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• Errors and uncertainties

• The reading error

• Accuracy and precession

• Systematic and statistical errors

• Fitting errors

• Presentation of the results

• Heisenberg limit precision measurements
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Introduction
• Uncertainties exist in all experiments

• The final goal of any experiment is to obtain reproducible results. 
Knowing errors and uncertainties is an essential part for ensuring 
reproducibility.

• To know the uncertainties we use two approaches:

(1) Repeat each measurement many times and determine how well the 
result reproduces itself. If the results are different then there are 
statistical errors. 

(2) Measure the quantity of interest using a different method. The 
results, if correct, are independent of the measurement technique. 
If the results are different then there are systematic errors in one 
of the methods or in both.

• Presenting the result of your experiment: Use the right number of 
significant digits, in agreement with the estimated uncertainty.
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Systematic vs. Statistical Uncertainties
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• Systematic uncertainty

– Uncertainties associated with imperfect knowledge of 
measurement apparatus, other physical quantities needed for the 
measurement, or the physical model used to interpret the data.

– Generally correlated between measurements.  Cannot be reduced 
by multiple measurements. 

– Better calibration, or measurements employing different 
techniques or methods can reduce the uncertainty.   

• Statistical Uncertainty 

– Uncertainties due to stochastic fluctuations

– Generally there is no correlation between successive 
measurements. 

– Multiple measurements can be used to reduce this uncertainty. 



The Difference Between Systematic & Random Errors

6

• Random error describes errors that fluctuate due to the
unpredictability or uncertainty inherent in your measuring
process, or the variation in the quantity you’re trying to measure.
Such errors can be reduced by repeating the measurement and
averaging the results.

• A systematic error is one that results from a persistent issue
and leads to a consistent error in your measurements. For
example, if your measuring tape has been stretched out, your
results will always be lower than the true value. Similarly, if
you’re using scales that haven’t been set to zero beforehand,
there will be a systematic error resulting from the mistake in
the calibration. Such errors cannot be reduced simply by
repeating the measurement and averaging the results. Such
errors can be reduced by analyzing the instrument(s) used for
the measurement and by using different instruments.
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The standard uncertainty σ of a measurement result x is the estimated

standard deviation of x.

The relative standard uncertainty σr of a measurement result x is defined by

σr = σ /|x|, where x is not equal to 0.

In statistics, the standard deviation (SD, also represented by the Greek letter

sigma σ or the Latin letter s) is a measure that is used to quantify the

amount of variation or dispersion of a set of data values. A low standard

deviation indicates that the data points tend to be close to the mean value of

the set (μ=<xi>), while a high standard deviation indicates that the data

points are spread out over a wider range of values.
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Meaning of uncertainty:

If the probability distribution characterized by the averaged

measurement result y and its standard uncertainty σ is approximately

normal (Gaussian), and σ is the standard deviation of x, then the

interval x – σ to x + σ is expected to encompass approximately 68 %

of the measurement results (data points).

Here X is the true value (never known exactly) and x is the measured

value.

The probability that the true value X is greater than x - σ, and is less

than x + σ is estimated as 68%.

This statement is commonly written as X= x ± σ.
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The interval representing two standard deviations contains

95.4% of all possible true values.

Confidence interval <x> ± 3σ contains 99.7% of possible outcomes.
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Use of concise notation:

If, for example, v = 1 234.567 89 m/s and Δv = 0.000 11 m/s, where 
m/s is the unit of v, then v = (1 234.567 89 ± 0.000 11) m/s.  

A more concise form of this expression, and one that is used 
sometimes, is v = 1 234.567 89(11) m/s, where it understood that the 
number in parentheses is the numerical value of the standard 
uncertainty referred to the corresponding last digits of the quoted 
result.

Examples of results which do not make sense (too many digits):

v = (1234.5678934534940945 ± 0.011) m/s

or v = (1234.56 ± 2) m/s



𝑻 = 𝟔𝟑℉±? Best guess ∆𝑻~𝟎. 𝟓℉

Wind speed 4mph±? Best guess ±𝟎. 𝟓𝒎𝒑𝒉
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If they say T=63.32456 F, that would be wrong 
since they cannot predict temperature with such high precision
and the temperature is not stable up to so many significant digits 



1675 Ole Roemer: 220,000 Km/sec 

Maxwell’s theory prediction: 
Speed if light does not depend on the light wavelength. It is a universal constant.
NIST Bolder Colorado c = 299,792,456.2±1.1 m/s.

Ole Christensen Rømer
1644-1710

Does it make sense?
What is missing?

Measurement of the speed 
of the light
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L=53mm±ΔL(?)

∆𝑳 ≅ 𝟎. 𝟓𝒎𝒎

∆𝑳 ≅ 𝟎. 𝟎𝟑𝒎𝒎

Use a simple ruler if 
you do not care about 
accuracy better than 
1mm

How far we have to go in reducing the reading error?

Acrylic rod

Otherwise you 
need to use 
digital calipers 

Probably the natural limit of 
accuracy can be due to length 
uncertainty because of 
temperature expansion. For 
53mm ∆𝑳 ≅ 𝟎. 𝟎𝟏𝟐𝒎𝒎/𝑲

Reading Error = ±
𝟏

𝟐
(least count or minimum gradation).
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Fluke 8845A multimeter

Example Vdc (reading)=0.85V

∆𝑽 = 𝟎. 𝟖𝟓 × 𝟏. 𝟖 × 𝟏𝟎−𝟓 ~ 𝟏𝟓𝝁𝑽
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The accuracy of an experiment

is a measure of how close the

result of the experiment comes

to the true value

Precision refers to how closely

individual measurements agree

with each other
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• Systematic Error: reproducible inaccuracy introduced

by faulty equipment, calibration, technique, model,

drifts.

• Random errors: Indefiniteness of results due to finite

precision of experiment. Errors can be reduced be

repeating the measurement and averaging. These

errors can be caused by thermal motion of molecules

and electrons in the apparatus.

Philip R. Bevington “Data Reduction and Error 

Analysis for the Physical sciences”, McGraw-Hill, 

1969
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Sources of systematic errors: poor calibration
of the equipment, changes of environmental
conditions, imperfect method of observation,
drift and some offset in readings etc.

Example #1: measuring of the DC voltage

R
Current 
source

I

U

U=R*I

Rin

expectation

Eoff

𝐔 = 𝐑𝐈 + 𝐄𝐨𝐟𝐟

actual result

Eoff = Offset Votlage
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Example #3: poor calibration

LHe

HP34401A
DMM

10mA

Resonator

Measuring of the speed of the 
second sound in superfluid He4

Temperature sensor
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Tl=2.1K

Tl=2.17K
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Siméon Denis Poisson 
(1781-1840)
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r: decay rate  [counts/s] t: time interval [s]                  

➔ Pn(rt) : Probability to have n decays in time interval t

A statistical process is described
through a Poisson Distribution if:

o random process → for a given

nucleus probability for a decay to
occur is the same in each time
interval.

o universal probability → the

probability to decay in a given time
interval is same for all nuclei.

o no correlation between two instances
(the decay of on nucleus does not
change the probability for a second
nucleus to decay.
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Properties of the Poisson distribution:

𝝈 = 𝒓𝒕
< 𝒏 >= 𝒓𝒕
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Carl Friedrich Gauss 
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Source of noisy signal

4.89855
5.25111
2.93382
4.31753
4.67903
3.52626
4.12001
2.93411

Expected value 5V

Actual measured values



10 100

104 106
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Error in the mean is given as   
𝝈𝟎

𝑵
(This is called standard quantum limit

or the shot noise limit)
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According to Heisenberg uncertainty, 

the ultimate precision of the energy measurement is ΔE~

ℏ

𝒕

If N is the number of measurements performed then t=N*t1, where t1 is the time 
needed to perform one measurement.

Thus the precision can be as good as ΔE~
ℏ

𝒕
𝟏

𝟏

𝑵

To achieve this high precision one has to use a quantum system, such as a qubit.



Result
c

U x
N


= 

 - standard deviation
N – number of samples

For N=106 U=4.999±0.001     0.02% accuracy 
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Result
c

U x
N


= 

 - standard deviation
N – number of samples
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The standard error equals the standard deviation

divided by the square root of the sample size

(=number of measurements).

In other words, the standard error of the mean is a

measure of the dispersion of sample means around

the population mean.

https://en.wikipedia.org/wiki/Square_root


Ag b decay
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Model ExpDec2

Equation y = A1*exp(-x/t1) + 
A2*exp(-x/t2) + y0

Reduced Chi-Sqr 1.43698

Adj. R-Square 0.96716

Value Standard Error

C y0 0.02351 0.95435

C A1 104.87306 12.77612

C t1 177.75903 18.44979

C A2 710.01478 25.44606

C t2 30.32479 1.6525
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Residuals

Model Gauss

Equation y=y0 + (A/(w*sq
rt(PI/2)))*exp(-2
*((x-xc)/w)^2)

Reduced Chi-S
qr

4.77021

Adj. R-Square 0.93464

Value Standard Error

Counts y0 1.44204 0.48702

Counts xc 1.49992 0.19171

Counts w 5.93398 0.40771

Counts A 219.24559 14.47587

Counts sigma 2.96699

Counts FWHM 6.98673

Counts Height 29.4798
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Residuals

Model Gauss

Equation y=y0 + (A/(w*sq
rt(PI/2)))*exp(-2
*((x-xc)/w)^2)

Reduced Chi-S
qr

4.77021

Adj. R-Square 0.93464

Value Standard Error

Counts y0 1.44204 0.48702

Counts xc 1.49992 0.19171

Counts w 5.93398 0.40771

Counts A 219.24559 14.47587

Counts sigma 2.96699

Counts FWHM 6.98673

Counts Height 29.4798

Test 1. Fourier analysis

No pronounced frequencies found
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Model Gauss

Equation y=y0 + (A/(w*sq
rt(PI/2)))*exp(-2
*((x-xc)/w)^2)

Reduced Chi-S
qr

4.77021

Adj. R-Square 0.93464

Value Standard Error

Counts y0 1.44204 0.48702

Counts xc 1.49992 0.19171

Counts w 5.93398 0.40771

Counts A 219.24559 14.47587

Counts sigma 2.96699

Counts FWHM 6.98673

Counts Height 29.4798

Test 1. Autocorrelation function 
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Ag b decay

physics 403

Clear experiment Data + “noise”

t1(s) 177.76 145.89

t2(s) 30.32 27.94
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Ag b decay

physics 403

Histogram does not follow the  
normal distribution and there is 
frequency of 0.333 is present in 
spectrum 
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Ag b decay

physics 403

Autocorrelation function

Conclusion:  fitting function should be modified by adding an additional term:
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Clear experiment Data + noise Modified fitting

t1(s) 177.76 145.89 172.79

t2(s) 30.32 27.94 30.17

FFT
autocorrelation
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y = f(x1, x2 ... xn)
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Derive resonance frequency f
from measured inductance
L±∆L and capacitance C±∆C
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Results: 
f(L1,C1)=503.29212104487Hz
∆f=56.26977Hz

f(L1,C1)=503.3±56.3Hz
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Figure 3.Magnetization (M/Ms) of Mn3 single
crystal versus applied magnetic field with the
sweeping rate of 0.003 T/s at different
temperatures. The inset shows ZFC and FC curves.

Phys. Rev. B 89, 184401

Figure 2. Normalized conductivity vs temperature for
three 250-nm-thick K0.33WO3−y films on YSZ
substrates. The films are annealed in vacuum at
different temperatures, with properties shown in the
inset table. The units of Tanneal are degrees Celcius,
σ0 is given in 1/mΩcm, n in /cm3, and Tc in degrees
Kelvin.

Phys. Rev. B 89, 184501 
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Figure 1. Normalized residuals of the combined dE/dx for antideuteron candidates in the Onpeak ϒ(2S) 
data sample, with fit PDFs superimposed. Entries have been weighted, as detailed in the text. The solid 
(blue) line is the total fit, the dashed (blue) line is the d¯ signal peak, and the dotted (red) line is the 
background.

Phys. Rev. D 89, 111102(R) 
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Figure 10(ii): lambda versus T for indium film with
thickness 300 nm. Input voltage is 0.2v. Critical
temperature(b) and penetration depth(A) at
temperature 0 K is determined

Spring 2014.
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4.0762E6
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Value Standard Error

lamda
A 527.99346 142.5365

b 3.38882 0.00619

Model NewFunction5 (User)
Equation A/(1-(x/b)^4)^.5
Reduced Chi-Sqr 4.0762E6
Adj. R-Square 0.90931

Value Standard Error
lamda A 527.99346      142.5365
lamda b 3.38882 0.00619
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Summer 2019.

Figure 8: Coincidence Rate vs. Detector Angle for 22Na 
correlation measurement.

Figure 11: Temperature dependence of energy gap 
in Sn. Red line is BCS theory 


