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what is inside an atom?
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electrons’ orbit

the nucleus

10-10m = 



the nucleus

• >99% of the mass of atoms, and thus 
normal matter, is in the nucleus 

• vary in size from hydrogen → uranium 
and larger 

• composed of protons and neutrons 
• the nucleus is held together by the strong 

force 
• one of the 4 fundamental forces 
• very strong & short range interactions
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and what’s inside protons and neutrons?
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quarks and gluons
fundamental particles which interact 
via the strong force
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and what’s inside protons and neutrons?
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quarks and gluons

X

confinement

confinement makes the strong force hard to study because the details are locked 
inside the protons and neutrons
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via the strong force
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strong force at high temperature
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a system that’s hot and dense enough for the quarks and gluons to not 
be confined anymore
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+ energy

a system that’s hot and dense enough for the quarks and gluons to not 
be confined anymore

lead nucleus 
(many protons & neutrons)



strong force at high temperature
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to create a system that’s hot and dense enough for the quarks and 
gluons to not be confined anymore: the quark-gluon plasma

this is how the universe looked a millionth of a second after the Big 
Bang



particle accelerators in the US and Europe
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0.200 TeV collision energy 5.02 TeV collision energy

Relativistic Heavy Ion Collider, New York Large Hadron Collider, CERN

the world has two colliders capable of doing this 
(check out CERN’s youtube channel for videos about how colliders work)



relativistic heavy ion collisions
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quark-gluon plasma
(QGP)

lasts for a billionth of a trillionth of a second (10-23 sec) 
and billion times smaller than a pixel on an iPhone display (10-14m)

5T ° F

quark-gluon plasma

no photo available



ATLAS detector at CERN
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some ATLAS statistics

• 100M electronics channels, 3000km of cables, 7000 tons, 
millions of lines of code, 3000 scientists from 38 countries 

• collisions every 100 nanoseconds (PbPb collisions) 

• most of the time ATLAS collides protons looking to make new 
particles, this is a different use of ATLAS
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output so far: ~ 800 science papers



what do we see?

 12PCM & clust. hadronization

NFD

NFD & hadronic TM

PCM & hadronic TM

CYM & LGT

string & hadronic TM

hundreds or thousands of new particles are 
created in each collision

these particles provide the only window into the 
earlier stages of the collision
we look at each collision individually, but 
measure billions of collisions!

E = mc2



up to 10000 particles created in the most head on collisions 



what do nuclear collisions look like?
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Glauber Modeling in Nuclear Collisions 10

Figure 4: Glauber Monte Carlo event (Au+Au at
√

sNN = 200 GeV with impact
parameter b = 6 fm) viewed in the transverse plane (left panel) and along the

beam axis (right panel). The nucleons are drawn with a radius
√

σNN
inel/π/2.

Darker disks represent participating nucleons.

The optical form of the Glauber theory is based on continuous nucleon density
distributions. The theory does not locate nucleons at specific spatial coordinates,
as is the case for the Monte Carlo formulation that is discussed in the next section.
This difference between the optical and Monte Carlo approaches can lead to subtle
differences in calculated results, as will be discussed below.

2.4 Glauber Monte Carlo approach

The virtue of the Monte Carlo approach for the calculation of geometry related
quantities like ⟨Npart⟩ and ⟨Ncoll⟩ is its simplicity. Moreover, it is possible to
simulate experimentally observable quantities like the charged particle multi-
plicity and to apply similar centrality cuts as in the analysis of real data. In
the Monte Carlo ansatz the two colliding nuclei are assembled in the computer
by distributing the A nucleons of nucleus A and B nucleons of nucleons B in
three-dimensional coordinate system according to the respective nuclear density
distribution. A random impact parameter b is then drawn from the distribution
dσ/db = 2πb. A nucleus-nucleus collision is treated as a sequence of indepen-
dent binary nucleon-nucleon collisions, i.e., the nucleons travel on straight-line
trajectories and the inelastic nucleon-nucleon cross-section is assumed to be inde-
pendent of the number of collisions a nucleon underwent before. In the simplest
version of the Monte Carlo approach a nucleon-nucleon collision takes place if
their distance d in the plane orthogonal to the beam axis satisfies

d ≤
√

σNN
inel/π (10)

where σNN
inel is the total inelastic nucleon-nucleon cross-section. As an alterna-

tive to the black-disk nucleon-nucleon overlap function, e.g., a Gaussian overlap
function can be used (31).

Miller, et al, Ann Rev Nuc Part 57 (2007) 205 
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Miller, et al, Ann Rev Nuc Part 57 (2007) 205 



what do nuclear collisions look like?

 14

view: one nuclei going into the screen and one coming out
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Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:

E
d3N
dp3 = 1

pT

d3N
dφ dpT dy

= 1
2π pT

E
p

d2N
dpT dη

(

1 + 2
∞∑

n=1

vn cos
[
n(φ −Ψn)

]
)

, (1)

where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ −ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:

Ψ2 = 1
2

tan−1
( ∑

Etower
T,i wi sin(2φi)

∑
Etower

T,i wi cos(2φi)

)
, (2)

where sums run over tower transverse energies Etower
T as mea-

sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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consistent with the results extracted below. The odd amplitudes
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odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
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The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:
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where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ −ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:
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where sums run over tower transverse energies Etower
T as mea-

sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
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to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ −ΦRP)]⟩,
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the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at
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lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
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azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ −ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
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wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over
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the quantitative estimates of v2. The curve is a fit to 1 + ∑
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n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event

332 ATLAS Collaboration / Physics Letters B 707 (2012) 330–348

Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
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where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ −ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.
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wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over
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illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:
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where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ −ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:
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where sums run over tower transverse energies Etower
T as mea-

sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
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azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ −ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
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Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
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the quantitative estimates of v2. The curve is a fit to 1 + ∑
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the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:
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where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ −ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:
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where sums run over tower transverse energies Etower
T as mea-

sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.
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defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ −ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.
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the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:
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where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ −ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:
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sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over
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illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑
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n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
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where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ −ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
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each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over
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the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:
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where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ −ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
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wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
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illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
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the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
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where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ −ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.
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the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:

E
d3N
dp3 = 1

pT

d3N
dφ dpT dy

= 1
2π pT

E
p

d2N
dpT dη

(

1 + 2
∞∑

n=1

vn cos
[
n(φ −Ψn)

]
)

, (1)

where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ −ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:

Ψ2 = 1
2

tan−1
( ∑

Etower
T,i wi sin(2φi)

∑
Etower

T,i wi cos(2φi)

)
, (2)

where sums run over tower transverse energies Etower
T as mea-

sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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why does the strong force at high 
temperature lead to fluid behavior?



why does the strong force at high 
temperature lead to fluid behavior?

to answer that, we need a picture of the microscopic 
interactions between the quarks and gluons inside the QGP
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a proton is like a beam of incoming quarks & gluons
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sometimes a quark from one proton hits a 
quark from the other head on



a proton is like a beam of incoming quarks
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a proton is like a beam of incoming quarks
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a pair of jets
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a proton is like a beam of incoming quarks

 26



a proton is like a beam of incoming quarks
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a proton is like a beam of incoming quarks
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a jet created at the same time as the quark gluon plasma 
functions as a microscope
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lead-lead collisions: not every jet survives
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energy balance of the jets
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Fig. 8. The (1/N)dN/dxJ distributions for jet pairs with 100 < pT1 < 126 GeV for different collision centralities for R = 0.4 jets. The Pb+Pb data are shown in red circles, 
while the pp distribution is shown for comparison in blue diamonds, and is the same in all panels. Statistical uncertainties are indicated by the error bars while systematic 
uncertainties are shown with shaded boxes. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)

Fig. 9 shows the (1/N)dN/dxJ distributions for 0–10% central-
ity Pb+Pb collisions and pp collisions for different selections on 
pT1 . In pp collisions, the xJ distribution becomes increasingly nar-
row with increasing pT1 , indicating that higher-pT dijets tend to be 
better balanced in momentum (fractionally). At higher pT1 , the xJ
distribution begins to fall more steeply from xJ ∼ 1, but appears to 
flatten at intermediate values of xJ . The modifications observed in 
the Pb+Pb data lessen with increasing pT1 and for jet pairs with 
pT1 > 200 GeV the maximum at xJ ∼ 1 is restored.

The distributions for R = 0.3 jets are also shown for the 0–10% 
centrality interval and for pp collisions for different pT1 ranges in 
Fig. 10. The pT of an R = 0.3 jet is generally lower than that of an 
R = 0.4 jet originating from the same hard scattering, and thus 
features observed in the (1/N)dN/dxJ distributions for R = 0.4
jets are expected to appear at lower values of pT1 for R = 0.3
jets. To facilitate a comparison between results obtained with the 
two R values, the R = 0.3 jet results include an additional pT1 in-
terval, 79  < pT1 < 100 GeV. The differences between the Pb+Pb

and pp (1/N)dN/dxJ distributions are qualitatively similar to those 
observed for R = 0.4 jets. Fig. 11 shows the (1/N)dN/dxJ distribu-
tions for 79  < pT1 < 100 GeV for different collision centralities but 
for jets reconstructed with R = 0.3. This indicates that the trends 
present in pT1 and centrality are robust with respect to the UE 
and that UE effects are properly accounted for by the combinatoric 
subtraction and unfolding procedures applied in the data analysis. 
The distributions are flatter for R = 0.3 jets in all pT and centrality 
bins, including in pp collisions. This is consistent with the expec-
tation that the (pT1 , pT2 ) correlation is weaker for smaller-R jets 
due to the effects of parton radiation outside the nominal jet cone.

9. Conclusion

This Letter presents a measurement of dijet xJ distributions in 
4.0 pb−1 of pp and 0.14 nb−1 of Pb+Pb collisions at √

sNN =
2.76 TeV. The measurement is performed differentially in leading-
jet transverse momentum, pT1 , and in collision centrality using 
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for jets reconstructed with R = 0.3. This indicates that the trends 
present in pT1 and centrality are robust with respect to the UE 
and that UE effects are properly accounted for by the combinatoric 
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The distributions are flatter for R = 0.3 jets in all pT and centrality 
bins, including in pp collisions. This is consistent with the expec-
tation that the (pT1 , pT2 ) correlation is weaker for smaller-R jets 
due to the effects of parton radiation outside the nominal jet cone.
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4.0 pb−1 of pp and 0.14 nb−1 of Pb+Pb collisions at √
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a lot of energy is removed from jet 2
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how is a jet made?
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Medium-induced jet evolution

The leading particle (LP) is produced by a hard scattering

It subsequently evolves via radiation (branchings) ...

... and via collisions off the medium constituents

CERN, 5th Heavy Ion Jet, Aug. 2017 EbE medium-induced jet evolution Edmond Iancu 8 / 27

time

no QGP
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It subsequently evolves via radiation (branchings) ...

... and via collisions off the medium constituents
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interactions with the quark-gluon plasma cause more particles 
some of these particles are far from the jet

QGP
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jets look different in the quark-gluon plasma
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we work with theorists to build models which tell us how exactly
Medium-induced jet evolution

The leading particle (LP) is produced by a hard scattering

It subsequently evolves via radiation (branchings) ...

... and via collisions off the medium constituents
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jets look different in the quark-gluon plasma

as an experimentalist, I try to figure out everything I can about how this 
depends on the size of the quark-gluon plasma, the energy of the jet, 

the type of quark, the temperature of the quark-gluon plasma,…
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particle accelerators at BNL and CERN
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0.200 TeV collision energy 5.02 TeV collision energy

RHIC (New York) LHC (Switzerland)

energy of the collision sets the quark-gluon plasma temperature



sPHENIX

 38

�1

The Detector Development  
and Physics Program in 

sPHENIX Experiment at RHIC

Yongsun Kim, UIUC
(University of Illinois Urbana-Champaign), 

for sPHENIX collaboration

May 15, 2018

sPHENIX currently under 
construction as a new detector 

for RHIC optimized for jet 
measurements! 
first data: 2023



made in Illinois: sPHENIX electromagnetic calorimeter
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Filling 3:
● Post patch job
● Good fill quality
● Noticeable projection from 

small to large end

students in the lab

plan on making 6000 tungsten powder 
scintillating fiber blocks as an essential 
component of the jet measurement in 

sPHENIX



• we’re using fast quarks and gluons as a microscope 
to study the inner workings of trillion degree matter 
at CERN and Brookhaven 

• this is a new window on one of the four 
fundamental forces of nature and a look back at 
the very early universe 

• new data at the LHC in November! 

• working toward a new detector at sPHENIX

 40



4 fundamental forces of nature
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gravity solar system, airplanes, you sitting in the seats, 
sports, black holes, …

electricity & 
magnetism

chemistry, biology, cell phones, solar power, 
superconductors, semiconductors

strong force stars, atoms, neutron stars, nuclear power, 
nuclear bombs, PET scans…

weak force

these things can all be understood in terms of the forces that cause them, but it is not easy to 
predict all the important consequences from the force

stars, atoms, neutron stars, nuclear 
power, nuclear bombs, PET scans…


