Introduction to ROOT
root.cern.ch

2nd Sound Acoustic Peaks in Helium-4

i~ = 221 ndf 0.3268 / 34
; — Amp 0.2816+ 0.3919
0.7 139.3 giesnnt'la 2 33?;04_;2;2%;
- Const 0.026 + 0.033
0.6 - 229.2
O3E 502 939 183.9
274.5

200 250 300
Frequency [Hz]

Want a big sledgehammer for free?

J. Long, from D. Hertzog,
27 January 2026

http://root.cern.ch/

A completely self-installing system is available
for you to download to many platforms

* https://Iroot.cern.ch/install/all releases/

Compiled binaries. For Windows, is complete*, just like any
professional program installation.

Windows
Mac OS X
Linux
Solaris

Latest stable release: 6.36.06

Recent version on muon experiment Linux computer

Legacy Windows version (4.04.02) on Grainger server at
Z:\APL Courses\PHYCSNew\root\bin

*May need to install dependencies (e.g.: MS Visual Studio): see
https://root.cern.ch/install/dependencies/

(Latest Windows version | could install/run: 5.34)

https://root.cern.ch/install/all_releases/
https://root.cern.ch/install/all_releases/
https://root.cern.ch/install/dependencies/

What can ROOT do?
Who makes ROOT?

 General: much more than you need
— Data analysis environment
* large sets
— Graphics, histograms, fitting
— Monte Carlo
— 3D visualization

« Users support ROOT, but center is at CERN
— Particle physics community main standard
— Nuclear physics community, growing standard
— Others using it for selected tasks

« Documentation
— https://root.cern/doc/v636/

https://root.cern/doc/v636/
https://root.cern/doc/v636/

Once you install it, click to run

« Start root by clicking on the icon

* Moving around in directories:
— root[] .dir (lists the files in current dir)
— root[] .cd xxx change to directory xxx
— root[] .x macro.cpp (execute a “macro.cpp”)
— root[] .L stuff.cpp (load up the file stuff.cpp)
« root[] stuff() < call function in stuff.cpp to run

You can pick up some simple tutorials we put together, now
located on P403 server under “\Common\MyRoot:”

\\engr-file-03.engr.illinois.edu\PHYINST\APL Courses\PHYCS403\Common\MyRoot\Pre-2017 scripts, macros and data

Start with some introductory commands. Study the macros. They
are not fancy. All commands can be typed one by one at the
command prompt if you prefer.

 Open any text editor (emacs, WinEdt, notepad),
open/drag the following files into the window:
— basichist.cpp — simple histogram; very primitive
— basicgraph.cpp — connects pairs of (x,y) points
— basicfit.cpp — provides some data to use with fit panel GUI
— basicfunc.cpp — draws a function

— basicsimulator.cpp — fills hist with user func and stat
fluctuations

Some often used command lines

root [1] .Is < What histograms do | have loaded up ?
TROOT™ Rint The ROOT of EVERYTHING
OBJ: TH1F histo Our phone numbers : 0 at: 0B4ED3BO0

root
root
root
root
root

2]
3]
4]
9]

6

histo->Draw()

histo->DrawPanel() < bring up drawing GUI
histo->FitPanel() < bring up fitting GUI
histo->SetLineColor(4) < make the trace blue
histo->Integral()

(conét-Stat_t)S.80000000000000000e+001
root [7] 179.3/(1.2e4*3.14) < a handy inline calculator
(const double)4.75849256900212360e-003

When you see the plot in the “Canvas”, go to View menu and click
on Editor and Toolbar

Note: exponential fit functionis y = e (a+bx)

Snapshots of the output

| Our phone numbers |

frequency

’J

histo
Entrias 15
Mean 6.724
|[RMS 4.131

5]

1 I 1 1 I
10 12 14
phone number

X-axis

2 I ndf 4691/5
Constant 8.384 + 0.071
Slope -0.01774 0.00126

#4500
=

3
34000

3500

3000

\ Counts versus aluminum thickness

2500

2000

1500

1000

500

+

100 150 I 200 250 300 350 400
Al thickness [mm]

[0]*cos(x+[1]}+[2]cos(3.3"x+[3])+[4] |

100

yname

80

60

40

20

0

-20

-40

RN RN AR ==

-60

o

50
xname

[Functien with statistical fluctuations |

100 200 300 400 500 600 TOO 8O0 900 1000
Time [units]

Specific from Phys 403

\Common\MyRoot\Pre-2017 scripts, macros and data\Phys403Expts

[root] .x histGammaGamma.cpp | Stat_t yh[10]={3.35,3.428,3.495,3.683,3.613,4.054,3.935,4.05,4.08,4.197};
Stat_t yerr[10]={.088,.088,.089,.091,.090,.094,.093,.094,.094,.095};

TH1F* histo=new TH1F("histo","Gamma-Gamma Coincidences",10,90,180);
for (Int_tj = 0; j<10; j++)
{
histo->SetBinContent(j+1,yhl[j]);
histo->SetBinError(j+1,yerr[j]);
}
histo->GetXaxis()->SetTitle("Delta Theta");
histo->GetYaxis()->SetTitle("Coincidence Rate [Hz]");
user=new TF1("user","[0]*(1.+[1]*cos(x*3.14/180.)*cos(x*3.14/180))",90,180);

user->SetParNames("Amp","alpha2");

|__Gamma-Gamma Coincidences | user->SetLineColor(2); user->SetParameters(3.5,0.15);

W
I 2 = . .
542 x Indf 7.896 lr 8 B h|St0->Flt("user","R");
= 4.
[Am + .
g & 3.388+0.049 histo->Draw();
é 4| alpha2 0.2361+ 0.0269
g F
= L
L 38
3.3_— +
3.4__
Lo b b b b b b b v by g
a0 100 110 120 130 140 150 160 170 180
Delta Theta

(Extra slides for the muon experiment)

A word about how data is usually stored In
nuclear and particle physics experiments

* Usually organlzed around “events” which are triggered

‘e
3
3
‘e
g

 Data is raw record of what happens in an “event”
— Energy deposited in a detector
— Hit position on wires
— Time that a detector fires with respect to the trigger

* This information is used to make derived quantities
and then to determine the history of what happened
— Track of a particle
— Type of a particle
— Topology, or sequence of what happened

 Repeat for lots of events to arrive at physics
histograms from the raw quantities or from the derived
quantities

For our muon experiment

 For each “trigger” (which is a guess that we just might have

a muon stopping in our device), W€ record ...

— 24 Raw pulse Areas (0 — 256 pC) for 24 photomultipliers,
connected on east and west ends of 12 plastic scintillators

— 8 (brief) Time differences [0 — 100 ns] between the Trigger
time and the time that something else happened. This is
mostly a placeholder.

— 14 (longer) Time differences [0 — 8 us] between the Trigger
and the time that the scintillators may have “re-fired” owing
to a decay positron or electron

* This is a like a vector recorded for each event with

46 entries. The data is a sequence of these vectors.

When the data is Analyzed ... “processed”

 The Analyzer program write raw data to an NTUPLE,
which ROOT can easily plot.

 The Analyzer can compute derived quantities and
add them to the NTUPLE for each event

TDCSUM € a handy way to get the times from any of the detectors that
mlght have seen a decay

NLAYER €< where do we think the muon stopped?

UP € the time of decay for positrons that hit scintillators above the muon
stop

DOWN < same but for scintillators below
Etc. € you can (will) come up with others

* You can re-analyze raw data if you create new or
better derived quantities. You don’t have to rerun
the experiment!

Typical muon lifetime plots

e hliTDCSUM->GetXaxis () ->SetLimits (0, 8)
— Sets the 4000 channels to 0 — 8 us
°* hliTDCSUM->Rebin (10)

— Rebins adjacent 10 channels into 1 bin
e hliTDCSUM->Fit (“user”,”R”)

— Fit to function defined by “user” over range “R”
root[]user=new TF1l (“user”,”[0]*exp(x/[1])+[2]"7,0.2,7.5)

Go to desktop for updates here...

	Introduction to ROOT�root.cern.ch
	A completely self-installing system is available for you to download to many platforms
	What can ROOT do?�Who makes ROOT?
	Once you install it, click to run
	Start with some introductory commands. Study the macros. They are not fancy. All commands can be typed one by one at the command prompt if you prefer.
	Some often used command lines
	Snapshots of the output
	Specific from Phys 403
	(Extra slides for the muon experiment)
	A word about how data is usually stored in nuclear and particle physics experiments
	For our muon experiment
	When the data is Analyzed … “processed”
	Typical muon lifetime plots

