Beam splitter 
imperfections 

__% on 
visibility

Let’s consider systematic uncertainties



Systematic test of 
count rate stability 
stability of detectors + 
electronics

Large drifts , 
temperature effects 
from power 
dissipation in 
discriminators 

time in hours 
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From the gg experiment:



• Calibration of temperature as sample is being evaluated.  How 
accurate is it?  How well are phase transitions identified?

• Quality of particular sample. Would 2nd , 3rd “identical” sample 
produce same results?

• General reproducibility of traces for multiple paths.
– Do results depend on speed of change in T? 

– How about the direction of the T change (heating vs cooling?)
• How do you tell the difference between physics that depends on heating 

versus cooling compared to just instrumentation effects, like time lag ?

• Temp lag between thermometer and sample…leads to ?

– How do external factors like quality of the lead connections affect results?  
Are connections being evaluated too?

In Ferroelectric analysis:



Data rejection



What if an experiment doesn't give the result you expected? 

What if it gives a result that you just know is wrong in some way? 

Do you keep trying until you get the "right" result?

Note: especially relevant here in our modern physics lab course where the 
“right” result was, in general, published a long time ago

This happens. Data rejection is common. But be careful.
Realities of complex experiments

Stuff goes wrong
Equipment malfunctions
People make mistakes

Burden on the physicist
Record everything 

Responsibility of physicist
Develop a “result-unbiased” algorithm for data rejection

Make decisions before you look at the results
Keep answer in a “blind” or unbiased space
You can rarely use the result to determine inclusion

Data rejection



from J. Taylor, Ch. 6 of An Introduction to Error Analysis

Consider 6 measurements of a pendulum period : 3.8, 3.5, 3.9, 3.9, 3.4, 1.8

Should the last measurement be rejected?

Yes: If some aspect of the experiment was changed ... new “slow”

stopwatch, etc.

No: Never!  You must always keep all data !! (diehards; beware)

Maybe? The usual case.  You don’t know why, but something may have

made this measurement “bad.”  How do you set you set up a

judgement that is unbiased?

First, compute some simple statistics:

Mean of measurements:  
83.x 

Standard deviation:   80
1 2

.xx
N

ix  

Is the 1.8 measurement anomalous?   It differs by 2 (1.6) from the mean.

3.4

0.73

 2.2 

judge in an
unbiased manner ?

An elementary test to indicate if you might have a problem with your data

Rejection of Data



The probability (assuming a Gaussian distribution) is 0.05 for this to be an 
acceptable measurement. What’s wrong with that?  We would even expect that 
1 out of 20 measurements would fall outside of the 2 bound.

But, we only made 6 measurements.

So, we expect that only 1/(20/6) = 0.3 measurements should fall outside the 2
bound.

Now it is a bit about personal taste.  Is this unreasonable?

Chauvenet’s criterion is the following:  If the suspect measurement has a lower 
probability than 1/2, you should reject it.  Our measurement has 0.27 so it goes.

Chauvenet’s Criterion



• Write down everything 
– in the logbook; take your time; use sentences; record numbers (values)

– glitch in the power?  note the time

– temperature “cold” or “hot”? comment about it

– somebody “reset” the system?  note it please and when

• Record (electronically if possible) everything reasonable 
– as parallel information to the main data set

– temperatures; voltages; generally called “slow controls”

• You WILL (almost certainly) have to go back and hunt for this 
documentation when something possibly anomalous arises … and 
it will

Is all data good data? NO!



• Data rejection does exist and is necessary.  

– If you can document a problem, then it is easy to discard

– There still may be some data you would like to throw out.

• this is tricky and takes some carefully prepared, bias-free statistical tests to 
justify 

• Theory curves can be misleading and should generally (always?) be 
avoided when dealing with issues of data rejection

• You must also think in reverse.  How self-consistent is your data set?  

– There are then many sophisticated tests of the data set itself

– You will be expected to demonstrate this in many cases

Some additional points



Summary (for your report)

• Always include uncertainty estimates for all your 
measurements if applicable (use correct number of 
significant digits) 

• Compare your results with published values if 
applicable
– Do your measurements agree within uncertainty?

– If not, is your estimate of systematic or statistical 
uncertainty correct? Are there other factors that can 
influence your result that you forgot to consider? 

• If you need to reject certain sets or points of data, you 
should describe the reason that data should not be 
included. The reason should be based on changes in 
environment, setup, etc., and not solely result driven. 





Error Propagation

In most cases for this class, variables are uncorrelated, therefore the correlation term 
can be safely ignored. Before using the formula, you should check if your assumption 
about variable correlation is warranted. 

Example formulae from Wikipedia 



Accuracy vs. Precision

• Accuracy: a measure of how close the result of the 
experiment comes to the true value

• Precision: a measure of how exactly the result is 
determined (without reference to what the result means)

https://sites.google.com/a/apaches.k12.in.us/mr-evans-science-website/accuracy-vs-precision

Source: P. Bevington, Data Reduction and Error Analysis for the Physical Sciences



Data set (picked off the graph by hand)

11.5, 5.5, 4.0, 8.0, 7.6, 1.5, 10.2, 0.5 (note, at same beam intensity!)

Mean: = 6.1

Standard deviation = 4.0

List of “deviations” in sigma: 1.35, -0.15, -0.53, 0.48, 0.38, -1.15, 1.03, -1.40

(these are the “bad” guys)

Data Points         prob in 1    prob in 8
(8,11.5)              0.09           0.53
(44,1.5)              0.07           0.44
(65,0.5)              0.15           0.72

A case study



What are the uncertainties?

Can we relate power fluctuations to 
particular data points?

Why should we trust the theory
prediction? It could be simply
wrong … 

Let’s look at our data



Assume we find the errors to
be +/- 2.5 independent of
beam intensity

Are the data compatible
with a constant behavior?
Not sure: 2/ndf is 2.5

Let’s look at our data

dof
dof

#

2
1/

2 

Too low means errors are 
underestimated

Too high means fit is bad



Are the data compatible
with a polynomial?
Not sure: 2/ndf is 2.4

In absence of slow control
data for beam & experi-
mental apparatus,
data cannot be rejected !

dof
dof

#

2
1/

2 

Too low means errors are 
underestimated

Too high means fit is bad

Let’s look at our data



Uncertainty and Bias

I can live with doubt and uncertainty and not knowing. I think it is much 

more interesting to live not knowing than to have answers that might 

be wrong.
- Richard Feynman

But what if an experiment doesn't give the result you expected? 

What if it gives a result that you just know is wrong in some way? 

Don't you keep trying until you get the "right" result?
Note: especially relevant here in our modern physics lab course where 

the “right” result was, in general, published a long time ago
- Henry H. Bauer, Professor of Chemistry & Science Studies, VPI



How common is data “rejection”?
Answer: Common
• Realities of complex experiments

– Stuff goes wrong

– Equipment malfunctions

– People make mistakes

• Burden on the physicist
– Record everything 

• Responsibility of physicist
– Develop a “result-unbiased” algorithm for data 

rejection
• Make decisions before you look at the results

• Keep answer in a “blind” or unbiased space

• You can rarely use the result to determine inclusion



Rejection of Data
from J. Taylor, Ch. 6 of An Introduction to Error Analysis

Consider 6 measurements of a pendulum period : 3.8, 3.5, 3.9, 3.9, 3.4, 1.8

Should the last measurement be rejected?

Yes: If some aspect of the experiment was changed ... new “slow”

stopwatch, etc.

No: Never!  You must always keep all data !! (diehards; beware)

Maybe? The usual case.  You don’t know why, but something may have

made this measurement “bad.”  How do you set you set up a

judgement that is unbiased?

First, compute some simple statistics:

Mean of measurements:  
83.x 

Standard deviation:   80
1 2

.xx
N

ix  

Is the 1.8 measurement anomalous?   It differs by 2 (1.6) from the mean.

3.4

0.73

 2.2 

judge in an
unbiased manner ?

An elementary test to indicate if you might have a problem with your data



Chauvenet’s Criterion

The probability (assuming a Gaussian distribution) is 0.05 for this to be an

acceptable measurement. What’s wrong with that?  We would even expect that 1

out of 20 measurements would fall outside of the 2 bound.

But, we only made 6 measurements.  So, we expect that only 0.05 x 6 = 0.3

measurements should fall outside the 2s bound.

Now, it is a bit of personal taste.  Is this unreasonable?

Chauvenet’s criterion is the following:  If the suspect measurement has a lower

probability than 1/2, you should reject it.  Our measurement has 1/3 so it goes.

New results: Mean = 3.7

Standard deviation = 0.2 ! much smaller !



Our case study:  
A very simple first step
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Data set (picked off the graph by hand)

11.5, 5.5, 4.0, 8.0, 7.6, 1.5, 10.2, 0.5 (note, at same beam intensity!)

Mean: = 6.1

Standard deviation = 4.0

List of “deviations” in sigma: 1.35, -0.15, -0.53, 0.48, 0.38, -1.15, 1.03, -1.40

(these are the “bad” guys)



My plot of our data

Where are the “bad” points ?

What was the theory prediction ?



Repeat: Is all data good data?
NO!

• Write down everything 

– in the logbook; take your time; use sentences; record numbers 
(values);

– glitch in the power?  note the time

– temperature “cold” or “hot”? comment about it

– somebody “reset” the system?  note it please and when

• Record (electronically if possible) everything reasonable 

– as parallel information to the main data set

– temperatures; voltages; generally called “slow controls”

• You WILL (almost certainly) have to go back and hunt for this 
documentation when something possibly anomalous arises 
… and it will



Some additional points

• Data rejection does exist and is necessary.  

– If you can document a problem, then it is easy to discard

– There still may be some data you would like to throw out.

• this is tricky and takes some carefully prepared, bias-free statistical 
tests to justify 

• Theory curves can be misleading* and should generally 
(always?) be avoided when dealing with issues of data 
rejection

• You must also think in reverse.  How self-consistent is your 
data set?  

– There are then many sophisticated tests of the data set itself

– You will be expected to demonstrate this in many cases

* there are trivial exceptions:  counts vs intensity is linear, etc.



The importance of statistics
And error analysis





Errors and Data Analysis
Types of errors:

1) Precision errors – these are random errors. These could also be called 
repeatability errors. They are caused by fluctuations in some part (or parts) of 
the data acquisition. These errors can be treated by statistical analysis.

2) Bias errors – These are systematic errors. Zero offset, scale errors (nonlinear 
output vs input) , hysteresis, calibration errors, etc. If these are hidden, they 
are essentially impossible to correct. These are often negligible in 
instruments used for calibration for a long time. But new instruments and 
devices can easily have bias errors. For instance, when reducing scales from 
meters and millimeters to a scale of nanometers bias errors can creep in due 
to unforeseen new effects.

3) Analysis errors – wrong theory or wrong analysis applied to data, which are 
used to ”fit” the data. This is uauslly not considered as a error in the data 
acquisition, but nevertheless can waste a lot of time.



Examples of a constant signal and random noise
from time acquired data

Where does the “randomness” come from?
Counting statistics – small numbers (radioactive decay and photon counting
Electronic noise from an electronic circuit
Small number fluctuations in number of molecules or nano-sized objects



Some helpful “rules” when dealing with errors of an experimental set-
up

1: As soon as an error from a particular source is seen to be 
significantly smaller than other errors present, it is given no further 
consideration.

2: The major concern of most error analyses is the quantitative 
estimate of bias errors, and correction of data accordingly when 
possible.

3: Whenever feasible, precision errors should be estimated from 
repeated tests or from observed scatter in graphed results.

4: In planning an experiment where it appears that significant bias 
errors will be present, an effort should be made to ensure that precision 
errors are much smaller.



How to handle data samples of multiple measurements taken of the 
same configuration.

The mean value of the sample values is:

The usual measure of the scatter is the standard deviation, which is the square 
root of the variance:

Example:

Notice that the shape of the 
histogram is similar to the familiar 
normal (Gaussian) probability 
distribution. Indeed, most precision 
errors have the characteristic that, as 
the sample size becomes large, the 
shape of the histogram tends to that 
of the normal distribution. This 
characteristic allows many powerful 
methods of statistical analysis to be 
applied to the analysis of precision 
errors.
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Running Statistics
Calculation trick using the two definitions for μ and σ:

You can show the following, which is a faster way to keep a 
running calculation of the variance, and has less digital round-off

While moving through the signal, a 
running tally is kept of three 
parameters: (1) the number of 
samples already processed, (2) the 
sum of these samples, and (3) the 
sum of the squares of the samples 
(that is, square the value of each 
sample and add the result to the 
accumulated value). After any 
number of samples have been  
processed, the mean and standard 
deviation can be efficiently calculated 
using only the current value of the 
three  parameters.



The standard deviation of the mean is:

This is NOT the standard deviation of one measurement from the mean of 
one set of experiments! If the experiment is carried out in many times data 
sets, and in each set of data many measurements are taken, the standard 
deviation of the mean values of the sets of data have  a much lower 
standard deviation than the standard deviation of the values of the 
individual sets.  That is, there is always less precision error in a sample 
mean than in the individual measurements, and if the sample size is large 
enough the error can be negligible.

Remember this is only for the statistical precision error – NOT the bias 
error.

A statistical analysis of a sample tells a lot  about precision errors, having a 
sample tells us nothing about bias errors. 
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The total error in a measurement is the difference between the measured 
value and the true value. BUT we do not know what the true value is! If we 
take a large enough sample we could say that a good estimate of the bias 
error is x−xtrue. But the catch is that we do not know xtrue a priori: xtrue is the 
unknown we want to determine. Thus, determination of bias errors has 
nothing to do with samples of data and statistical analysis. To find the bias 
errors you have to compare with data from similar instruments, or with 
standard measurements, or patiently find the bias in your instrument.



How about least square curve fits – that is, one parameter 
depends on another.

Take the example of a straight line dependence.

assume that y has significant precision error,
but the x precision error is negligible

(xi, yi); i = 1, 2, . . . , Ny Mx C 

Sum of squared of differences



Standard error for the curve fit is defined as:

How to determine the slope and intercept
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Comments:

 It was assumed that all the variance was in “y”. If “x” also has significant variance, 
the expressions are more complex.

 If the plot is seen to be nonlinear, maybe we can linearize the data: for instance 

 Often the data points can be fit to several models. If you are testing a theory you 
know the model; or maybe you are searching for a hint for a theory.

 How do you handle outliers (see figure below and later)?

   If , then ln ln ; plot ln  vs ; slope = - , and intercept = ln .kxy ae y a kx y x k a  

If ; then ln ln ln  ; plot ln  vs lnny ax y a n x y x  



Another type of “outlier”



Uncertainty

We do not know the actual value of the parameter(s) we are measuring – we 
only know an estimate of this value. So we have to deal with estimated – or 
probable - errors. If we say we are C% confident that the true value Xtrue of a 
measurement Xi lies within the interval Xi ±PX : then PX is called the precision 
uncertainty at a confidence level of C%. This means that if we specify a 95% 
confidence level estimate of PX, we would expect Xtrue to be in the interval Xi

±PX about 95 times out of a 100.

We usually assume a normal distribution if N>10; then PX is 
approximately 2x the standard deviation for 95% confidence:

For small samples this must be amended – so always try to keep N>10.

This is the uncertainty at  95% confidence for individual samples 
drawn from a normal population and the total sample is large

 2 95%, 10X XP S C N  



Now what about the precision in the uncertainty of the value of the mean of 
repeated sets of measurements, each set consisting of a certain number of 
individual measurements? 

Remember:

Then the corresponding precision 
uncertainty in the sample mean is:

So, The probable error in a sample mean is much less than in the individual 
measurements. Why is this important?

We usually average individual measurements over a time interval before recording 
the averaged values.
When precision error is important, we usually are interested in the sample mean, not 
in individual measurements in any particular set of measurements.
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Can we know estimates of our error when we only take a 
single measurement?

Yes, if we have independent data for the variance of the 
measurement from previous measurements, or from an 
examination of  the instrument from the factory or from 
control measurements. But in general it is best to take 
several measurements.



How about the precision error for a curve fit? Then one can show:

for a curve-fit is like a “mean” value analogous to for a 
sample of values of a single variable.

Ŷ X

depends on how far x is away 
from : it is a minimum at  
Ŷ

P

x x x

The range where the 
curve fits will fall 95% of 
the time for repeated 
sets of measurements

The range in which we 
are 95% confident a 
single data point will fall

ˆ

x

 is always larger than ,

just like P  is larger than P

Y Y

x

P P



Bias uncertainty differs from precision uncertainty:

We are usually concerned with the precision 
uncertainty of a sample mean or a curve-fit.

Precision uncertainties can be reduced by increasing 
the number of data points used.

Bias uncertainty is independent of sample size: it is 
the same for one data point as for a sample of 100 
data points.



The Normal Probability Distribution

The probability density function 
for a random variable X having a 
normal distribution

 

A single measurement that 
is assumed to be from a 
normal parent population.



The probability that a measurement will fall within a certain 
fraction of standard deviations (σ’s) of the mean:

E.g. probability that a measurement will 
fall within 1 standard deviation.
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Confidence levels



Remember

1 degrees of freedomN   

The precision uncertainty PX of an individual measurement at a confidence level C% is 
defined such that we are C% sure that the population mean μ lies in the interval Xi ± PX. 
BUT we do not know the population standard deviation σ.
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t-statistics – small number of samples

The smaller the # of 
samples, the larger is “t”



How well does the sample mean estimate the population mean μ?X

Because the sample means are normally distributed, the t-distribution can be used:

That is, one can say with C% confidence that the 
population mean      is within                                  .       ,%  of 

X
t S Xm

What do you do with outliers? Find the problem, or if there is no reason found use:

Chauvenet’s criterion is recommended: It states that points 
should be  discarded if the probability (calculated from the 
normal distribution) of obtaining their deviation from the mean is 
less than 1/2N.

Ratio of the maximum 
acceptable deviation to 
the standard deviation is 
given as a function of N.

NOTE: Sample means are 
normally distributed even when 
the parent population is not 
Gaussian.



Standard error of a fit to a straight line

Yi is a random variable and can be taken to 
have a normal distribution for each value of xi.

For N large and a 
95% confidence 

level, we set
tν,% = 2



Standard deviation for the slope Standard deviation for the intercept

Precision uncertainty for the slope Precision uncertainty for the intercept

And for N large and a 95% confidence level, 
we set  tν,% = 2

Standard error of a fit to a straight line



The Correlation Coefficient

In statistics practice a straight-line curve-
fit is considered reliable for ±0.9 ≤ r ≤ ±1 
(the sign indicates that Y increases or 
decreases with X).

The correlation coefficient is useful when 
precision errors are large, such as in 
experiments in the life sciences and 
medicine. Then the central question is 
whether there is any correlation 
whatsoever. In physics and engineering 
experiments the precision errors are 
usually much smaller and the precision  
uncertainties of                          are more 
useful.
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But be careful! You can correlate anything,
even if ill or subjectively defined.



A plot showing 100 random numbers with a 
"hidden" sine function, and an autocorrelation 
(correlogram) of the series on the bottom.

http://en.wikipedia.org/wiki/Autocorrelation

Autocorrelation shows how similar data is over certain distances 

correlation between observations 
separated by k time steps 

Autocovariance

c0 is the variance

http://en.wikipedia.org/wiki/File:Acf_new.svg
http://en.wikipedia.org/wiki/File:Acf_new.svg
http://en.wikipedia.org/wiki/Sine
http://en.wikipedia.org/wiki/Correlogram
http://en.wikipedia.org/wiki/Autocorrelation


Propagation of Precision Uncertainties

Say Y is a function of N independent measurements Xi. If the uncertainties Pi are 
small enough we can use a first order Taylor expansion of Y to write

Since Y is a linear function of the independent variables, a theorem of 
mathematical statistics says:

All the uncertainties in the Xi must be at the same confidence level.

If Y depends only on a product of the independent measurements Xi

then

or



What about: 
weighting, 
Precision and accuracy
Histograms
Poisson statistics
Non-linear fitting
Chi-square analysis 



Examples of signals generated from non-stationary processes. In (a), both the mean 
and standard deviation change. In (b), the standard deviation remains a constant 
value of one, while the mean changes from a value of zero to two. It is a common 
analysis technique to break these signals into short segments, and calculate the 
statistics of each segment individually.

Weighting
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Least Square fitting
of a straight line

minimize
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If the variance varies, you want to minimize chi-square

 is the # of degrees of freedom 
  n-# of parameters fitted

Goodness of fit parameter that should
be unity for a “fit within error”
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2 caveats

•Chi-square lower than unity is meaningless…if you 
trust your s2 estimates in the first place.  
•Fitting too many parameters will lower c2 but this may 
be just doing a better and better job of fitting the noise!
•A fit should go smoothly THROUGH the noise, not 
follow it!
•There is such a thing as enforcing a “parsimonious” fit 
by minimizing a quantity a bit more complicated than c2.  
This is done when you have a-priori information that the 
fitted line must be “smooth”.  



Graphical description of precision and accuracy

Poor accuracy results from systematic errors.
Precision is a measure of random noise. Averaging several 
measurements will always improve the precision. 



http://mathworld.wolfram.com/PoissonDistribution.html

The classic Poisson example is the data set of 
von Bortkiewicz (1898), for the chance of a 
Prussian cavalryman being killed by the kick 
of a horse.
See: 
http://www.umass.edu/wsp/statistics/lesson
s/poisson/index.html

Poisson distribution:
λ= mean value, 
k = # of times observed

Probability of observing k 
occurrences in tine t, where λ
is the average rate per time

The variance is equal to the mean

http://mathworld.wolfram.com/PoissonDistribution.html
file://///localhost/upload.wikimedia.org/wikipedia/commons/1/16/Poisson_pmf.svg
file://///localhost/upload.wikimedia.org/wikipedia/commons/1/16/Poisson_pmf.svg
http://www.umass.edu/wsp/statistics/lessons/poisson/index.html


http://en.wikipedia.org/wiki/Poisson_distribution

Comparison of the Poisson 
distribution (black dots) and 
the binomial distribution with 
n=10 (red line), n=20 (blue 
line), n=1000 (green line). All 
distributions have a mean of 
5. The horizontal axis shows 
the number of events k. 

http://en.wikipedia.org/wiki/File:Binomial_versus_poisson.svg
http://en.wikipedia.org/wiki/File:Binomial_versus_poisson.svg
http://en.wikipedia.org/wiki/Poisson_distribution
http://en.wikipedia.org/wiki/Binomial_distribution


Histograms



(a) the histogram, (b) the probability mass function (pmf) 
and (c) the probability density function (pdf)

The amplitude of these three curves is determined by: (a) the sum of the values in the 
histogram being equal to the number of samples in the signal; (b) the sum of the values in 
the pmf being equal to one, and (c) the  area under the pdf curve being equal to one.



Examples of 
probability density functions.


