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Theory of Distortion I 
 

Output Response of a Purely Linear System 
 

      In a wide variety of physical situations, it is highly desirable that the output response, 
Ro of a arbitrary system to an input stimulus, Si be perfectly linear. Mathematically, a 
perfectly linear output response to an input stimulus is described by the relation: 
 

Ro(Si) = K Si 
 

where K is the constant of proportionality of the output response to the input stimulus, i.e. 
K = Ro(Si) / Si. In a perfectly linear system the output response, Ro(Si) is proportionally 
the same, no matter how large or small the magnitude of the input stimulus, Si. Such a 
linear relation can be described graphically, as shown in the figure below: 

 
 
Physically, the constant of proportionality, K is the slope of the straight line of the above 
graph. The quantity on the vertical, or y-axis is the dependent quantity (Ro), the quantity 
on the horizontal, or x-axis is the independent quantity (Si). Thus, generically speaking, 
for a perfectly linear relationship, most generally we have the equation for a straight line: 

 

y(x) = mx + b 
 

where the slope of the line is m = change in y/change in x = “rise”/ “run” = y/x =  
(y2  y1)/ (x2  x1), and the y-intercept, when x = 0, is y(0) = b. Thus, in the above 
example, with Ro(Si) = K Si, we see that b = 0.  Thus, physically, the output response, 
Ro(Si = 0) is zero when there is no input stimulus (Si = 0). The most general case for a 
straight line/linear relation is shown in the figure below: 
 

 

Ro(Si) 

Si 

Slope = K 

Ro(Si) vs. Si:    Ro(Si) = K Si 
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 Some simple physical examples of linear relationships are: 

 

1. Ohm’s Law: Electrical current, I flowing in a resistor (resistance, R) with a potential 
difference, V across the resistor:   I = V / R  (slope, K = 1 / R). 

 

2. Hooke’s Law: Linear displacement (extension/compression), x from equilibrium 
position in a spring (spring constant k) for a force, F applied to the spring:  x = F / k  
(slope, K = 1 / k). 

 

3. Fresnel Relations: Transmission of light (at normal incidence) through a refractive 
medium, such as glass: Output intensity, Io related to input intensity, Ii via 
transmission coefficient, T:   Io = T Ii  (slope, K = T).  

 

In each of the above three examples, the linearity of each relationship is in fact only 
approximately true, even though each relation may be very linear  there are in fact 
deviations from linearity, or distortions, in each of the above relationships, when the 
range of the independent variable becomes extremely large. For example, Ohm’s Law 
does not hold exactly for extremely large (e.g. kilo-volt) potential differences across a 
resistor - the current increases faster than linear in this regime. Hooke’s Law for springs 
is in fact invalid for extremely small forces due to friction in the spring; Hooke’s Law is 
also invalid for very large forces, when the material of the spring is stretched beyond its 
elastic limit. The transmission of light, e.g. through a piece of glass depends on the 
wavelength (frequency) of the light - i.e. the transmission coefficient, T is wavelength / 
frequency dependent - because the index of refraction of the glass is wavelength / 
frequency dependent. When the intensity of incident light (for a given, or fixed 
wavelength / frequency of light) becomes extremely large (e.g. using a very powerful 

y 

y1 

y2 

x 

yintercept 
y(x=0) = b 

(x, y) =   (0, 0) 

x1 x2 

(x1, y1) 

(x2, y2) 

Straight Line/Linear Relation: 
               y = mx + b 

Slope = m = Rise / Run 
= y/x = (y2  y1)/( x2  x1)  
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laser), the transmission coefficient, T can also change in a non-linear manner, depending 
on the details of the nature of the glass! 

 
In fact, in just about every physical system one can think of, such systems may be 

thought as being linear to a certain degree, and in fact may be highly linear. However, if 
one scrutinizes the system very carefully, one almost always finds that such systems do 
indeed have some degree of non-linearity, most often for very large values of input 
stimulus parameters - the independent variable. Some systems may be much more linear 
than others. Some systems may in fact be very non-linear in their response, or may in fact 
be linear only for extremely small values of input stimuli, or linear only for extremely 
small changes (i.e. extremely small variations/deviations) from a non-zero, equilibrium 
value of input stimulus. We will see that a necessary requirement for distortion to occur is 
that a given system must have some form of non-linear response. 

 
In high-end audio (and audio recording) applications, it is highly desireable for all 

components in the audio system - recording transducers (i.e. microphones), the recording 
devices and recording media (record, tape, CD), the play-back pre-amplifier, power 
amplifier and sound transducers (i.e. loudspeakers) to be as linear as possible, over the 
full audio spectrum, so as not to “color” the sound in any manner  thus providing as 
faithfully as possible, an accurate, unbiased reproduction of the music as it actually 
sounded when it was originally recorded.  

 
However, even in high-end audio systems, certain non-linearities of response do 

indeed exist in each of the components of the system. Some kinds of non-linearities, and 
their resultant impact on the final sound are undesireable, especially if they are large - 
they produce “overt” coloration effects on the overall sound output from the audio system 
which the human ear deems as undesireable, or unpleasing to hear. On the other hand, 
other types of non-linearities in these systems may be such that they are in fact very 
pleasing to the ear - coloring the sound in a much more subtle, but characteristic way, 
such that these non-linearities becomes a highly desirable attribute, uniquely associated 
with that piece of equipment! While superficially this may at first seem quite odd, it must 
be kept in mind that the human ear is itself a non-linear audio “device” - the ear adds its 
own non-linearities to the sound input to it. Thus, it is in fact not surprizing that by 
adding small non-linearities somewhere in the audio reproduction chain, the perceived 
sound may be overall enhanced, relative to that from a purely linear-response system! 

 
Such is indeed the case in vacuum tube amplifiers  the non-linear behavior of 

vacuum tubes in the preamplifier and power amplifier sections of the amp gives rise to an 
overall “warmth” to the sound output from such a system, in comparison to that output 
from a solid-state/transistorized system. Part of the reason vacuum tube amplifiers have a 
“warmth” to them is due to their overload/transient response characteristics, which is 
“soft” (i.e. the signal output from the tubes compresses) relative to the “hard” clipping 
associated with solid-state/transistorized amplifiers, when they reach their limits. 
However, another reason for the “warmth” of vacuum tube amplifiers is due to their 
inherently non-linear output response behavior to an input signal. 
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As we have seen above, a perfectly linear system has an output response 
 

Ro(Si) = K Si 
 

Suppose the input stimulus is a pure tone, i.e. a signal of a single frequency, f (having 
units of cycles per second, or Hertz (= Hz)). We define the “angular” frequency as  
  2 f  (having units of radians per second). Then the input stimulus, Si becomes a 
time-dependent function, i.e. Si(t) = Ai cos (2 f t) = Ai cos ( t), where Ai is the 
amplitude of the input stimulus and t is the time, in seconds, relative to some reference 
time, t = 0. Then the output response, Ro(Si) also becomes explicitly dependent on time, 
i.e. 

Ro(t) = Ro(Si(t)) = K Si(t) = K Ai cos ( t) = Ao cos ( t) 
 

where Ao = K Ai is the amplitude of the output response. It can be seen that the output 
response for a pure tone input stimulus is also a pure tone, for a perfectly linear system.  
The input stimulus and linear output response waveforms are shown in the figures below, 
for an elapsed time of t = 0.0015 seconds, for parameter values of  f = 1000 Hz, Ai = 
1.0,  and Ao = K Ai = 1.0. Note that the product,  t has units of radians; thus 2  radians 
= 360o. 
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     The output response, Ro(Si(t)) of this system to a pure-tone input stimulus,   
Si(t) = Ai cos ( t) may be such that it is not precisely in phase with the input stimulus.  
In general, a system may have some reactance to the input stimulus, which simply means 
that there exists a non-zero phase relation between the output response, referenced to the 
driving input stimulus. For a system with a linear response, Ro(Si(t)) = K Si(t), a non-zero 
phase relation between output response and input stimulus means that the constant of 
proportionality, K, is not purely real, but is said to be complex - i.e. in general, K  has 
both a real component, Kr and a so-called imaginary component, Ki: 

 

K = Kr + iKi  
 

     The real component, Re(K) = Kr is in phase with the driving input stimulus, if Kr is 
positive. If Kr is negative, then Kr is 180o out of phase with the input stimulus. The 
imaginary component, Im(K) = Ki is + 90o ahead in phase of the driving input stimulus if 
Ki is positive. If Ki is negative, this indicates that the imaginary component, Ki is  90o 
behind in phase of the driving input stimulus. The i in the above formula is what enables 
us to mathematically describe this phase relation between output response and driving 
input stimulus; it is defined as i   (1). Thus i* i = 1, and i* i = +1.  
 
     The actual phase angle relation between the output response and the driving input 
stimulus is then given by: 

Kr = |K| cos      and    Ki = |K| sin  
 

where the magnitude of K, which is a purely real quantity, is given by: 
 

|K|  (K K*)½ = (Kr
2 +  Ki

2)½ = [(|K| cos  )2 + (|K| sin  )2]½ = |K| [cos2   + sin2  ]½ = |K| 
 

     Where   is the phase angle between the (reactive) output response, Ro(Si(t)) and the 
driving input stimulus, Si(t). The complex conjugate of K is defined as K*  K = Kr  iKi. 
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We show these complex relations graphically for K, which can be thought of as a two-
dimensional vector lying in the complex plane, as shown in the figure below: 
 

 
     If the in-phase (i.e. real), Kr and out-of-phase (i.e. imaginary), Ki components of  the 
(complex) K are known (e.g. via measurement), then the phase angle,   can be computed 
from the ratio: 

tan  = Ki / Kr  
 

This relation can also be understood geometrically, from the above figure. If  the phase 
angle,   is positive (i.e. Im(K) is positive, above the real axis) then the output response, 
Ro(Si(t)) is said to lead the input stimulus, Si(t) by the phase angle, . If the phase angle,   
is negative (i.e. Im(K) is negative, below the real axis), then the output response, Ro(Si(t)) 
is said to lag the input stimulus, Si(t) by the phase angle, . 
 
     Alternatively, we can instead use so-called complex notation to mathematically 
equivalently describe a reactive output response (i.e. a non-zero phase relation between 
output response and driving input stimulus). Noting that: 

 

exp(+i) = e+ i = cos  + i sin      and      exp( i) = e  i = cos     i sin      
 

one can show: 
cos   = ½ (e+ i + e i )     and     i sin   = ½ (e+ i   e i )  

Then: 
K = Kr + iKi = |K| (cos   + i sin  ) = |K| e i  

 

Real Axis:  
Output Response, Ro(Si(t)) 
In Phase with  
Input Stimulus, Si(t) 

Im(K) = Ki 

Re(K) = Kr 

K = Kr + iKi 

 

Kr 

Ki 
|K| 

Imaginary Axis: 
Output Response,Ro(Si(t)) 
90oOut-of-Phase with  
Input Stimulus, Si(t). 
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Then a generalized, possibly reactive, but linear output response, Ro(Si(t)) to a driving, 
pure-tone input stimulus, Si(t) can be written as: 

 

Ro(Si(t)) = K Si(t) = |K| e i Si(t)  
 

Note that the constant of proportionality, K and the phase angle,   may in fact be 
frequency dependent, i.e. K = K ( ) and  =   ( ). Thus, most generally, the output 
response can also have frequency dependence: 

 

Ro(Si(t), ) = K ( ) Si(t) = |K ( )| e i ( )  Si(t)  
 

However, note that a given, (i.e. fixed) frequency, K ( ) and  ( ) behave as constants. 
 
     In the above, and following discussions on various systems with either linear or non-
linear output responses to e.g. pure-tone input stimuli, we will discuss these systems as 
having a purely real, (i.e. in-phase) response. However, from the above, it can be seen 
that it is a straight-forward extension to more generally allow a reactive output response 
to an input driving stimulus.  
 

Output Response of a System with a Quadratic Non-Linearity 
 

     Now let us consider a generic system with a slightly non-linear, quadratic response: 
 

Ro(Si) = K (Si +  Si
2) )  = K Si (1+  Si)          ( | Si | << 1 ) 

 

The non-linearity parameter, , which has dimensions (i.e. units) of 1/Si, is assumed to be 
small, i.e. | Si| << 1 (the non-linearity parameter,   can be either positive or negative, 
but here   must such that it is very much less in magnitude than one). Thus, in addition 
to the linear response term, K Si there is also now a small, non-linear quadratic response 
term,  K Si

2. Note that the quadratic response term,  K Si
2 is the lowest-order possible 

deviation from a purely linear response, Ro(Si) = K Si. The overall output response, Ro(Si) 
as a function of the input stimulus, Si  for this (non-linear) system is shown in the figure 
below: 

Ro(Si) 

Si 

  Linear 
Response, 
  ( = 0) 

Quadratic 
Non-Linear 
Response, 
   (  > 0) 

Ro(Si) vs. Si:   Ro(Si) = K(Si +  Si
2) 

Quadratic 
Non-Linear 
Response, 
  (  <  0) 
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     Let us again assume that the input stimulus is a pure tone, i.e. a signal of a single 
frequency, f. Then again, the input stimulus, Si(t) = Ai cos ( t). Then the output 
response, Ro(Si) again also becomes explicitly dependent on time, i.e. 

 

Ro(t) = Ro(Si(t)) = K(Si(t) +  Si
2(t)) = K Si(t) +  K Si

2(t)  
                 = K Ai cos ( t) +  K Ai

2 cos2 ( t) 
 

Now, using the trigonometric identity: 
 

cos2  = cos  * cos  = ½ (cos 0 +  cos 2 ) = ½ (1 +  cos 2 ) 
we have: 

Ro(t) = ½  K Ai
2 + K Ai cos ( t) + ½  K Ai

2 cos (2 t) 
 

     Thus, for this kind of quadratic non-linear response to a pure input tone of frequency f, 
the output response not only has a component at the fundamental frequency, f (also 
known as the first harmonic), but with amplitude, K Ai that was present at the input (with 
amplitude Ai), but the output response also has a small second harmonic component, with 
amplitude ½  K Ai

2, due to the existence of the cos (2 t) (i.e. 2f) term! In addition, the 
output response also has a shift in its average, or d.c. value, due to the constant term, of 
amplitude ½  K Ai

2. The process of producing a shift in the average value of the output 
response from its linear-response value is known as rectification. 
 
     We show a comparison of the linear vs. quadratic non-linear output response 
waveforms in the figure below, for an elapsed time of t = 0.0015 seconds, for parameter 
values of  f = 1000 Hz, Ai = K = 1.0,  and a relatively large value of the non-linearity 
parameter,   = + 0.25, so as to exaggerate the effect of the non-linearity term, to make it 
easily visible on the graph.  
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    The output response waveform for this system is no longer a pure cosine function. It is 
more sharply peaked at the top and flatter at the bottom than the pure cosine input 
waveform (note that the cos2 ( t) term is always positive, adding both when cos ( t) is 
positive and also when cos ( t) is negative). Thus, the output waveform is distorted from 
the pure-tone input waveform, due to the non-linear response. Such a distorted output 
waveform, for a quadratic non-linearity has, in addition to the pure tone fundamental, a 
second harmonic component and also a d.c. offset/zero-frequency component! 
 
    The following plot shows the same comparison, except for reversing the sign on the 
nonlinearity parameter, i.e.   =  0.25. Comparing this plot with the one immediately 
above, for which   = + 0.25, one observes that flipping the sign of the non-linearity 
parameter simply results in shifting the phase of the second harmonic component by 180o 
relative to the fundamental. Note that the human ear is not sensitive to the relative phases 
of one musical tone to another. 
 

 
The ratio of amplitudes for the second harmonic (i.e. 2f ) component to the fundamental 
(i.e. f ) component of the output response waveform, Ro(Si(t)) is: 

 
Amplitude of 2nd harmonic/Amplitude of fundamental = (|½  K Ai

2|) / |K Ai| = ½ | Ai| 
 
     Thus, the 2nd harmonic fraction, relative to the fundamental component of the output 
response waveform, Ro(Si(t)) increases linearly with the pure-tone input amplitude, Ai of 
the input response stimulus, Si(t). This amplitude ratio, or fraction is often referred to as 
the harmonic distortion content, and usually expressed in per cent (%). 
 
     However, if this output response “signal” is e.g. output through a loudspeaker, 
converting it to sound, the human ear perceives the loudness, L of this sound (units of 
deci-Bels, abbreviated as dB) which is logarithmically proportional to the intensity, I ) of 
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the sound wave (units of Watts/m2), which in turn is linearly proportional power, P of the 
sound wave (units of Watts), which in turn is proportional to the square of the output 
response amplitude, Ro(Si(t)), i.e.  

 

Loudness, L   10 log10 (I / Io)     (units = deci-Bels, dB) 
 

Intensity, I  (Watts/m2)   Power, P (Watts)    {Output Response, Ro(Si(t))}2 
 

The threshold of human hearing - i.e. the faintest possible sound that is detectable as such 
by the (average) human ear is defined as Loudness, L  0 dB, which corresponds to a 
sound intensity, Io associated with the threshold of human hearing of Io = 1012 Watts/m2. 
 
     If the loudness of the fundamental tone is Lfund = 60 dB (100 dB), this corresponds to 
an intensity associated with the fundamental tone of  Ifund = 106 (102) Watts/m2, 
respectively. Then if the ratio of amplitudes for the second harmonic component to the 
fundamental component of the output response waveform, Ro(Si(t)) is e.g.  
½ | Ai| = ½ * 0.25 = 0.125 = 12.5%, then I2nd / Ifund = (½  Ai)2, and the terms: 

 

log10 (I2nd / Ifund) = log10 (½  Ai)2  =  2 log10 (½  Ai) = 2 log10 (0.125) = 1.806 
and 

log10 (Ifund / Io) = 6 (10)   for   Ifund = 106 (102) Watts/m2, respectively. 
 

Thus, the human ear will perceive the loudness, L2nd of the 2nd harmonic component of 
the output response, relative to perceived loudness, Lfund of the fundamental component 
of the output response, as heard e.g. through a loudspeaker as: 

 

L2nd / Lfund = 10 log10 (I2nd / Io) /10 log10 (Ifund / Io) = log10 (I2nd / Io) / log10 (Ifund / Io) 

= log10 [(I2nd / Ifund)*( Ifund / Io)] / log10 (Ifund / Io) 

= [log10 (I2nd / Ifund) + log10 ( Ifund / Io)] / log10 (Ifund / Io) 

=  {log10 (I2nd / Ifund) / log10 (Ifund / Io)} + 1 

= 1 +  {log10 (I2nd / Ifund) / log10 (Ifund / Io)} 
= 1  {1.806 / 6}       (= 1  {1.806 / 10}) 

= 69.9%      (=  81.9%) 
 

for Ifund = 106 (102) Watts/m2, respectively. This is the (fractional) amount of second 
harmonic distortion, as heard by the human ear for this sytem. Note that the ratio, L2nd / 
Lfund increases (logarithmically) with increasing input amplitude, Ai - it is not a constant! 
In other words, for a loudness of the fundamental tone of Lfund = 60 dB (100 dB), the 
loudness of the second harmonic, for ½ | Ai| = 12.5% is:  

 

L2nd = 10 log10 (I2nd / Io) = 10 log10 [(I2nd / Ifund)*( Ifund / Io)] 
= 10 log10 (I2nd / Ifund) + 10 log10 ( Ifund / Io) 

= 20 log10 (0.125) + 60 dB (100 dB) 
=  18.06 dB + 60 dB (100 dB) 

= 41.94 dB (81.94 dB), respectively. 
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     Thus, a value of the ratio of amplitudes for the second harmonic component to the 
fundamental component of the output response waveform, Ro(Si(t)), of  ½ | Ai| = 12.5% 
is perceived by the human ear as extremely “rich” in second harmonic content. The 
human ear is capable of detecting quite small harmonic overtone components, where  
½ | Ai | ~  0.5% (or less) because these (still) correspond to rather large values of the 
ratio L2nd / Lfund ~ 25% (~ 55%), for Lfund = 60 dB (100 dB), respectively!  
 

Output Response of a System with a Cubic Non-Linearity 
 

     As another example, we can consider a generic system with a (purely) cubic non-
linear response: 

Ro(Si) = K (Si +  Si
3) = K Si (1 +  Si

2)   ( | Si
2| << 1 ) 

 
where again, the non-linearity parameter, , which (here) has units of 1/Si

2, is assumed to 
be small, i.e. | Si

2| << 1. In addition to the linear response term, K Si there is also now a 
small, cubic non-linear response term,  K Si

3. The cubic non-linear response term,  K Si
3  

is the next-to-lowest order possible deviation from a purely linear response, Ro(Si) = K Si. 
after the quadratic non-linear response term,  K Si

2. The overall output response, Ro(Si) 
as a function of the input stimulus, Si  for the cubic non-linear response of system is 
shown in the figure below: 
 
 

 
 
 
 
 
 
 
 

Ro(Si) 

Si 

  Linear 
Response, 
  ( = 0) 

 Cubic 
 Non-Linear 
 Response, 
   (  >  0) 

Ro(Si) vs. Si:   Ro(Si) = K(Si +  Si
3) 

Cubic 
Non-Linear 
Response, 
(  <  0) 
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Assuming again an input stimulus that is a pure tone, i.e. a signal of a single frequency, f 
the input stimulus, Si(t) = Ai cos ( t). Then the output response, Ro(Si) again also 
becomes explicitly dependent on time, i.e. 
 

Ro(t)  = Ro(Si(t))  =   K(Si(t) +  Si
3(t))  =  K Si(t) +  K Si

3(t)  
= K Ai cos ( t)  +   K Ai

3 cos3 ( t) 
 

Now, we can write the cos3  term as: 
 

cos3  = cos  * cos2  = cos  * ½ (1 +  cos 2 ) =  ½ cos   +  ½ cos  * cos 2 
 
thus: 

Ro(t) = K Ai (1 + ½  Ai
2) cos ( t) +  ½  K Ai

3 cos ( t)* cos (2 t) 
 
Noting that the cosine function is an even function, i.e. that  cos ( )  = + cos ,  we can 
write the cos  * cos 2  term as: 
 

cos  * cos 2   =  ½ [cos (  2) + cos ( + 2)]  =  ½ [cos (2  ) + cos (2 + )]  
= ½ [cos   +  cos 3 ] 

 
Physically, the cos ( t) * cos (2 t) = ½ [cos ( t) +  cos ( 3 t) ] term can be thought of 
as the modulation of a wave of fundamental frequency, f  by another wave having twice 
the frequency, 2f resulting in an output wave which is a linear combination of two waves, 
one with a frequency which is the sum of the two original frequencies (f + 2f = 3f ), the 
other with a frequency which is the difference of the two frequencies, (2f  f ) = f ! 
 
Putting this altogether, the cos3  term is 
 

cos3  = 3/4 cos   +  1/4 cos 3 
 
Using this result, the output response, Ro(t) = K Ai cos ( t) +  K Ai

3 cos3 ( t) becomes: 
 

Ro(t) = K Ai (1+ 3/4 Ai
2) cos ( t)  +  1/4 K Ai

3 cos (3 t) 
 
     Thus, for this kind of cubic non-linear response to a pure input tone of frequency f, the 
output response has a component at the fundamental frequency, that was present at the 
input, but the output response also has some of the third harmonic, due to the existence of 
the cos (3 t) term! Note here, that there is no shift in its average, or d.c. value, due to the 
absence of a constant term. Thus, we can now also understand, for the previous example 
of a quadratic non-linear response, why the 2nd harmonic and d.c. terms arose  they are 
the sum (f + f = 2f ) and difference (f  f = 0f ) frequencies associated with the  
cos ( t) * cos ( t) = ½ [cos (2 t)  + cos (0 t) ] term! 
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     We show a comparison of the linear vs. quadratic and cubic non-linear output 
response waveforms in the figure below, for an elapsed time of t = 0.0015 seconds, for 
parameter values of  f = 1000 Hz, Ai = K = 1.0,  and a relatively large value of the non-
linearity parameter,   = +0.25, so as to exaggerate the effect of the non-linearity term, to 
make it easily visible on the graph.  
 

 
 
     As we saw for the case of a quadratic non-linearity, the cubic non-linearity output 
response waveform is no longer a pure cosine function. It is more sharply peaked at both 
the top and bottom than the pure cosine input waveform (note that the cos3 ( t) term has 
the same sign as the cos ( t) term, adding when cos ( t) is positive and subtracting 
when cos ( t) is negative). Thus, this output response waveform is also distorted from 
the input waveform, due to the cubic non-linear response. Such a distorted output 
waveform, for a cubic non-linearity, has, in addition to the pure tone of the fundamental, 
a third harmonic (i.e. 3f ) component. 
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    The following plot shows the same comparison, except for reversing the sign on the 
nonlinearity parameter, i.e.   =  0.25.  

 
     Comparing this plot with the one immediately above, for which   = + 0.25, one 
observes, just as we saw for the quadratic nonlinearity case, that flipping the sign of the 
cubic non-linearity parameter results in shifting the phase of the third harmonic 
component by 180o relative to the fundamental. But here, for   =  0.25, the cubic non-
linear response term also has the consequence of flattening both of the + and  peaks of 
the waveform, rather than sharpening both them, as for the cubic non-linear case with  
  = + 0.25! Note that the cubic non-linear output response, Ro(t) for the term associated 
with the fundamental tone, has an amplitude of K Ai (1+ 3/4 Ai

2). Thus, the output 
response amplitude associated with the fundamental component depends on the sign of 
the non-linearity parameter,   for this system! Thus, even though the human ear is not 
sensitive to the relative phase of one musical tone to another, this cubic non-linear 
response waveform, for   =  0.25 will not sound the same as that for a cubic non-linear 
response wavefore, for   = + 0.25, because the amplitudes of the fundamental 
components are not the same in both cases! 
 
     This can also be seen from the ratio of amplitudes for the third harmonic (i.e. 3f ) 
component to the fundamental (i.e. f ) component of the output response waveform, 
Ro(Si(t)), which is: 

 

Amplitude of 3rd harmonic/Amplitude of fundamental = |1/4 K Ai
3| / |K Ai (1+ 3/4 Ai

2| 
= 1/4| Ai

2| / |1+ 3/4 Ai
2| = | Ai

2| / |4+ 3 Ai
2| 

 

     For  > 0, the 3rd harmonic fraction, relative to the fundamental component of the 
cubic non-linear output response waveform, Ro(Si(t)) increases ~ linearly with small 
values of the pure-tone input amplitude, Ai of the input response stimulus, Si(t). Note 
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however, that as Ai becomes extremely large, this ratio asymptotically reaches a value of 
33.3% - this ratio cannot exceed this value, for any value of  > 0 and/or for any value of 
input amplitude Ai.  
 
     However, for the case where  < 0, when the quantity 3/4 Ai

2 = 1, i.e. when  
 Ai

2 =  4/3, the output response amplitude associated with the fundamental,  
K Ai (1+ 3/4 Ai

2) vanishes, and this ratio becomes infinite - i.e. only the third harmonic is 
heard by the human ear, when  Ai

2 =  4/3 for this system! This is an example of totally 
destructive interference (i.e. cancellation), at the amplitude level. When  Ai

2 =  4/3,  
a zero in the output response amplitude for the fundamental occurs. Thus, for such a 
cubically non-linear system, if one inputs a large amplitude stimulus at frequency, f such 
that  Ai

2 =  4/3 then the signal output from the system will be entirely at 3f ! Such a 
system is known as a frequency tripler. 
 
     In the figure below, we show a comparison of the linear vs. quadratic and cubic non-
linear output response waveforms, for an elapsed time of t = 0.0015 seconds, for 
parameter values of  f = 1000 Hz, Ai = K = 1.0,  and a value of the non-linearity 
parameter,   =  4/3. , i.e. for the case when  Ai

2 =  4/3, when the cubic non-linear 
output response amplitude associated with the fundamental, K Ai (1+ 3/4 Ai

2) vanishes. 
 

 

     Note that a system with a value of the non-linearity response parameter,   =  4/3, 
whether it be for a quadratic or cubic non-linear response term, is such that it is not a 
small deviation from a linear response - it is in fact extremely large! Note also, that for 
even more negative values of the non-linearity parameter than   =  4/3, i.e.   <   4/3, 
then the cubic non-linear output response amplitude associated with the fundamental, K 
Ai (1+ 3/4 Ai

2) does not vanish - it “reappears”, and continues to grow in magnitude as   
becomes increasingly more negative in value, from its value of    =  4/3. 
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 Output Response of a System with Higher-Order Non-Linearities 
 
    By following the above methodology, one can also show that non-linear output 
responses, Ro(Si) associated with systems that have purely quartic ( K Si

4), quintic  
( K Si

5), and/or higher-order terms (e.g   K Si
6, etc.) will indeed produce higher  

harmonics  4th, 5th, 6th, etc. harmonics, respectively, of the fundamental frequency,  f  
associated with a pure-tone input stimulus of the system! While these cases are more 
complicated and lengthy to carry out in detail, the rabidly enthusiastic reader can work 
through them and discover many interesting phenomena associated with each one! 
 

Output Response of a System with an Exponentially-Growing Non-Linearity 
 

     Now let us consider a more physically realistic system, one with an exponentially 
growing non-linear output response, Ro(Si) which we model as follows: 

 

Ro(Si) = K [exp( |Si|)  1]       (for Si  0, and  > 0) 
and 

Ro(Si) = K [1  exp( |Si|)]       (for Si < 0, and  > 0) 
 

The parameter, K is (as before) a (positive) constant; the parameter,  is also a (positive) 
constant. This type of non-linear response is shown in the figure below: 

 

 

Ro(Si) =  
K [exp ( |Si|) 1] 
(Si  0 and  > 0) 

Ro(Si) 

Si 

Ro(Si) =  
K [1  exp ( |Si|)] 
(Si < 0 and  > 0) 

Example of an Exponential Non-linear Response:  
Current through a Resistor at Very High Voltages 
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     A physical example of a system modelled approximately as an exponentially-growing 
non-linear response is the electrical current flowing through a resistor when extreme 
voltages (|Si| >> 1) are applied across it. The resistance of a resistor under such conditions 
actually depends on the voltage across it - i.e. the resistance becomes voltage dependent 
(i.e. R = R(V)), for very large voltages across the resistor, deviating from the linear I = 
V/R  relation of Ohm’s Law! Another example of such a system is the electrical current 
flowing through a back-to-back pair of e.g. silicon and/or germanium diodes. 
 
Now, the Taylor series expansion of the exponential function, exp (x) = ex is: 

 

 
Where the factorial function, n!  n (n 1) (n 2) (n 3) .... 3*2*1. Thus, 0! = 1, 1! = 1,  
2! = 2, 3! = 6, 4! = 24, 5! = 120, ... etc. Note then, that for |x| << 1, that the higher-order 
terms in the Taylor series expansion for exp (x) beyond the linear term are quite small. 
They become increasingly important as x increases.  
 
     The exponentially-growing non-linear response function, Ro(Si) as given above, for 
positive Si (i.e. Si  0) can be expanded in a Taylor series: 

 
Ro(Si) = K [exp( |Si|)  1] = K [( |Si|) + ( |Si|)2/2! + ( |Si|)3/3! + ( |Si|)4/4! + ... ] 

 
 =  K |Si| [1 + ( |Si|)/2! + ( |Si|)2/3! + ( |Si|)3/4! + ( |Si|)4/5! + ... ] 

 
     The Taylor series expansion for the exponentially-growing non-linear response 
function, Ro(Si) for negative Si (i.e. Si < 0) is: 

 
Ro(Si) = K [1  exp( |Si|)] =  K [( |Si|) + ( |Si|)2/2! + ( |Si|)3/3! + ( |Si|)4/4! + ... ] 

 
 =   K |Si| [1 + ( |Si|)/2! + ( |Si|)2/3! + ( |Si|)3/4! + ( |Si|)4/5! + ... ] 

 
     Then the Taylor series expansion for the exponentially-growing non-linear response 
function, Ro(Si) valid for any value of Si is given by: 

 
 Ro(Si) =  K Si [1 + ( |Si|)/2! + ( |Si|)2/3! + ( |Si|)3/4! + ( |Si|)4/5! + ... ] 

 
     Thus, we see from this Taylor series expansion, that for (very) small values of input 
stimulus, |Si|, the output response is in fact quite linear - the contribution(s) from the 
higher-order terms are negligibly small. However, for increasingly larger values of Si, 
each of the successive quadratic, cubic, quartic, quintic, etc. higher-order terms becomes 
increasingly important.  
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     If a pure tone signal, Si(t) = Ai cos( t) is input to this system, then due to the 
exponentially-growing non-linear nature of the response of  this system, the output 
response, Ro(Si) will be dominated by the fundamental tone at frequency, f, however there 
will also be (decreasingly important) contributions from higher-order harmonics of the 
fundamental, at frequencies 2f, 3f, 4f, 5f, 6f, ... etc. corresponding to each of the higher-
order terms in the Taylor series expansion of the exponentially-growing non-linear 
response function, Ro(Si(t)): 

 

Ro (t) = Ro(Si(t)) =  K Ai cos( t) * [1 + ( Ai|cos( t)|)/2! + ( Ai|cos( t)|)2/3!  
    + ( Ai|cos( t)|)3/4! + ( Ai|cos( t)|)4/5! + ... ] 

 

     In the figure below, we show a comparison of the output response waveforms for this 
exponentially-growing non-linear system, truncating the above Taylor series expansion of 
the exponential response to linear, linear + quadratic, linear + quadratic + cubic terms, for 
an elapsed time of t = 0.0015 seconds, for parameter values of  f = 1000 Hz, Ai = K = 
1.0,  and a (deliberately chosen, very large) value of the exponential parameter,  = 1.0  
(so that differences between the output response waveforms are easily visible). 

 

 
Output Response of a System with an Exponentially-Decaying Non-Linearity 

 
     We consider here another physically realistic system, one with an exponentially 
decaying non-linear output response, Ro(Si) which we model as follows: 

 

Ro(Si) = K [1  exp( |Si|)]       (for Si  0, and  > 0) 
and 

Ro(Si) = K [exp( |Si|)  1]       (for Si < 0, and  > 0) 
 

The parameter, K is (as before) a (positive) constant; the parameter,  is also a (positive) 
constant. This type of non-linear response is shown in the figure below: 
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     A physical example of a system modelled approximately as exponentially-decaying 
non-linear response is the electrical current associated with the power tubes flowing 
through the output transformer of an overdriven class AB, push-pull tube amplfier. 
Another example of such a system is the electrical current output from an op-amp IC 
driving e.g. an output load resistance which is too low. Another  example is the voltage 
output from an op-amp IC which has a pair of back-to-back diodes in the feedback loop 
of the op-amp. 
 
Now, the Taylor series expansion of the exponential function, exp (x) = ex is: 

 

 

     The exponentially-decaying non-linear response function, Ro(Si) as given above, for 
positive Si (i.e. Si  0) can be expanded in a Taylor series: 

 

Ro(Si) = K [1  exp( |Si|)] = K [( |Si|)  ( |Si|)2/2! + ( |Si|)3/3!  ( |Si|)4/4! + ... ] 
 

 =  K |Si| [1  ( |Si|)/2! + ( |Si|)2/3!  ( |Si|)3/4! + ( |Si|)4/5! + ... ] 
 

Ro(Si) =  
K [1  exp ( |Si|)] 
(Si  0 and  > 0) 

Ro(Si) 

Si Ro(Si) =  
K [exp ( |Si|)  1] 
(Si < 0 and  > 0) 

Example of an Exponential Non-linear Response:   
 Overdriven Class-AB Push-Pull Tube Amplifier 
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     The Taylor series expansion for the exponentially-decaying non-linear response 
function, Ro(Si) for negative Si (i.e. Si < 0) is: 

 
Ro(Si) = K [exp( |Si|  1)] =  K [( |Si|)  ( |Si|)2/2! + ( |Si|)3/3!  ( |Si|)4/4! + ... ] 

 
 =   K |Si| [1  ( |Si|)/2! + ( |Si|)2/3!  ( |Si|)3/4! + ( |Si|)4/5! + ... ] 

 
     Then the Taylor series expansion for the exponentially-decaying non-linear response 
function, Ro(Si) valid for any value of Si is given by: 

 
 Ro(Si) =  K Si [1  ( |Si|)/2! + ( |Si|)2/3!  ( |Si|)3/4! + ( |Si|)4/5! + ... ] 

 
     Thus, we (again) see from this Taylor series expansion, that for (very) small values of 
input stimulus, |Si|, the output response is in fact quite linear - the contribution(s) from the 
higher-order terms are negligibly small. However, for increasingly larger values of Si, 
each of the successive quadratic, cubic, quartic, quintic, etc. higher-order terms becomes 
increasingly important.  
 
     If a pure tone signal, Si(t) = Ai cos( t) is input to this system, then due to the 
exponentially-decaying non-linear nature of the response of  this system, the output 
response, Ro(Si) will be dominated by the fundamental tone at frequency, f, however there 
will also be (decreasingly important) contributions from higher-order harmonics of the 
fundamental, at frequencies 2f, 3f, 4f, 5f, 6f, ... etc. corresponding to each of the higher-
order terms in the Taylor series expansion of the exponentially-decaying non-linear 
response function, Ro(Si(t)): 

 
Ro (t) = Ro(Si(t)) =  K Ai cos( t) * [1  ( Ai|cos( t)|)/2! + ( Ai|cos( t)|)2/3!  

      ( Ai|cos( t)|)3/4! + ( Ai|cos( t)|)4/5! + ... ] 
 

     In the figure below, we show a comparison of the output response waveforms for this 
exponentially-decaying non-linear system, truncating the above Taylor series expansion 
of the exponential response to linear, linear + quadratic, linear + quadratic + cubic terms, 
for an elapsed time of t = 0.0015 seconds, for parameter values of  f = 1000 Hz, Ai = K 
= 1.0, and a (deliberately chosen, very large) value of the exponential parameter,  = 1.0  
(so that differences between the output response waveforms are easily visible). 
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Output Response of a System with a Non-Linearity of Arbitrary Functional Form 

 
     Any analytic function, such as sin (x), cos (x), tan (x), sin1 (x), cos1 (x), tan1 (x), exp 
(x), log (x), .... etc.,  as well as arbitrary linear combinations of these analytic functions, 
can be represented by a Taylor series expansion (with certain restriction(s) on the allowed 
range(s) of x, depending on the function). Any good mathematical handbook will give the 
expressions for the Taylor series expansions of these, and many other analytic functions. 
Thus, if the non-linear response function, Ro(Si) of a system can be modelled using 
analytic functions, these functions can be expanded in a Taylor series, e.g. to enable the 
investigation and study of the harmonic content of the non-linear response function, 
Ro(Si(t)) that arises as a consequence of deviations from a purely linear response, e.g. to a 
pure-tone input stimulus. 
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Generalized Theory of Distortion 
 
     The most general mathematical theory of distortion allows a nearly arbitrary 
functional form of the non-linear output response Ro(Si)  the only restrictions are that the 
output response, Ro(Si) must be finite, and a single-valued function of the input stimulus, 
Si - i.e. that for any given value of the input stimulus, Si, the output response, Ro(Si) 
cannot simultaneously have two (or more) values (i.e. take on multiple values). The 
output response, Ro(Si) must also be piece-wise continuous - i.e. it can have discrete 
“jumps” up or down for certain values of the input stimulus, Si, but the output response, 
Ro(Si) cannot have “gaps” (i.e. no value) for certain values, or a continuous range of 
values of Si. Thus, these restrictions on the behavior of Ro(Si) simply mean that the output 
response, Ro(Si) must depend in a physically-sensible, realistic/every-day world-type 
manner on the input stimulus, Si.  
 
     For all electronic signal-processing and/or audio signal applications, the mathematical 
functions we can envision are mathematically well-behaved, since the arrow of time 
points always in the time-increasing direction. 
 
     If the output response function, Ro(Si) satisfies these mathematical restrictions, then 
we can perfectly describe such a function as a linear combination of ever-increasing 
powers of Si, with suitably-chosen constant coefficients for each term: 
 

Ro(Si) = C0Si
0 + C1Si

1 + C2Si
2 + C3Si

3 + C4Si
4 + C5Si

5 + C6Si
6 + C7Si

7 + ..... 
 

 
This is simply a power series expansion of Ro(Si), which we can write compactly as: 

 
This result follows from the fact that for any mathematically well-behaved function,  
f (x) which is finite, single-valued and piece-wise continuous over the x-range of interest 
(for example, the interval, x1   x  x2), then that function,  f (x), an example of which is 
shown in the figure below, is perfectly described by a linear combination of powers of x, 
with suitably chosen constant coefficients, an, i.e. a power series expansion, over the 
interval x = x1 to x = x2: 
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     In the above figure, for the example function,  f(x) we have drawn (red curve), we also 
show, graphically, the f(x) that results from using only the first term in the power series 
expansion (n = 0), where f(x) = b = a0 (the d.c. value of f(x), dotted blue horizontal line), 
and using only the first two terms in the power series expansion (n = 0 & n = 1), where 
f(x) = b + mx = a0 + a1x (the straight line/linear relation for f(x), blue line). Thus, it 
becomes evident that higher-order terms beyond the linear term in the power series 
expansion of  f(x) are what is needed for replicating all of the wiggles in the red curve, 
where f(x) deviates from the straight-line relation. In general, the more wiggles there are 
in  f(x), the more the higher-order terms, xn in the power series expansion of f(x) will 
contribute - i.e. the coefficients, an in the power series expansion associated with the 
higher-order terms, xn will be non-zero, and relatively large, in comparison e.g. to a  f(x) 
which has relatively little, or no wiggles at all. 
 
     Mathematically, the reason that any as-above-defined well-behaved function,  f(x) 
over the interval x1   x  x2, can be exactly represented by a power-series is due to the 
fact that the powers of x, (i.e. the xn) form what is called a complete set of basis vectors  
in the infinite-dimensional function “space” associated with the interval x1   x  x2.  
Proving this in a rigorous manner, mathematically is quite tedious and involved, and is 
beyond the scope (and need) of the discussion here. The interested reader is referred to 
any decent mathematics book that discusses the topic of vector spaces in detail.  
 
 
 
 
 

   x1 
(or Si1) 

    x 
(or Si) 

   x2 
(or Si2) 

         f (x) 
(or Ro(Si)) 

          f(x2) 
(or Ro(Si2)) 

          f(x1) 
(or Ro(Si1)) 

         f (x) = b + mx 
(or Ro(Si) = ro + KSi) 

         f (x=0) = b 
(or Ro(Si=0) = ro 

         f (x) = b 
(or Ro(Si) = ro) 

         f (x) vs. x 
(or Ro(Si) vs. Si) 
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     Operationally, nowadays, one can use computer-based mathematics packages, such as 
MathCad, Mathematica, Minuit, etc., inputting your function,  f(x), either as an analytic 
expression, or, as more often is the case,  f(x) is defined (or known) only as a set of data 
points on the interval, x1   x  x2. One then approximates the function,  f(x) by a 
polynomial of degree, n, Pn(x) which is finite, but can be quite large, e.g. an eighth-order 
polynomial: 
 

P8(x) = a0x0 + a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + a7x7 + a8x8 
 

     The computer program then carries out e.g. a least-squares fit of the finite-n 
polynomial expression representing the function,  f(x) on this interval, minimizing a 2 
function on how well the finite-n polynomial expression matches the function,  f(x) over 
the interval x1   x  x2, e.g. 2  ∫x2

x1 [f(x)  Pn(x)]2 dx for an analytic representation of 
f(x), or e.g. 2  k

i=1 [f(xi)  Pn(xi)]2 for f(x) represented by a set of  (i = 1,2,3,... k) data 
points, systematically varying the values of each of the coefficients, an until the “best” 
(i.e. lowest) minimum 2 is obtained, and then outputting the values of these coefficients, 
an as determined from the least-squares fitting process. Depending on the detailed nature 
of the function,  f(x), in general, a higher-order polynomial, Pn(x) is required for a good 
2 fit result if the function,  f(x) has a lot of wiggles in it, over the interval x1   x  x2.  
If the function,  f(x) is less-wiggly, then usually a lower-order polynomial, Pn(x)  gives an 
excellent fit 2. 
 
     Thus, the above formalism is applicable for obtaining e.g. an accurate polynomial 
expression for the response function, Ro(Si) associated with a given physical system, to 
which an input stimulus, Si is applied. If an accurate analytic form of the response 
function, Ro(Si) is already known, e.g. from either first principles, if it is a particularly 
simple response function, or e.g. a least-squares fit to some other analytic expression, 
such as an exponential relation, then using the above formalism is obviously not 
necessary. However, in many circumstances an accurate, quantitative mathematical 
expression for the response function, Ro(Si) is not apriori known. It may be extremely 
complicated. The above formalism is a method for obtaining such an expression. 
 
     Even having obtained such an expression for the response function, Ro(Si), this is only 
the first step, since the graph of the response function, Ro(Si) vs. input stimulus, Si is (in 
and of itself) not very useful. We want to use this response function, Ro(Si)  for doing 
other things - e.g. carrying out detailed computer simulations of this physical system, or 
e.g. determining the harmonic content of the output response, Ro(Si(t)) for a pure-tone 
stimulus, e.g. Si(t) = Ai cos ( t) that is input to the physical system, or the response 
function, Ro(Si(t)) associated with a more complex input stimulus waveform, Si(t), etc. 
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