Time-Domain vs. Frequency-Domain Sound Field Measurements

Introduction:

In this lab handout, we discuss the physical meaning of, the relationship(s) between, and the experimental techniques associated with time-domain vs. frequency-domain measurements of over-pressure p and particle velocity \vec{u} associated with an arbitrary sound field.

For sound waves propagating in air, the instantaneous over-pressure $p(\vec{r}, t)$ (n.b. a scalar quantity) and the instantaneous 3-D vector particle velocity $\vec{u}(\vec{r}, t)$ obey their respective wave equations, which are \{neglecting/ignoring (small) dissipative/energy loss effects) and for normal/everyday sound pressure levels $(S P L \ll 134 d B)\}$:

$$
\nabla^{2} p(\vec{r}, t)+\frac{1}{v^{2}} \frac{\partial^{2} p(\vec{r}, t)}{\partial t^{2}}=0 \text { and: } \nabla^{2} \vec{u}(\vec{r}, t)+\frac{1}{v^{2}} \frac{\partial^{2} \vec{u}(\vec{r}, t)}{\partial t^{2}}=0
$$

where v is the wave propagation speed in the medium (= air, in this case, here).
The instantaneous over-pressure $p(\vec{r}, t)$ and particle velocity $\vec{u}(\vec{r}, t)$ are not independent quantities. For e.g. traveling-type sound waves in air, neglecting/ignoring (small) dissipative/ energy loss effects and normal/everyday sound pressure levels ($S P L \ll 134 d B$), the Euler equation for inviscid (i.e. dissipationless) fluid flow reasonably accurately describes the spatialtemporal relationship between these two instantaneous physical quantities:

$$
\frac{\partial \vec{u}(\vec{r}, t)}{\partial t}=-\frac{1}{\rho_{o}} \vec{\nabla} p(\vec{r}, t) \text { where for sound propagation in air: } \rho_{o}^{\text {air }}=1.204 \mathrm{~kg} / \mathrm{m}^{3} @ \text { NTP. }
$$

Sound Field Measurements in One Dimension:

For the sake of simplicity and clarity, we first discuss 1-D sound fields, such as that associated with the propagation of a monochromatic (i.e. single-frequency) traveling plane wave in the $+\hat{z}$ direction, or e.g. the "far-field" $(r \gg \lambda)$ regime associated with the radial-outward propagation of \{monochromatic/ single-frequency\} spherical waves emanating from a point sound source, located at the origin. Please refer to the UIUC Physics 406 Lecture Notes XII and XII - Part 2 for discussion/details of the nature of these two 1-D type sound fields.

In order to completely describe an arbitrary, instantaneous monochromatic/single-frequency $\{\omega \equiv 2 \pi f$ \}1-D sound field associated with a 1-D longitudinal sound wave (at least locally) propagating in the $+\hat{z}$ direction, we need to measure two physical quantities at the listener's position, e.g. $\vec{r}=z \hat{z}$:
a.) the instantaneous over-pressure, $p(\vec{r}, t ; \omega)$ and
b.) the instantaneous 1-D particle velocity $u_{z}(\vec{r}, t ; \omega)$.

The most general mathematical description - in the time-domain - for these two instantaneous physical quantities, associated with a monochromatic/single-frequency traveling 1-D sound wave (at least locally) propagating in the $+\hat{z}$ direction, for a listener's position at $\vec{r}=z \hat{z}$ are:

$$
\begin{aligned}
p(\vec{r}, t ; \omega)=p_{0}(\vec{r}, \omega) \cos \Theta_{p}(\vec{r}, t ; \omega) & =p_{0}(\vec{r}, \omega) \cos \left(\omega t+\varphi_{p}(\vec{r}, \omega)\right) \\
& =p_{0}(\vec{r}, \omega) \cos \left[\omega t-k_{z}(\vec{r}, \omega) z+\varphi_{p}^{o}(\omega)\right] \\
u_{z}(\vec{r}, t ; \omega)=u_{0_{z}}(\vec{r}, \omega) \cos \Theta_{u_{z}}(\vec{r}, t ; \omega) & =u_{0_{z}}(\vec{r}, \omega) \cos \left(\omega t+\varphi_{u_{z}}(\vec{r}, \omega)\right) \\
& =u_{0_{z}}(\vec{r}, \omega) \cos \left[\omega t-k_{z}(\vec{r}, \omega) z+\varphi_{u_{z}}^{o}(\omega)\right]
\end{aligned}
$$

Note that the amplitudes for over-pressure $p_{0}(\vec{r}, \omega)$ and longitudinal particle-velocity $u_{0_{z}}(\vec{r}, \omega)$ are time-independent quantities \{for a constant-amplitude sound source\}. However, depending on the detailed nature of the specific sound source under consideration in a given physics situation, the amplitudes $p_{0}(\vec{r}, \omega)$ and $u_{0_{z}}(\vec{r}, \omega)$ in general can be/are position- .and. frequency-dependent.

Note that the overall arguments of the cosine function(s), $\Theta_{p}(\vec{r}, t ; \omega)$ and $\Theta_{u_{z}}(\vec{r}, t ; \omega)$ in the above $+\hat{z}$ 1-D traveling-wave expressions for instantaneous over-pressure $p(\vec{r}, t ; \omega)$ and 1-D longitudinal particle velocity $u_{z}(\vec{r}, t ; \omega)$ are, in general not constants, due to \{in general\} possible position- and frequency-dependence of the overall phases $\varphi_{p}(\vec{r}, \omega)$ and $\varphi_{u_{z}}(\vec{r}, \omega)$, the $\{$ longitudinal $\}$ wavenumber $k_{z}(\vec{r}, \omega)$ and the $(\vec{r}=0)$ phases $\varphi_{p}^{o}(\omega)$ and $\varphi_{u_{z}}^{o}(\omega)$:

$$
\begin{aligned}
& \Theta_{p}(\vec{r}, t ; \omega)=\omega t+\varphi_{p}(\vec{r}, \omega)=\omega t-k_{z}(\vec{r}, \omega) z+\varphi_{p}^{o}(\omega) \\
& \Theta_{u_{z}}(\vec{r}, t ; \omega)=\omega t+\varphi_{u_{z}}(\vec{r}, \omega)=\omega t-k_{z}(\vec{r}, \omega) z+\varphi_{u_{z}}^{o}(\omega)
\end{aligned}
$$

The overall phase(s) associated with the generalized over-pressure and \{longitudinal\} 1-D particle velocity waves are:

$$
\begin{array}{ll}
\varphi_{p}(\vec{r}, \omega)=\varphi_{p}^{o}(\omega)-k_{z}(\vec{r}, \omega) z & \text { At the origin }(\vec{r}=0): \varphi_{p}(0, \omega)=\varphi_{p}^{o}(\omega) \\
\varphi_{u_{z}}(\vec{r}, \omega)=\varphi_{u_{z}}^{o}(\omega)-k_{z}(\vec{r}, \omega) z & \text { At the origin }(\vec{r}=0): \varphi_{u_{z}}(0, \omega)=\varphi_{u_{z}}^{o}(\omega)
\end{array}
$$

At $(\vec{r}=0, t=0)$ we also see that: $\Theta_{p}(0,0 ; \omega)=\varphi_{p}^{o}(\omega)$ and: $\Theta_{u_{z}}(0,0 ; \omega)=\varphi_{u_{z}}^{o}(\omega)$.
Thus the instantaneous over-pressure and \{longitudinal\} 1-D particle velocity at $(\vec{r}=0, t=0)$ are:

$$
\begin{aligned}
& p(0,0 ; \omega)=p_{0}(0, \omega) \cos \varphi_{p}^{o}(\omega) \\
& u_{z}(0,0 ; \omega)=u_{0_{z}}(0, \omega) \cos \varphi_{u_{z}}^{o}(\omega)
\end{aligned}
$$

Important Comment: The $(\vec{r}=0, t=0)$ phases $\varphi_{p}^{o}(\omega)$ and $\varphi_{u_{z}}^{o}(\omega)$ are defined relative e.g. to the sine-wave signal output from a sine-wave function generator that is used to produce the sound field in the first place. The sine-wave signal output from the function generator $V_{F G}(\omega)=V_{F G}^{o} \cos \omega t$ thus provides the reference signal needed for defining, and determining/ experimentally measuring the $(\vec{r}=0, t=0)$ relative phases $\varphi_{p}^{o}(\omega)$ and $\varphi_{u_{z}}^{o}(\omega)$.

Note that for a constant/fixed value of the overall phase(s), the position z and the time t are related to each other via $z(t)=v_{\phi}(\vec{r}, \omega) \cdot t$ where $v_{\phi}(\vec{r}, \omega)$ is the phase speed associated with the longitudinal propagation of the 1-D traveling wave: $v_{\phi}(\vec{r}, \omega)=f \cdot \lambda_{z}(\vec{r}, \omega)=\omega / k_{z}(\vec{r}, \omega)$ \{= the speed of propagation of surfaces of constant phase\}, which again, depending on the detailed nature of the specific sound source under consideration in a given physics situation, the phase speed $v_{\phi}(\vec{r}, \omega)$, the \{longitudinal\} wavelength $\lambda_{z}(\vec{r}, \omega)$ and the \{longitudinal\} wavenumber $k_{z}(\vec{r}, \omega) \equiv 2 \pi / \lambda_{z}(\vec{r}, \omega)$ can be/are in general both position- .and. frequencydependent. Thus, we see that:

$$
\begin{aligned}
& \Theta_{p}(\vec{r}, t ; \omega)=\omega t+\varphi_{p}(\vec{r}, \omega)=\omega t-\omega z / \nu_{\varphi}(\vec{r}, \omega)+\varphi_{p}^{o}(\omega)=\omega\left(t-z / v_{\varphi}(\vec{r}, \omega)\right)+\varphi_{p}^{o}(\omega) \\
& \Theta_{u_{z}}(\vec{r}, t ; \omega)=\omega t+\varphi_{u_{z}}(\vec{r}, \omega)=\omega t-\omega z / \nu_{\varphi}(\vec{r}, \omega)+\varphi_{u_{z}}^{o}(\omega)=\omega\left(t-z / \nu_{\varphi}(\vec{r}, \omega)\right)+\varphi_{u_{z}}^{o}(\omega)
\end{aligned}
$$

The overall phase(s) associated with the generalized over-pressure and \{longitudinal\} 1-D particle velocity traveling waves are:

$$
\begin{aligned}
& \varphi_{p}(\vec{r}, \omega)=\varphi_{p}^{o}(\omega)-k_{z}(\vec{r}, \omega) z=\varphi_{p}^{o}(\omega)-\omega z / v_{\varphi}(\vec{r}, \omega) \\
& \varphi_{u_{z}}(\vec{r}, \omega)=\varphi_{u_{z}}^{o}(\omega)-k_{z}(\vec{r}, \omega) z=\varphi_{u_{z}}^{o}(\omega)-\omega z / \nu_{\varphi}(\vec{r}, \omega)
\end{aligned}
$$

A modern digital oscilloscope or e.g. a digital recorder (n.b. both are manifestly time-domain instruments!) can be used to measure the time-dependent voltages output from omni-directional pressure and/or 1-D particle velocity microphones, e.g. located at the "listener" point $\vec{r}=z \hat{z}$ in a sound field associated with a monochromatic/single-frequency traveling 1-D sound wave (at least locally) propagating in the $+\hat{z}$ direction. The instantaneous voltage signals output from the p - and u-mics will be of the form:

$$
\begin{aligned}
& V_{p-\text { mic }}(\vec{r}, t ; \omega)=V_{p-\text {-mi }}^{0}(\vec{r}, \omega) \cos \left[\omega t-k_{z} z+\varphi_{p}^{o}(\omega)\right] \\
& V_{u \text {-mic }}(\vec{r}, t ; \omega)=V_{u \text {-mic }}^{0}(\vec{r}, \omega) \cos \left[\omega t-k_{z} z+\varphi_{u_{z}}^{o}(\omega)\right]
\end{aligned}
$$

The p - and u-mics must be absolutely calibrated to obtain their respective microphone sensitivity calibration constants $S_{p-\text { mic }}(\mathrm{mV} / \mathrm{Pa})$ and $S_{u \text {-mic }}\left(\mathrm{mV} / \mathrm{Pa}^{*}\right)\left\{\right.$ or $\left.S_{u \text {-mic }}(\mathrm{mV} / \mathrm{mm} / \mathrm{s})\right\}$ (n.b. 1.0 $\mathrm{Pa}^{*}=2.42(\mathrm{~mm} / \mathrm{s})$), in order to \{absolutely\} convert their respective voltage signals $V_{p-\text {-mic }}(\vec{r}, t ; \omega)$ and $V_{u-\text { mic }}(\vec{r}, t ; \omega)$ into $p(\vec{r}, t ; \omega)$ and $u_{z}(\vec{r}, t ; \omega)$ signals:

$$
\begin{aligned}
& p(\vec{r}, t ; \omega)=V_{p-\text { mic }}(\vec{r}, t ; \omega) / S_{p-\text { mic }}(P a) \\
& u_{z}(\vec{r}, t ; \omega)=V_{u-\text { mic }}(\vec{r}, t ; \omega) / S_{u \text {-mic }}\left(P a^{*} \text { or } \mathrm{mm} / \mathrm{s}\right)
\end{aligned}
$$

The absolute calibration of p - and u-mics that we routinely use in the UIUC Physics of Music/Musical Instruments Lab is discussed in detail in the Lab Handout "Absolute Calibration of Pressure and Particle Velocity Microphones" - available on the UIUC Physics 193POM/ P406POM Lab Handout Webpages.

We can gain some additional physical insight into the nature of these two instantaneous acoustic signals by using the trigonometric identity $\cos (A+B)=\cos A \cos B-\sin A \sin B$.
At the listener's location $\vec{r}=z \hat{z}$, for arbitrary time t :

$$
\begin{aligned}
& u_{z}(\vec{r}, t ; \omega)=u_{0_{z}}(\vec{r}, \omega) \cos \left[\omega t+\varphi_{u_{z}}(\vec{r}, \omega)\right]=u_{0_{z}}(\vec{r}, \omega) \cos \left[\omega t+\varphi_{u_{z}}(\vec{r}, \omega)\right] \\
&=\underbrace{}_{0_{0_{z}}(\vec{r}, \omega)\left\{\cos \omega t \cos \left(k_{z}(\vec{r}, \omega) z-\varphi_{u_{z}}^{o}(\omega)\right)-\sin \omega t \sin \left(k_{z}(\vec{r}, \omega) z-\varphi_{u_{z}}^{o}(\omega)\right)\right\}} \\
&=\{\underbrace{\left\{u_{0_{z}}(\vec{r}, \omega) \cos \left(k_{z}(\vec{r}, \omega) z-\varphi_{u_{z}}^{o}(\omega)\right)\right\}}_{\begin{array}{c}
\text { Amplitude component @ } \vec{r} \\
\text { in-phase with } \\
V_{F G}(t ; \omega)=V_{F G}^{o} \cos (\omega t)
\end{array}} \cos \omega t-\{\underbrace{\left.\{\vec{r}, \omega) \sin \left(k_{z}(\vec{r}, \omega) z-\varphi_{u_{z}}^{o}(\omega)\right)\right\}}_{\begin{array}{c}
\text { Amplitude component } @ \vec{r} \\
90^{\circ} \text { out-of-phase with } \\
V_{F G}(t ; \omega)=V_{F G}^{o} \cos (\omega t)
\end{array}} \sin \omega t
\end{aligned}
$$

If we choose the listener's position to be at the origin $(\vec{r}=0)$, at arbitrary time t, using the fact that $\cos x(\sin x)$ is an even (odd) function of x, i.e. $\cos (-x)=\cos x(\sin (-x)=-\sin x)$ respectively, the above expressions become:

$$
p(0, t ; \omega)=\underbrace{}_{\begin{array}{c}
\text { Amplitude component } @ \vec{r}=0 \\
\text { in-phase with } \\
V_{F G}(t ; \omega)=V_{F G}^{o} \cos (\omega t)
\end{array} p_{\substack{\text { Amplitude component @ } \vec{r}=0 \\
90^{\circ} \text { out-of-phase with } \\
V_{F G}(t ; \omega)=V_{F G}^{o} \cos (\omega t)}}^{\left\{p_{0}(0, \omega) \cos \varphi_{p}^{o}(\omega)\right\}} \cos \omega t+\underbrace{\left.p_{0}(0, \omega) \sin \varphi_{p}^{o}(\omega)\right\}} \sin \omega t}
$$

$$
u_{z}(0, t ; \omega)=\underbrace{\cos \omega t+\underbrace{\left\{u_{0_{z}}(0, \omega) \sin \varphi_{u_{z}}^{o}(\omega)\right\}}_{\substack{\text { Amplitude component } @ \vec{r}=0 \\
90^{\circ} \text { out-of-phase with } \\
V_{F G}(t ; \omega)=V_{F G}^{o} \cos (\omega t)}} \sin \omega t \mid}_{\left.\begin{array}{c}
\text { Amplitude component } @ \vec{r}=0 \\
\text { in-phase with } \\
V_{F G}(t ; \omega)=V_{F G}^{o} \cos (\omega t)
\end{array} \operatorname{un}_{0_{z}}(0, \omega) \cos \varphi_{u_{z}}^{o}(\omega)\right\}}
$$

As discussed in detail in Physics 406 Lecture Notes XIII - Part 2, experimentally, we can e.g. use lock-in amplifier and/or spectral analysis cross-correlation techniques to obtain/measure/ determine the above in-phase and 90° out-of-phase amplitude components of over-pressure and 1-D particle velocity, phase-referenced relative to the sine-wave signal $V_{F G}(\omega)=V_{F G}^{o} \cos \omega t$ output from the sine-wave function generator that is used to produce the monochromatic/singlefrequency sound field in the first place.

Note that the above purely real mathematical expressions that describe the instantaneous over-pressure $p(\vec{r}, t ; \omega)$ and 1-D particle velocity $u_{z}(\vec{r}, t ; \omega)$ are manifestly time-domain quantities. These expressions can be related to their frequency-domain counterparts as follows:

First, we "complexify" the above instantaneous time-domain over-pressure $p(\vec{r}, t ; \omega)$ and 1-D particle velocity $u_{z}(\vec{r}, t ; \omega)$ expressions by adding an "imaginary", 90° phase-shifted component to their purely real expressions. Defining $i \equiv \sqrt{-1}$, with complex conjugation $i^{*} \equiv-i=-\sqrt{-1}$ \{hence $\left.i^{*} \cdot i=i \cdot i^{*}=+1\right\}$, the complex instantaneous over-pressure $\tilde{p}(\vec{r}, t ; \omega)$ and 1-D particle velocity $\tilde{u}_{z}(\vec{r}, t ; \omega)$ at the listener's location $\vec{r}=z \hat{z}$, for arbitrary time t are:

$$
\begin{aligned}
\tilde{p}(\vec{r}, t ; \omega) & =p_{0}(\vec{r}, \omega) \cos \left[\omega t+\varphi_{p}(\vec{r}, \omega)\right]+i \cdot p_{0}(\vec{r}, \omega) \sin \left[\omega t+\varphi_{p}(\vec{r}, \omega)\right] \\
& =p_{0}(\vec{r}, \omega) \cos \left[\omega t-k_{z}(\vec{r}, \omega) z+\varphi_{p}^{o}(\omega)\right]+i \cdot p_{0}(\vec{r}, \omega) \sin \left[\omega t-k_{z}(\vec{r}, \omega) z+\varphi_{p}^{o}(\omega)\right] \\
& =p_{0}(\vec{r}, \omega)\left\{\cos \left[\omega t-k_{z}(\vec{r}, \omega) z+\varphi_{p}^{o}(\omega)\right]+i \cdot \sin \left[\omega t-k_{z}(\vec{r}, \omega) z+\varphi_{p}^{o}(\omega)\right]\right\} \\
\tilde{u}_{z}(\vec{r}, t ; \omega) & =u_{0_{z}}(\vec{r}, \omega) \cos \left[\omega t+\varphi_{u_{z}}(\vec{r}, \omega)\right]+i \cdot u_{0_{z}}(\vec{r}, \omega) \sin \left[\omega t+\varphi_{u_{z}}(\vec{r}, \omega)\right] \\
& =u_{0_{z}}(\vec{r}, \omega) \cos \left[\omega t-k_{z}(\vec{r}, \omega) z+\varphi_{u_{z}}^{o}(\omega)\right]+i \cdot u_{0_{z}}(\vec{r}, \omega) \sin \left[\omega t-k_{z}(\vec{r}, \omega) z+\varphi_{u_{z}}^{o}(\omega)\right] \\
& =u_{0_{z}}(\vec{r}, \omega)\left\{\cos \left[\omega t-k_{z}(\vec{r}, \omega) z+\varphi_{u_{z}}^{o}(\omega)\right]+i \cdot \sin \left[\omega t-k_{z}(\vec{r}, \omega) z+\varphi_{u_{z}}^{o}(\omega)\right]\right\}
\end{aligned}
$$

We then use the Euler relation $e^{ \pm i \theta}=\cos \theta \pm i \sin \theta$ to equivalently write these expressions in complex exponential notation:

$$
\tilde{p}(\vec{r}, t ; \omega)=p_{0}(\vec{r}, \omega) e^{i\left[\omega t-k_{2}(\vec{r}, \omega)_{z+\varphi}\left(\varphi_{p}^{o}(\omega)\right]\right.}=p_{0}(\vec{r}, \omega) \cdot e^{i\left[\varphi_{p}^{o}(\omega)-k_{2}(\vec{r}, \omega) z\right]} \cdot e^{i \omega t}=p_{0}(\vec{r}, \omega) \cdot e^{i \varphi_{p}(\vec{r}, \omega)} \cdot e^{i \omega t}
$$

$$
\tilde{u}_{z}(\vec{r}, t ; \omega)=u_{0_{z}}(\vec{r}, \omega) e^{i\left[\omega t-k_{z}(\vec{r}, \omega) z+\varphi_{u_{z}}^{o}(\omega)\right]}=u_{0_{z}}(\vec{r}, \omega) \cdot e^{i\left[\varphi_{u_{z}}^{o}(\omega)-k_{z}(\vec{r}, \omega) z\right]} \cdot e^{i \omega t}=u_{0_{z}}(\vec{r}, \omega) \cdot e^{i \varphi_{u_{z}}(\vec{r}, \omega)} \cdot e^{i \omega t}
$$

Now for any complex quantity $\tilde{z}=x+i y$, the magnitude of the complex quantity \tilde{z} is $|\tilde{z}|=\sqrt{\tilde{z} \cdot \tilde{z}^{*}}=\sqrt{(x+i y) \cdot(x-i y)}=\sqrt{x^{2}+y^{2}}$ \{n.b. a purely real quantity $\}$, the phase $\varphi_{z}=\tan ^{-1}(y / x)$, $x=|\tilde{z}| \cos \varphi_{z}$ and $y=|\tilde{z}| \sin \varphi_{z}$. Thus, we can equivalently write the complex quantity \tilde{z} as:

$$
\tilde{z}=x+i y=|\tilde{z}| \cos \varphi_{z}+i|\tilde{z}| \sin \varphi_{z}=|\tilde{z}|\left(\cos \varphi_{z}+i \sin \varphi_{z}\right)=|\tilde{z}| e^{i \varphi_{z}}
$$

A phasor diagram of the "generic" complex quantity $\tilde{z}=x+i y=|\tilde{z}| \cos \varphi_{z}+i|\tilde{z}| \sin \varphi_{z}=|\tilde{z}| e^{i \varphi_{z}}$ in the complex plane is shown in the figure below:

The real part (or component) of $\tilde{z}, x=\operatorname{Re}\{\tilde{z}\}=|\tilde{z}| \cos \varphi_{z}$ lies on the horizontal axis. The imaginary part (or component) of $\tilde{z}, y=\operatorname{Im}\{\tilde{z}\}=|\tilde{z}| \sin \varphi_{z}$ lies on the vertical axis. Thus, complex \tilde{z} lies somewhere in the complex plane, oriented at an angle $\varphi_{z}=\tan ^{-1}(y / x)$, referenced to the horizontal axis. In an acoustical physics situation, the physical meaning of the real (imaginary) part of the complex quantity $\tilde{z}\left\{e . g\right.$. complex $\tilde{p}(\vec{r}, t ; \omega)$ or $\left.\tilde{u}_{z}(\vec{r}, t ; \omega)\right\}$ is that component of \tilde{z} which is in-phase (90° out-of-phase) with the \{purely real\} reference signal $\left\{V_{F G}(\omega)=V_{F G}^{o} \cos \omega t\right\}$, respectively.

Since $\tilde{z}=x+i y=|\tilde{z}| e^{i \varphi_{z}}$, we can write the (purely real amplitude).(complex overall phase) amplitude products in the above time-domain expressions for complex instantaneous overpressure $\tilde{p}(\vec{r}, t ; \omega)$ and 1-D particle velocity $\tilde{u}_{z}(\vec{r}, t ; \omega)$ as complex amplitudes:

$$
\begin{gathered}
\tilde{p}_{0}(\vec{r}, \omega)=p_{0}(\vec{r}, \omega) \cdot e^{i \varphi_{p}(\vec{r}, \omega)}=p_{0}(\vec{r}, \omega) \cdot e^{i\left[\varphi_{p}^{o}(\omega)-k_{z}(\vec{r}, \omega) z\right]} \\
\tilde{u}_{0_{z}}(\vec{r}, \omega)=u_{0_{z}}(\vec{r}, \omega) \cdot e^{i \varphi_{u_{z}}(\vec{r}, \omega)}=u_{0_{z}}(\vec{r}, \omega) \cdot e^{i\left[\varphi_{u_{z}}^{o}(\omega)-k_{z}(\vec{r}, \omega) z\right]}
\end{gathered}
$$

Note that the above complex amplitudes for over-pressure and 1-D particle velocity are timeindependent $\{$ for a constant-amplitude sound source\}, and in fact are none other than the frequency-domain representations of the time-domain expressions for complex instantaneous over-pressure $\tilde{p}(\vec{r}, t ; \omega)$ and 1-D particle velocity $\tilde{u}_{z}(\vec{r}, t ; \omega)$!

As discussed in Physics 406 Lecture Notes XIII - Part 2, the complex frequency-domain vs. complex time-domain representations of acoustical quantities such as complex over-pressure \tilde{p} and/or complex particle velocity \tilde{u} are related to each other by $\underline{\text { Fourier } \boldsymbol{t r a n s f o r m s} \text { of each }}$ other.

For any continuous complex time-domain function $\tilde{f}(t)$:
The Fourier transform of $\tilde{f}(t)$ to the frequency domain is:

$$
\tilde{f}(\omega) \equiv \int_{-\infty}^{+\infty} \tilde{f}(t) e^{-i \omega t} d t
$$

The inverse Fourier transform of $\tilde{f}(\omega)$ to the time domain is: $\quad \tilde{f}(t) \equiv \frac{1}{2 \pi} \int_{-\infty}^{+\infty} \tilde{f}(\omega) e^{+i \omega t} d \omega$
Thus, it should now be clear to the reader that for a harmonic/single-frequency sound field, we can write the time-domain complex instantaneous over-pressure $p(\vec{r}, t ; \omega)$ and 1-D particle velocity $u_{z}(\vec{r}, t ; \omega)$ at the listener's location $\vec{r}=z \hat{z}$ for arbitrary time t in an elegant and compact manner - as the product of the (complex frequency-domain amplitude). (complex $e^{i \omega t}$ factor):

$$
\begin{aligned}
\tilde{p}(\vec{r}, t ; \omega) & =\tilde{p}_{0}(\vec{r}, \omega) \cdot e^{i \omega t} \\
& =p_{0}(\vec{r}, \omega) \cdot e^{i \varphi_{p}(\vec{r}, \omega)} \cdot e^{i \omega t}=p_{0}(\vec{r}, \omega) \cdot e^{i\left[\varphi_{p}^{o}(\omega)-k_{z}(\vec{r}, \omega) z\right.} \cdot e^{i \omega t}=p_{0}(\vec{r}, \omega) \cdot e^{i\left[\omega t-k_{z}(\vec{r}, \omega)_{\left.z++\varphi_{p}^{o}(\omega)\right]}\right.} \\
\tilde{u}_{z}(\vec{r}, t ; \omega) & =\tilde{u}_{0_{z}}(\vec{r}, \omega) \cdot e^{i \omega t} \\
& =u_{0_{z}}(\vec{r}, \omega) \cdot e^{i \varphi_{u_{z}}(\vec{r}, \omega)} \cdot e^{i \omega t}=u_{0_{z}}(\vec{r}, \omega) \cdot e^{i\left[\varphi_{u_{z}}^{o}(\omega)-k_{z}(\vec{r}, \omega) z\right]} \cdot e^{i \omega t}=u_{0_{z}}(\vec{r}, \omega) \cdot e^{i\left[\omega t-k_{z}(\vec{r}, \omega) z+\varphi_{u_{z}}^{o}(\omega)\right]}
\end{aligned}
$$

Sound Field Measurements in Three Dimensions:

The mathematical description and experimental measurement of 3-D sound fields is a straight-forward generalization of the above-discussed 1-D situation. For a monochromatic/ single-frequency 3-D sound field, the physical \{purely real\}, instantaneous time-domain scalar over-pressure $p(\vec{r}, t ; \omega)$ and 3-D instantaneous vector particle velocity $\vec{u}(\vec{r}, t ; \omega)$ are, e.g. in Cartesian coordinates:

$$
\begin{aligned}
& p(\vec{r}, t ; \omega)=p_{0}(\vec{r}, \omega) \cos \Theta_{p}(\vec{r}, t ; \omega)=p_{0}(\vec{r}, \omega) \cos \left(\omega t+\varphi_{p}(\vec{r}, \omega)\right) \\
& =p_{0}(\vec{r}, \omega) \cos \left[\omega t-\vec{k}(\vec{r}, \omega) \cdot \vec{r}+\varphi_{p}^{o}(\omega)\right] \\
& \begin{aligned}
\vec{u}(\vec{r}, t ; \omega)= & u_{x}(\vec{r}, t ; \omega) \hat{x}+u_{y}(\vec{r}, t ; \omega) \hat{y}+u_{z}(\vec{r}, t ; \omega) \hat{z} \\
= & u_{0_{x}}(\vec{r}, \omega) \cos \Theta_{u_{x}}(\vec{r}, t ; \omega) \hat{x}+u_{0_{y}}(\vec{r}, \omega) \cos \Theta_{u_{y}}(\vec{r}, t ; \omega) \hat{y}+u_{0_{z}}(\vec{r}, \omega) \cos \Theta_{u_{z}}(\vec{r}, t ; \omega) \hat{z} \\
= & u_{0_{x}}(\vec{r}, \omega) \cos \left(\omega t+\varphi_{u_{z}}(\vec{r}, \omega)\right) \hat{x}+u_{0_{y}}(\vec{r}, \omega) \cos \left(\omega t+\varphi_{u_{y}}(\vec{r}, \omega)\right) \hat{y} \\
& \quad+u_{0_{z}}(\vec{r}, \omega) \cos \left(\omega t+\varphi_{u_{z}}(\vec{r}, \omega)\right) \hat{z} \\
= & u_{0_{x}}(\vec{r}, \omega) \cos \left[\omega t-\vec{k}(\vec{r}, \omega) \cdot \vec{r}+\varphi_{u_{x}}^{o}(\omega)\right] \hat{x}+u_{0_{y}}(\vec{r}, \omega) \cos \left[\omega t-\vec{k}(\vec{r}, \omega) \cdot \vec{r}+\varphi_{u_{y}}^{o}(\omega)\right] \hat{y} \\
& \quad+u_{0_{z}}(\vec{r}, \omega) \cos \left[\omega t-\vec{k}(\vec{r}, \omega) \cdot \vec{r}+\varphi_{u_{z}}^{o}(\omega)\right] \hat{z}
\end{aligned}
\end{aligned}
$$

where the 3-D vector wavenumber $\vec{k}(\vec{r}, \omega)=k_{x}(\vec{r}, \omega) \hat{x}+k_{y}(\vec{r}, \omega) \hat{y}+k_{z}(\vec{r}, \omega) \hat{z}$, with $k=|\vec{k}|=\sqrt{k_{x}^{2}+k_{y}^{2}+k_{z}^{2}}$.

The listener's position vector \{referenced to the sound source located at the origin\} is $\vec{r}=x \hat{x}+y \hat{y}+z \hat{z}, r=|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$. Thus, the 3-D dot-product factor: $\vec{k}(\vec{r}, \omega) \cdot \vec{r}=k_{x}(\vec{r}, \omega) x+k_{y}(\vec{r}, \omega) y+k_{z}(\vec{r}, \omega) z$. Note that $\cos \Theta_{x}, \cos \Theta_{y}, \cos \Theta_{z}$ are the 3-D direction cosines. Then, since $\hat{k}_{x} \bullet \hat{r}=\cos \Theta_{x}, \hat{k}_{y} \bullet \hat{r}=\cos \Theta_{y}$ and $\hat{k}_{z} \cdot \hat{r}=\cos \Theta_{z}$ the above 3-D dot-product factor can also equivalently be written as:
$\vec{k}(\vec{r}, \omega) \cdot \vec{r}=k_{x}(\vec{r}, \omega) r \cos \Theta_{x}+k_{y}(\vec{r}, \omega) r \cos \Theta_{y}+k_{z}(\vec{r}, \omega) r \cos \Theta_{z}$.
Thus, we see that for a monochromatic/single-frequency 3-D sound field, the physical, instantaneous time-domain scalar over-pressure $p(\vec{r}, t ; \omega)$ is similar in form to that for the monochromatic/single-frequency 1-D sound field case, whereas for the physical, instantaneous time-domain 3-D vector particle velocity $\vec{u}(\vec{r}, t ; \omega)=u_{x}(\vec{r}, t ; \omega) \hat{x}+u_{y}(\vec{r}, t ; \omega) \hat{y}+u_{z}(\vec{r}, t ; \omega) \hat{z}$, we have three $\{$ orthogonal $/ x-y-z\}$ components to deal with/measure for the $3-\mathrm{D}$ sound field case vs. only one component for the 1-D case. Three independent, orthogonally-oriented particle velocity microphones, located at the listener's position \vec{r} are thus needed to measure/completely specify the 3-D vector particle velocity $\vec{u}(\vec{r}, t ; \omega)$ at that location.

For the monochromatic/single-frequency 3-D sound field we again "complexify" the physical, instantaneous time-domain scalar over-pressure $p(\vec{r}, t ; \omega)$ and 3-D vector particle velocity $\vec{u}(\vec{r}, t ; \omega)$ following the above-described prescription for the 1-D sound field case. Then, the relations between complex time-domain scalar over-pressure $\tilde{p}(\vec{r}, t ; \omega)$, complex time-domain 3-D vector particle velocity $\tilde{\vec{u}}(\vec{r}, t ; \omega)$ and their complex frequency-domain counterparts, $\tilde{p}(\vec{r}, \omega)$ and $\tilde{\vec{u}}(\vec{r}, \omega)$ are also elegantly/compactly given by:

$$
\begin{aligned}
& \tilde{p}(\vec{r}, t ; \omega)=\tilde{p}(\vec{r}, \omega) \cdot e^{i \omega t} \\
& \begin{aligned}
\vec{u}(\vec{r}, t ; \omega) & =u_{x}(\vec{r}, t ; \omega) \hat{x}+u_{y}(\vec{r}, t ; \omega) \hat{y}+u_{z}(\vec{r}, t ; \omega) \hat{z}=\tilde{u}(\vec{r}, \omega) \cdot e^{i \omega t} \\
& =\tilde{u}_{x}(\vec{r}, \omega) \cdot e^{i \omega t} \hat{x}+\tilde{u}_{y}(\vec{r}, \omega) \cdot e^{i \omega t} \hat{y}+\tilde{u}_{z}(\vec{r}, \omega) \hat{z} \cdot e^{i \omega t}
\end{aligned}
\end{aligned}
$$

