<u>UIUC Physics 406: Acoustical Physics of Music</u> <u>Course Syllabus</u>

Professor Steven Errede, 435 Loomis Laboratory, serrede@illinois.edu, 333-0074/4452

Introduction to Course, Course Structure, Organization:

- This course meets 3×/week, 4 credit hours.
 - * Lecture/demos Tues & Thurs 12:30-1:50 pm in 6105 ESB, and:
 - * 3 hr Lab Friday, either: Lab1: 11am-2pm, or Lab2: 2:00-5:00 pm in 6105 ESB
- Lecture/demo/lab/hands-on interactive/investigative-type format
- 1 HW assignment/week, lecture related.
- Take-Home Midterm & Final Exams.
- Lecturer: Steve Errede 435 Loomis, email: <u>serrede@illinois.edu</u> Phone(s): 333-0074 (office); 333-4225 (lab), 333-4452 (HEP sec'y)
- 2 TAs: Matt Ziemann mrziema2@illinois.edu, Andrew Ferrante aferran2@illinois.edu
- UG Lab Teaching Specialist: Jack Boparai 6101 ESB, email: jboparai@illinois.edu
- Course Project of own choice (must be relevant to course), can be wide-ranging
 * Brief oral presentation on project @ midterm
 - * Final oral presentation & final written report @ end of semester, substantive effort.
 - * Final written report will be posted on P406POM Student Reports web page.
- Web page for course, URL: http://courses.physics.illinois.edu/phys406/
- Final grade: mix of HW, midterm, final exams, active participation in class & labs, project midterm & final oral presentation(s) and final report(s) on project(s).

Course Content:

- Essentially acoustical physics, with emphasis on music and musical instruments.
- What is music? For humans? For other animals?
- Why does music exist? Why is it important? For humans? For other animals?
- Why/how did music evolve? History of music/musical instruments.
- Human music, music associated with other living creatures...
- Importance of music today in our societies. In future? Evolution of music?
- Music in Nature/Music of the Cosmos... earth, sun, other plants, universe...
- Scientific study of music/musical instruments (history):
 - * Ancient Greeks Pythagoras (~ 500 BC) at least. Earlier endeavors?
 - * Since then: Aristotle, Ptolemy. Huygens, Euler, Ohm, Young, Helmholtz
- How is music made?
 - * (Collective) vibrations of atoms of matter
 - * Matter vibrations coupling to air collective vibrations of air molecules
 - * Propagation of sound waves in air, other media, fluids & solids.
- How/why is music heard/perceived? Human & animal hearing/sound perception
 - * Evolution why is it beneficial to perceive sound?
 - * Psychoacoustics study of human hearing
 - * How human ear(s) + brain work
 - * Hearing in other animals
- Simple Vibrating Systems
 - Simple harmonic motion e.g. mass on a spring, tuning fork
 - + Frequency, period, wavelength, amplitude, phase, energy, energy loss/damping/dissipation, power

- * Travelling waves and wave propagation in a medium
 - + One-dimensional medium bead-spring system
 - + One-dimensional transverse and longitudinal waves
 - + Wave propagation in two and three dimensions
- * One-dimensional standing waves
 - + Sum/superposition of two counter-propagating travelling waves
 - + Boundary conditions for standing waves
 - o Reflection, refraction, diffraction of travelling waves
 - o Interference effects
 - o Resonance effects
 - + Transverse standing waves, e.g. on a guitar/violin/piano string
 - + Longitudinal standing waves, e.g. in air organ pipes/flutes
- * Standing waves in two and three dimensions
 - + Vibrating membranes/plates drums, cymbals, musical saw, Chladni's law
- * Doppler effect source/observer motional effects on sound waves in air.
- * Beats interference between two frequencies
- * Distortion non-linear response & generation of harmonics of fundamental
- * Intermodulation distortion non-linear response with 2 or more frequencies.
- * The Human Ear/Human Hearing
 - + Structure of the outer & inner human ear, and its response to sound
 - + Why two ears? Phase sensitivity, source location determination. Human hearing localization optimized for sound propagation in air...
 - + Sound Intensity, I (Watts/m²)
 - + Sound Intensity Level, L (decibels)
 - o Threshold of hearing, threshold of pain, noise levels/occupational exposure
 - + Sound Pressure Level, L_p (decibels)
 - + Loudness Level (phons)
 - + Loudness (sones)
- * Musical Tone Quality/Timbre
 - + Pure tones/simple tones sine/cosine waves
 o have well-defined frequencies/wavelengths, amplitudes & phases
 - + Partial tones (= partials) assembly of pure tones
 - o = a mix of different frequencies & amplitudes
 - + Complex tone superposition of simple tones complex waveform
 - + Periodic complex waveform has fundamental + harmonics/overtones
 - o harmonics/overtones = integer multiples of fundamental frequency
 - o phase sensitivity of human ear to complex tone/tone quality/timbre
 - o harmonic (Fourier) analysis of musical instrument tones
 - + Formants resonances
 - + Sound Envelope attack time/decay time
- * Sound Effects
 - + Vibrato, tremelo, chorus, phase shift/flanging, reverberation/echo, etc.
 - + Noise
 - + Subjective tones (non-linear response/distortion in the ear)
 - + Auditory sensation "tricks"
- * Musical intervals, musical scales, tuning and temperament
 - + Consonance/dissonance
 - + Discrete frequencies = scale

- + Frequency ratios: unison, octave, fifth, fourth, third, etc.
- + Interval = separation of two notes on a scale
- Musical Scales Pentatonic, Pythagorean, Meantone Tuning, Just, Just Diatonic, Tempered Scales
 - + whole tones, semi-tones, cents
 - + pitch standard(s)
 - + octave notation
 - + frequencies of musical notes, e.g. in tempered scale
- * Acoustics
 - + Acoustics of auditoriums, recording studios, home listening rooms, etc.
 - o Interference, sound absorption, Sabine eqn.
 - o Reverberation & echo, spectral, octave & 1/3-octave band measurements of room/auditorium acoustics, T60, T30 measurements, etc.
 - o Electronic Sound Reinforcement
 - o Computer analysis/modeling electro-acoustics of auditoriums/studios/etc.
 - + Acoustics of loudspeaker enclosures
- Production of musical sounds by musical instruments mimic human voice, and/or natural human rhythms (percussion instruments).
 - + Human Voice & Singing 1st musical instrument 1-D vibrational system.
 - o vocal chords/larynx/hyoid bone/tongue/chest-mouth-nasal cavity & formants
 - o Formants & use of formants/professional singers, Tuvan throat singing, etc.
 - + Stringed Instruments
 - o Physics of plucked & bowed vibrating strings
 - o Plucked: acoustic/classical and electric guitar(s), mandolin, ukulele,etc.
 - o Bowed: violin, viola, cello, bass
 - o Hammered: piano, hammered dulcimer
 - + Woodwind Instruments
 - o Physics of whistles, reeds & organ pipes
 - o Whistles: Whistle, recorder, flute
 - o Reed: Clarinet, oboe, bassoon, saxophone
 - o Pipe: Pipe organ, bagpipes
 - + Brass Instruments
 - o Physics of mouthpiece, bell
 - o Trumpet, trombone, French horn
 - + Percussion Instruments
 - o Physics of vibrating bars, plates, membranes
 - o Xylophone, glockenspiel, Fender-Rhodes piano
 - o Drums (all kinds), cymbals (all kinds)
 - o Musical saw
 - + Electronic Musical Instruments
 - o Electro-mechanical organs e.g. Hammond B3
 - o Electronic organs/keyboard instruments
 - o Analog and Digital Sound Synthesizers,
 - o MIDI & MIDI instrument
 - o Computer-generated music
 - o Electronic Stringed Instruments guitars, bass guitar, cello, mandolin..
 - + Analog & Digital Recording of Music & Sound
 - o Edison phonograph cylinder & disk records (analog)

- o Magnetic wire and tape recorders (analog & digital)
- o Digital recording (e.g. to CD, DVD, etc.)
- o Analog input transducers condenser and dynamic microphones
- o Analog output transducers loudspeakers
- + Music in the near-term and distant future
 - o Human music culture & society. New kinds?
 - o Development of new kinds of musical instruments & technology.
 - o Evolution of music in animals? Human animal music interactions?
- + Sound Analysis Methodology & Analysis of Musical Sounds
 - o Complex Harmonic Sound Fields Euler's eqn., complex immittances, sound intensity, linear and angular momentum density, group and phase velocity, energy density.
 - o Examples of Complex Sound Fields near & far fields of acoustic monopole, dipole, quadrupole, ... planar circular piston on oo-baffle...
 - o Harmonic/Fourier Analysis/Fourier Synthesis complex waveforms
 - o Pressure and Particle Velocity Transducers
 - o Phase Sensitive Measurements Lock-In Amplifier Techniques
 - o Near-Field Acoustic Holography modal vibrations of drums, cymbals, acoustic guitars, etc.
 - o Spectral Analysis Techniques continuous & discrete Fourier transforms, FFTs, convolution, correlation, autocorrelation, cross-correlation, Wiener-Khinchine theorem, power spectral density, coherence function
 - o Digital Signal Processing/Digital Filtering
 - o Wavelet Analysis
- Physics of Electric Guitar Pickups, modeling EM properties of electric guitar pickups
- Physics of Loudspeakers, modeling of acoustic and EM properties of loudspeakers
- 1/*f* Noise in Human Music
- Diversity/Universality of Human Music
- Sustainability & Environmental Issues for Musical Instruments
 - o Use of renewable natural resources for musical instruments tonewoods....