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Time-Domain vs. Frequency-Domain Sound Field Measurements 
 
Introduction: 
 

     In this lab handout, we discuss the physical meaning of, the relationship(s) between, and the 
experimental techniques associated with time-domain vs. frequency-domain measurements of 
over-pressure p  and particle velocity u


 associated with an arbitrary sound field.  

 

     For sound waves propagating in air, the instantaneous over-pressure  ,p r t


 (n.b. a scalar 

quantity) and the instantaneous 3-D vector particle velocity  ,u r t
 

 obey their respective wave 

equations, which are {neglecting/ignoring (small) dissipative/energy loss effects) and for 
normal/everyday sound pressure levels  134 SPL dB }: 
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where v is the wave propagation speed in the medium (= air, in this case, here). 
 

     The instantaneous over-pressure  ,p r t


 and particle velocity  ,u r t
 

are not independent 

quantities. For e.g. traveling-type sound waves in air, neglecting/ignoring (small) dissipative/ 
energy loss effects and normal/everyday sound pressure levels  134 SPL dB , the Euler 

equation for inviscid (i.e. dissipationless) fluid flow reasonably accurately describes the spatial-
temporal relationship between these two instantaneous physical quantities: 
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  where for sound propagation in air: 31.204air

o kg m  @ NTP. 

 
Sound Field Measurements in One Dimension: 
 

     For the sake of simplicity and clarity, we first discuss 1-D sound fields, such as that 
associated with the propagation of a monochromatic (i.e. single-frequency) traveling plane wave 
in the ẑ direction, or e.g. the “far-field”  r   regime associated with the radial-outward 

propagation of {monochromatic/ single-frequency} spherical waves emanating from a point 
sound source, located at the origin. Please refer to the UIUC Physics 406 Lecture Notes XII and 
XII – Part  2 for discussion/details of the nature of these two 1-D type sound fields. 
 

     In order to completely describe an arbitrary, instantaneous monochromatic/single-frequency  
{ 2 f  }1-D sound field associated with a 1-D longitudinal sound wave (at least locally) 
propagating in the ẑ direction, we need to measure two physical quantities at the listener’s 
position, e.g. ˆr zz


:  

  

a.) the instantaneous over-pressure,  , ;p r t 
 and  

b.) the instantaneous 1-D particle velocity  , ;zu r t 
.  
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    The most general mathematical description – in the time-domain – for these two instantaneous 
physical quantities, associated with a monochromatic/single-frequency traveling 1-D sound wave 
(at least locally) propagating in the ẑ direction, for a listener’s position at ˆr zz


 are: 
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     Note that the amplitudes for over-pressure  0 ,p r   and longitudinal particle-velocity 

 0 ,
z

u r   are time-independent quantities {for a constant-amplitude sound source}. However, 

depending on the detailed nature of the specific sound source under consideration in a given 
physics situation, the amplitudes  0 ,p r   and  0 ,

z
u r   in general can be/are position- .and. 

frequency-dependent. 
 

     Note that the overall arguments of the cosine function(s),  , ;p r t 


 and  , ;
uz

r t 


  

in the above ẑ  1-D traveling-wave expressions for instantaneous over-pressure  , ;p r t 
 and  

1-D longitudinal particle velocity  , ;zu r t 
are, in general not constants, due to {in general} 

possible position- and frequency-dependence of the overall phases  ,p r  and  ,
zu r  ,  

the {longitudinal} wavenumber  ,zk r   and the  0r 


 phases  o
p   and  

z

o
u  : 
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     The overall phase(s) associated with the generalized over-pressure and {longitudinal}  
1-D particle velocity waves are: 
 

     , ,o
p p zr k r z     
 

     At the origin  0r 
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    At the origin  0r 
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     At  0, 0r t 


 we also see that:     0,0; o
p p      and:     0,0;

u zz

o
u    . 

Thus the instantaneous over-pressure and {longitudinal} 1-D particle velocity at  0, 0r t 


 are:  
 

     00,0;  0, cos o
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Important Comment: The  0, 0r t 


 phases  o
p   and  

z

o
u   are defined relative  

e.g. to the sine-wave signal output from a sine-wave function generator that is used to produce 
the sound field in the first place. The sine-wave signal output from the function generator 

  coso
FG FGV V t   thus provides the reference signal needed for defining, and determining/ 

experimentally measuring the  0, 0r t 


 relative phases  o
p   and  

z

o
u  . 

 

     Note that for a constant/fixed value of the overall phase(s), the position  z  and the time  t   
are related to each other via    ,z t v r t  


 where  ,v r   is the phase speed associated with 

the longitudinal propagation of the 1-D traveling wave:      , , ,z zv r f r k r       
  

  

{= the speed of propagation of surfaces of constant phase}, which again, depending on the 
detailed nature of the specific sound source under consideration in a given physics situation,  
the phase speed  ,v r  , the {longitudinal} wavelength  ,z r   and the {longitudinal} 

wavenumber    , 2 ,z zk r r   
 

 can be/are in general both position- .and. frequency-

dependent. Thus, we see that: 
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     The overall phase(s) associated with the generalized over-pressure and {longitudinal}  
1-D particle velocity traveling waves are: 
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     A modern digital oscilloscope or e.g. a digital recorder (n.b. both are manifestly time-domain 
instruments!)  can be used to measure the time-dependent voltages output from omni-directional 
pressure and/or 1-D particle velocity microphones, e.g. located at the “listener” point ˆr zz


 in a 

sound field associated with a monochromatic/single-frequency traveling 1-D sound wave  
(at least locally) propagating in the ẑ direction. The instantaneous voltage signals output from 
the p- and u-mics will be of the form: 

 

     0
- -, ; , cos o

p mic p mic z pV r t V r t k z        
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- -, ; , cos

z

o
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     The p- and u-mics must be absolutely calibrated to obtain their respective microphone 

sensitivity calibration constants  -p micS mV Pa  and  *
-u micS mV Pa  {or  -u micS mV mm s } 

  *. .  1.0 2.42n b Pa mm s  , in order to {absolutely} convert their respective voltage signals 

 - , ;p micV r t 
 and  - , ;u micV r t 

 into  , ;p r t 
 and  , ;zu r t 

signals: 
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         - -, ; , ;p mic p micp r t V r t S Pa 
 

 
 

     *
- -, ; , ;  or z u mic u micu r t V r t S Pa mm s 

 
 

 

     The absolute calibration of p- and u-mics that we routinely use in the UIUC Physics of 
Music/Musical Instruments Lab is discussed in detail in the Lab Handout “Absolute Calibration 
of Pressure and Particle Velocity Microphones” – available on the UIUC Physics 193POM/ 
P406POM Lab Handout Webpages. 
 

     We can gain some additional physical insight into the nature of these two instantaneous 
acoustic signals by using the trigonometric identity  cos cos cos sin sinA B A B A B   .  

At the listener’s location ˆr zz


, for arbitrary time t: 
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If we choose the listener’s position to be at the origin  0r 


, at arbitrary time  t, using the fact 

that cos x   sin x  is an  even  (odd)  function of x, i.e.  cos cosx x     sin sinx x    

respectively, the above expressions become: 
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    As discussed in detail in Physics 406 Lecture Notes XIII – Part 2, experimentally, we can e.g. 
use lock-in amplifier and/or spectral analysis cross-correlation techniques to obtain/measure/ 
determine the above in-phase and 90o out-of-phase amplitude components of over-pressure and 
1-D particle velocity, phase-referenced relative to the sine-wave signal   coso

FG FGV V t   

output from the sine-wave function generator that is used to produce the monochromatic/single-
frequency sound field in the first place. 
 

     Note that the above purely real mathematical expressions that describe the instantaneous 
over-pressure  , ;p r t 

 and 1-D particle velocity  , ;zu r t 
 are manifestly time-domain 

quantities. These expressions can be related to their frequency-domain counterparts as follows: 
 

     First, we “complexify” the above instantaneous time-domain over-pressure  , ;p r t 
 and  

1-D particle velocity  , ;zu r t 
expressions by adding an “imaginary”,  90o phase-shifted 

component to their purely real expressions. Defining 1i   , with complex conjugation 

* 1i i      {hence *   * 1i i i i     }, the complex instantaneous over-pressure  , ;p r t   

and 1-D particle velocity  , ;zu r t   at the listener’s location ˆr zz


, for arbitrary time t are: 
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     We then use the Euler relation cos sinie i      to equivalently write these expressions in 
complex exponential notation:  
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Now for any complex quantity z x iy  , the magnitude of the complex quantity z  is 

   * 2 2z z z x iy x iy x y           {n.b. a purely real quantity}, the phase  1tanz y x  , 

cos zx z    and sin zy z   . Thus, we can equivalently write the complex quantity z  as: 
 

 cos sin cos sin zi
z z z zz x iy z i z z i z e                
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     A phasor diagram of the “generic” complex quantity cos sin zi
z zz x iy z i z z e           

in the complex plane is shown in the figure below:  
 

 
 
 
 
 
 
 
 
 
 
 
 

     The   real    part (or component) of z ,  Re cos zx z z     lies on the horizontal axis.  

The imaginary part (or component) of z ,  Im sin zy z z     lies on the vertical axis.  

Thus, complex z  lies somewhere in the complex plane, oriented at an angle  1tanz y x  , 

referenced to the horizontal axis. In an acoustical physics situation, the physical meaning of the 
real (imaginary) part of the complex quantity z {e.g. complex  , ;p r t   or  , ;zu r t  } is that 

component of z  which is in-phase (90o out-of-phase) with the {purely real} reference signal  
{   coso

FG FGV V t  }, respectively. 
 

     Since ziz x iy z e     , we can write the (purely real amplitude).(complex overall phase) 

amplitude products in the above time-domain expressions for complex instantaneous over-
pressure  , ;p r t   and 1-D particle velocity  , ;zu r t   as complex amplitudes: 
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     Note that the above complex amplitudes for over-pressure and 1-D particle velocity are time-
independent {for a constant-amplitude sound source}, and in fact are none other than the 
frequency-domain representations of the time-domain expressions for complex instantaneous 
over-pressure  , ;p r t   and 1-D particle velocity  , ;zu r t  !  
 

     As discussed in Physics 406 Lecture Notes XIII – Part 2, the complex frequency-domain vs. 
complex time-domain representations of acoustical quantities such as complex over-pressure p
and/or complex particle velocity u  are related to each other by Fourier transforms of each 
other.  
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For any continuous complex time-domain function  f t : 

The Fourier transform of  f t  to the frequency domain is:            i tf f t e dt
 


    

 

The inverse Fourier transform of  f   to the time domain is:      1
2  i tf t f e d
  

 


    

 

     Thus, it should now be clear to the reader that for a harmonic/single-frequency sound field,  
we can write the time-domain complex instantaneous over-pressure  , ;p r t 

 and 1-D particle 

velocity  , ;zu r t 
 at the listener’s location ˆr zz


 for arbitrary time t in an elegant and compact 

manner - as the product of the (complex frequency-domain amplitude).(complex i te  factor): 
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Sound Field Measurements in Three Dimensions: 
 

     The mathematical description and experimental measurement of 3-D sound fields is a 
straight-forward generalization of the above-discussed 1-D situation. For a monochromatic/ 
single-frequency 3-D sound field, the physical {purely real}, instantaneous time-domain scalar 
over-pressure  , ;p r t 

 and 3-D instantaneous vector particle velocity  , ;u r t  
 are, e.g. in 

Cartesian coordinates: 
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where the 3-D vector wavenumber        ˆ ˆ ˆ, , , ,x y zk r k r x k r y k r z     
    

,  

with 2 2 2
x y zk k k k k   


.  
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The listener’s position vector {referenced to the sound source located at the origin}  

is ˆ ˆ ˆr xx yy zz  


, 2 2 2r r x y z   


. Thus, the 3-D dot-product factor: 

       , , , ,x y zk r r k r x k r y k r z     
      . Note that cos ,cos ,cosx y z   are the 3-D 

direction cosines. Then, since ˆ ˆ cosx xk r   , ˆ ˆ cosy yk r    and ˆ ˆ cosz zk r    the above 3-D  

dot-product factor can also equivalently be written as: 

       , , cos , cos , cosx x y y z zk r r k r r k r r k r r        
      .  

 

     Thus, we see that for a monochromatic/single-frequency 3-D sound field, the physical, 
instantaneous time-domain scalar over-pressure  , ;p r t 

 is similar in form to that for the 

monochromatic/single-frequency 1-D sound field case, whereas for the physical, instantaneous 
time-domain 3-D vector particle velocity        ˆ ˆ ˆ, ; , ; , ; , ;x y zu r t u r t x u r t y u r t z     

    
, 

we have three {orthogonal/x-y-z} components to deal with/measure for the 3-D sound field case 
vs. only one component for the 1-D case. Three independent, orthogonally-oriented particle 
velocity microphones, located at the listener’s position r


 are thus needed to measure/completely 

specify the 3-D vector particle velocity  , ;u r t  
at that location. 

 

     For the monochromatic/single-frequency 3-D sound field we again “complexify” the physical, 
instantaneous time-domain scalar over-pressure  , ;p r t 

and 3-D vector particle velocity 

 , ;u r t  
 following the above-described prescription for the 1-D sound field case. Then, the 

relations between complex time-domain scalar over-pressure  , ;p r t  , complex time-domain 

3-D vector particle velocity  , ;u r t   and their complex frequency-domain counterparts, 

 ,p r   and  ,u r    are also elegantly/compactly given by: 
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