Entanglement

"About your cat, Mr. Schrödinger-I have good news and bad news."

Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen

Entanglement

- A quantum object can be in a superposition of two states
- Tinhaekead isad duquiranturno bjejejetct
- It can be awake and asleep
- If we check, it will be in only pof the states

- If we have two objects, we can entangle the states such that knowing about one object affects the other

Entanglement

- An Entangled State:

- If I measure one object, it will end up in just one state, causing the other object to also be in just one state
- E.g. photons whose polarizations are entangled: $|\mathfrak{\downarrow}\rangle+|\leftrightarrow \leftrightarrow|$

$$
|V V\rangle+|H H\rangle
$$

Properties of Entanglement

at least
"It takes two to tangle."
J. Eberly, 2015

$$
\psi_{\text {pair }} \propto|H H\rangle+|V V\rangle \quad \text { Entangled }
$$

1935: Entanglement is
"the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought"
-E. Schrödinger

$$
\psi_{12}=\psi_{1} \psi_{2} \propto|H H\rangle+|V V\rangle+|H V\rangle+|V H\rangle \quad \text { Not Entangled }
$$

In an entangled state, neither particle has definite properties alone.
\Rightarrow All the information is stored in the joint properties.

1935: Einstein, Podolsky, Rosen (EPR) Paradox

EPR: Action at a distance (non-locality) is spooky.
Is Quantum Mechanics wrong?
Maybe correlations are due to some local element of reality ("local hidden variable" model)?
A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

1964: Bell's theorem

- Bell's theorem shows Quantum Mechanics gives different statistical predictions than any local realistic model
- Certain inequalities are violated if non-local correlations exist, tested by measuring statistical correlations between spatially separated entangled systems
"If [a hidden variable theory] is local it will not agree with quantum mechanics, and if it agrees with quantum mechanics it will not be local."
- John Bell, 1975
J.S. Bell, Physics 1, 195-200 (1964)

Strong Loophole-Free Test of Local Realism*

Lynden K. Shalm, ${ }^{1, \dagger}$ Evan Meyer-Scott, ${ }^{2}$ Bradley G. Christensen, ${ }^{3}$ Peter Bierhorst, ${ }^{1}$ Michael A. Wayne, ${ }^{3,4}$ Martin J. Stevens, ${ }^{1}$ Thomas Gerrits, ${ }^{1}$ Scott Glancy, ${ }^{1}$ Deny R. Hamel, ${ }^{5}$ Michael S. Allman, ${ }^{1}$ Kevin J. Coakley, ${ }^{1}$ Shellee D. Dyer, ${ }^{1}$ Carson Hodge, ${ }^{1}$ Adriana E. Lita, ${ }^{1}$ Varun B. Verma, ${ }^{1}$ Camilla Lambrocco, ${ }^{1}$ Edward Tortorici, ${ }^{1}$ Alan L. Migdall, ${ }^{4}, 6$ Yanbao Zhang, ${ }^{2}$ Daniel R. Kumor, ${ }^{3}$ William H. Farr, ${ }^{7}$ Francesco Marsili, ${ }^{7}$ Matthew D. Shaw, ${ }^{7}$ Jeffrey A. Stern, ${ }^{7}$ Carlos Abellán, ${ }^{8}$ Waldimar Amaya, ${ }^{8}$ Valerio Pruneri, ${ }^{8,9}$ Thomas Jennewein, ${ }^{2,10}$ Morgan W. Mitchell, ${ }^{8,9}$ Paul G. Kwiat, ${ }^{3}$ Joshua C. Bienfang, ${ }^{4,6}$ Richard P. Mirin, ${ }^{1}$ Emanuel Knill, ${ }^{1}$ and Sae Woo Nam ${ }^{1, \text {, }}{ }^{\text { }}$
${ }^{1}$ National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
${ }^{2}$ Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1
${ }^{3}$ Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
${ }^{4}$ National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
${ }^{5}$ Département de Physique et d'Astronomie, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada
${ }^{6}$ Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
${ }^{7}$ Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, USA
${ }^{8}$ ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
${ }^{9}$ ICREA-Institució Catalana de Recerca i Estudis Avançats, 08015 Barcelona, Spain
${ }^{10}$ Quantum Information Science Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada (Received 10 November 2015; published 16 December 2015)
We present a loophole-free violation of local realism using entangled photon pairs. We ensure that all relevant events in our Bell test are spacelike separated by placing the parties far enough apart and by using fast random number generators and high-speed polarization measurements. A high-quality polarizationentangled source of photons, combined with high-efficiency, low-noise, single-photon detectors, allows us to make measurements without requiring any fair-sampling assumptions. Using a hypothesis test, we compute p values as small as 5.9×10^{-9} for our Bell violation while maintaining the spacelike separation of our events. We estimate the degree to which a local realistic system could predict our measurement choices. Accounting for this predictability, our smallest adjusted p value is 2.3×10^{-7}. We therefore reject the hypothesis that local realism governs our experiment.

The last 50 years: Quantum Information

Information Science

Quantum Mechanics

Quantum Computing
Quantum Communication
$\left.$Simulation of Quantum Systems${ }^{2} \right\rvert\,$

Quantum Information

1970: Spontaneous Parametric Down-Conversion

- Burnham \& Weinberg, PRL 25, 84 (1970):

*Energy conservation \rightarrow energy entanglement \dagger Momentum conservation \rightarrow momentum entanglement

Type-I phase-matching
Photons have identical polarizations

Polarization Entanglement

Proof of Quantum Correlations

Near-perfect quantum behavior

$$
\left|\psi_{\text {system }}\right\rangle=|V V\rangle+R e^{i \phi}|H H\rangle
$$

Spontaneous four-wave mixing

Conservation of energy

- Spontaneous four-wave mixing in polarization-maintaining optical fiber:

- Birefringent phase-matching: $\Delta k=2 k\left(\omega_{p}\right)-k\left(\omega_{s}\right)-k\left(\omega_{i}\right)+2 \Delta n \frac{\omega_{p}}{c}=0$

Generation of polarization entanglement

$$
\left|V_{s} V_{i}\right\rangle
$$

Pump travels on slow axis. Signal and idler travel on fast axis.
One end of the fiber is twisted by 90° relative to the other end.

Generation of polarization entanglement

$$
\left|H_{s} H_{i}\right\rangle+\left|V_{s} V_{i}\right\rangle
$$

Pump travels on slow axis. Signal and idler travel on fast axis.
One end of the fiber is twisted by 90° relative to the other end.

Why are entangled states important?

- Responsible for quantum measurements and decoherence
- Central to demonstrations of quantum nonlocality (e.g., Bell's inequalities, GHZ, etc.)
- Quantum cryptography - separated particles' correlations allow sharing of secret random key
- Quantum teleportation - transmit unknown quantum state via 2 classical bits + EPR pair
- Quantum computation - intermediate states are all complex entangled states

Classical Cryptography

USA TODAY:

Quantum Key Distribution

Entanglement, and the scaling that results, is the key to the power of quantum computing

- Classically, information is stored in a bit register:
- A 3-bit register can store one number, from 0-7

- Quantum Mechanically, a register of 3 qubits can store all of these numbers in superposition:

$$
|000\rangle+|001\rangle+|010\rangle+|011\rangle+|100\rangle+|101\rangle+|110\rangle+|111\rangle=|0\rangle+|1\rangle+. .|7\rangle
$$

Result:

- Classical: one N-bit number
- Quantum: 2^{N} (all possible) N -bit numbers
- N.B. A 300-qubit register can simultaneously store more combinations than there are particles in the universe.
- Acting on the qubits simultaneously affects all the numbers:

$$
(|0\rangle+|1\rangle+\ldots|7\rangle) \otimes|f(x)\rangle \Rightarrow|0\rangle|f(0)\rangle+|1\rangle|f(1)\rangle+\ldots|7\rangle|f(7)\rangle
$$

- Some important problems benefit from this entanglement, enabling solutions of otherwise insoluble problems.

Quantum Logic

Controlled-Not Gate:

$|0\rangle_{c}|0\rangle_{t} \rightarrow|0\rangle_{c}|0\rangle_{t}$
$|0\rangle_{c}|1\rangle_{t} \rightarrow|0\rangle_{c}|1\rangle_{t}$
$|1\rangle_{c}|0\rangle_{t} \rightarrow|1\rangle_{c}|1\rangle_{t}$
$|1\rangle_{c}|1\rangle_{t} \rightarrow|1\rangle_{c}|0\rangle_{t}$
$\left.\left(|0\rangle_{c}+|1\rangle_{c}\right) 0\right\rangle_{t} \xrightarrow{C N O T}|0\rangle_{c}|0\rangle_{t}+|1\rangle_{c}|1\rangle_{t}$
2-Qubit interactions lead to entangled states.

Quantum Teleportation

Bennett et al., PRL 70, 1895 (1993)
The basic idea: transfer the (infinite) amount of information in a qubit from Alice to Bob without sending the qubit itself. Requires Alice and Bob to share entanglement:

Remarks:

- The original state is gone.
- Neither Alice nor Bob know what it was.
- Requires classical communication - no superluminal signaling.
- Bell state analysis is hard.

Experimental Teleportation

1997: First demonstration [Bouwmeester et al., Nature 390, 575 (1997)] 2004: Quantum teleportation across the Danube [Ursin et al., Nature 430, 849 (2004)]

Alice

Bob

- Now demonstrated teleportation of entanglement, other degrees of freedom, continuous variables, energy states of ions, 2-qubits ...

But there's Quantum Teleportation, and then there's

Yes, but there are two major differences. Firstly, we transfer properties, not matter. And secondly, until now we have had more success with light particles and occasionally with atoms, not with larger objects.

And even if it was possible, the problems involved would be huge. Firstly: for physical reasons, the original has to be completely isolated from its environment for the transfer to work. There has to be a total vacuum for it to work. And it is a well-known fact that this is not particularly healthy for human beings. Secondly, you would take all the properties from a person and transfer them onto another. This means producing a being who no longer has any hair colour, no eye colour, nix. A man without qualities! This is not only unethical it's so crazy that it's impossible to imagine.

The atoms in a human being are the equivalent to the information mass of about a thousand billion billion billion bits. Even with today's top technology, this means it would take about 30 billion years to transfer this mass of data. That's twice the age of the universe. So we'll need a number of major breakthroughs in technology first.

Anton Zeilinger
Who knows, perhaps in a thousand years we really will be able to teleport a coffee cup. But beware: even the tiniest interference can mean that the cup arrives without its handle. This method of transport would be far too dangerous for humans.

Conclusion

- Quantum entanglement breaks local realism
- Generating entangled photons \& reconstructing their state is relatively easy, but engineering for applications is still a challenge
- Entanglement is important and useful!

QUANTUM MECHANIC

Long-Distance QKD

Physical realization of qubits \rightarrow any 2 level system

All 2-level systems are created equal, but some are more equal than others!
Quantum communication \rightarrow photons
Quantum storage \rightarrow atomic vapors, spins
Scaleable circuits \rightarrow ions, solid state systems
"Quantum" phenomena

