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Theory of Distortion II 
 

Mixing of Two (or More) Signals - Intermodulation Distortion 
 

A. Output Response from a Purely Linear System 
 

     If two pure tones of different frequencies,  f1 and f2 are simultaneously applied as input 
stimuli to a system, the overall input stimulus is a linear combination of the two 
individual input stimuli, S1i (t) and S2i (t): 

 

Si (t) = S1i (t) + S2i (t) = A1i cos (1t) + A2i cos (2 t) 
 

where A1i is the amplitude of input stimulus # 1 and A2i is the amplitude of input stimulus  
# 2, and 1 = 2 f1 and 2 = 2 f2. The output response, Ro(t) for a system with a purely 
linear response, for two pure tones simultaneously applied to the input of such a system is 
given by: 

Ro(t) = K Si (t) = K (S1i (t) + S2i (t)) = K S1i (t) + K S2i (t) 
= K (A1i cos (1t) + A2i cos (2 t)) = K A1i cos (1t) + K A2i cos (2 t)  

= R1o(t) + R2o(t) 
 

Thus, the overall output response of a linear system to two pure tones simultaneously 
applied to the input of such a system is simply the linear sum of the individual responses 
to their associated pure input tones - no harmonics, or other frequencies of any kind are 
generated. 
 

     The figure below shows the two-frequency linear response waveform, for an elapsed 
time of t = 0.0015 seconds, for parameter values of  f1 = 1000 Hz,  f2 = 990 Hz, and 
A1i = A2i = K = 1.0. Because the two frequencies are close together, this linear response 
waveform appears very similar to that for a single frequency linear response. 
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     However, if we watch the two-frequency overall output response waveform for a long 
time, we can observe an interesting effect of the difference frequency, f = |f1  f2| on this 
waveform, if the two input frequencies and the amplitudes of the input signals are 
relatively close to each other. The following plot shows the linear output response 
waveform, for parameter values of  f1 = 1000 Hz,  f2 = 950 Hz, A1i = A2i = K = 1.0, for an 
elapsed time of t = 0.040 seconds, or 40 (38) cycles of the 1000 (950) Hz signal, 
respectively. This time interval also corresponds to 2 cycles of the beat frequency, i.e. the 
frequency difference,  fB = f = |f1  f2| = 50 Hz, since the period of oscillation,  is 
related to the frequency by  = 1/f. 
  

     The two-frequency linear output response waveform associated with two input signals 
whose frequencies and amplitudes are close to each other exhibit the phenomenon of 
beats  the output response is largest in magnitude when both input signals, with 
frequency f1 and f2, respectively, are instantaneously at their maximum values, and 
exactly in phase with each other. As time progresses from this point, because of the 
difference in frequencies of the two input wave forms, the two signals get progressively 
further apart in phase from each other, and at some point in time, the two input signals 
are instantaneously at their maximum values, but exactly out-of-phase with each other, 
thus canceling (i.e. destructively interfering) with each other. At this point in time, the 
two-frequency output response is at its least value, magnitude-wise. As time progresses 
further, the two input signals will get back in phase with each other, where the two-
frequency overall output response waveform will be maximum in magnitude again 
(actually, the input signal with the lower frequency will now be 2 radians behind in 
phase, with respect to the higher frequency input signal). And so on. 
 

     The beat frequency effect is maximally apparent when the beat frequency, fB = | f1  f2| 
is small in comparison to either of the two frequencies,  f1 and/or f2. In other words, the 
two frequencies,  f1 and  f2 need to be close to each other, in order to observe beats in the 
overall output response waveform. As the beat frequency becomes comparable to the 
lower of the two frequencies, say f1 (implying that  f2 ~ 2 f2), the beat frequency effect 
dies out, vanishing completely when  fB becomes larger than the lower frequency (f1). 
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     In addition, the beat frequency effect can be maximal only when the amplitudes of the 
two input stimuli are equal, i.e. A1i = A2i. Even if the two frequencies are close to each 
other, but the amplitudes of the two input signals are unequal, then complete cancellation, 
as a beat frequency phenomenon cannot occur, as shown figure below, for parameter 
values of  f1 = 1000 Hz,  f2 = 950 Hz, A1i = 1.0,  A2i = 0.5 and K = 1.0, for an elapsed 
time of t = 0.040 seconds, or 40 (38) cycles of the 1000 (950) Hz signal, respectively. 

  
     In the figure below, we also show the two-frequency linear output response waveform, 
for the case for two frequencies that are very different from each other,  f1 = 1000 Hz and 
 f2 = 11.111 KHz, but for A1i = A2i = K = 1.0, and for an elapsed time of t = 0.0015 
seconds, or 1.5 (~16.7) cycles of the 1000 Hz (11.111 KHz) signal, respectively. This 
time interval corresponds to ~ 15.2 cycles of the beat frequency,  fB = f = |f1  f2| = 
10.111 KHz. 
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     Even if the amplitudes are equal,  but the frequencies of the two input signals differ 
greatly from each other, e.g. f2 >> f1, the beat-frequency effect on the two-frequency 
overall output response waveform is non-existent  the higher frequency  input signal 
completes an entire cycle, while the lower frequency input signal hardly changes its value 
at all during this same time interval. 
 

     The above figure demonstrates the principle of amplitude modulation, as used in AM 
radio transmission and reception. An AM radio station broadcasts at a “carrier” frequency 
in the AM radio band (540 KHz < f2 < 1600 KHz), with a bandwidth, f = 10 KHz wide, 
centered on its nominal frequency,  fo. Thus, up to 5 KHz of the audio (or “voice”) signal, 
in the audio frequency range (~ 50 Hz < f1 < 20 KHz) is mixed with the carrier signal, 
which results in modulating the amplitude of the carrier signal. In an AM radio receiver, 
the antenna picks up all radio signals, passes them through a tunable, narrow-band “pre-
filter”,  an amplifier then amplifies the signal output from this filter. The tuner control of 
the AM radio receiver sets the frequency of a local oscillator to the carrier frequency of 
the AM radio station. The amplified radio signal and local oscillator signal are then 
mixed together, demodulating the carrier portion of the radio signal, resulting in an 
output signal which is the originally broadcast audio/voice signal from the AM radio 
station! 
 

     It is straightforward to show that the overall output response of a linear system, Ro(t) 
to an arbitrarily large number of pure input tones, S1i (t), S2i (t), S3i (t), ... etc. 
simultaneously applied to the input of such a system will also simply be the linear sum of 
the individual responses to their associated pure input tones. 
 

     For n such pure-tone input stimuli, each with frequency,  fk and amplitude, Aki for the 
kth input stimulus, Ski (t) = Aki cos (k t) the overall input stimulus is: 

 
The overall output response, Ro(t) for a linear system is: 

 
where Rko(t) = K Aki cos (k t) is the individual output response associated with the kth 
input stimulus, for this linear response system. 
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B. Output Response from a Quadratically Non-Linear System 
 
     If two pure tones of different frequencies,  f1 and f2 are simultaneously applied as input 
stimuli to a system which has a small, quadratic nonlinear response, 

 
Ro(Si) = K (Si +  Si

2) = K Si (1+  Si)        ( | Si| << 1) 
then if 

Si (t) = S1i (t) + S2i (t) = A1i cos (1t) + A2i cos (2 t) 
 
the overall output response is: 
 
Ro(t) = Ro(Si(t)) = K (A1i cos (1t) + A2i cos (2 t))  +   K [A1i cos (1t) + A2i cos (2 t)]2 
 
or: 
 
   Ro(t) = K (A1i cos (1 t) + A2i cos (2 t))  
        +  K [A1i

2 cos2 (1 t) ) + A2i
2 cos2 (2 t) + 2A1iA2i cos (1 t) cos (2 t)] 

 
Again, using the trigonometric identity: 
 

cos2  = cos  * cos  = ½ (cos 0 +  cos 2 ) = ½ (1 +  cos 2 ) 
 

and the generalized relation: 
 

cos 1* cos 2  = ½ [cos (1  2) +  cos (1 + 2)] 
we have: 

Ro(t) = ½  K A1i
2 + ½  K A2i

2 + K (A1i cos (1 t) + A2i cos (2 t))  
+ ½  K A1i

2 cos (21 t) + ½  K A2i
2 cos (22 t) 

+  K A1i A2i [cos ((1  2) t) + cos ((1 + 2) t)]  
 

     The overall output response of this quadratically non-linear system is dominated by 
the two fundamental frequency contributions, K A1i cos (1 t) and K A2i cos (2 t) that are 
also associated with the linear output response system. In addition, we see that we have 
two d.c. level (zero-frequency) contributions, ½  K A1i

2 and ½  K A2i
2, as well as two 

second-harmonic contributions,  ½  K A1i
2 cos (21 t) and ½  K A2i

2 cos2 (22 t) that are 
associated with the individual quadratic non-linear responses to the pure-tone inputs, 
applied to this system one at a time. However, there are also two new response terms,  
 K A1i A2i cos((1  2) t) and  K A1i A2i cos ((1 + 2) t) which contribute harmonics at 
the (absolute value of the) difference between the two frequencies, |f1  f2| (since the 
cosine function is an even function of its argument), and the sum of the two frequencies, 
(f1 + f2), respectively. These latter two output response harmonics arise from the non-
linear mixing of the two input signals. This effect is known as intermodulation distortion. 
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     In the figure below, we show a comparison of the linear vs. quadratic non-linear 
output response waveforms, for an elapsed time of t = 0.0015 seconds, for parameter 
values of  f1 = 1000 Hz,  f2 = 990 Hz, A1i = A2i = K = 1.0,  and a relatively large value of 
the non-linearity parameter,   = + 0.25, so as to exaggerate the effect of the non-linearity 
term, to make it easily visible on the graph.  

 
     The following plot shows a comparison of the linear vs. quadratic non-linear output 
response waveforms, for parameter values of  f1 = 1000 Hz,  f2 = 950 Hz, A1i = A2i = K = 
1.0,  and a value of   = + 0.25, for an elapsed time of  t = 0.040 seconds, or 40 (38) 
cycles of the 1000 (950) Hz signal, respectively. This time interval also corresponds to 2 
cycles of the beat frequency, i.e. the frequency difference,  fB = f = |f1  f2| = 50 Hz, 
since the period of oscillation,  is related to the frequency by  = 1/f.  
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     We also show a comparison of the linear vs. quadratic non-linear output response 
waveforms in the figure below, for an elapsed time of t = 0.0015 seconds, for parameter 
values of  f1 = 1000 Hz,  f2 = 11.111 KHz, A1i = A2i = K = 1.0,  and   = + 0.25. 

 
     In the above (and following) discussion(s) associated with mixing two pure tones of 
different frequencies,  f1 and f2, we have tacitly assumed both signals to be in phase with 
each other at our defined zero of time, t = 0. The input signals were S1i (t) = A1i cos (1t) 
and S2i (t) = A2i cos (2 t). We could have instead carried out these discussion(s) by 
chosing one of the input signals to be  90o (or  180o) out of phase with respect to the 
other at  t = 0, for example, S2i (t) =  A2i sin (2 t) (or S2i (t) =  A2i cos (2 t)), 
respectively. We could also have left the phases for both signals, 1 and 2 completely 
arbitrary, i.e.  

S1i (t) = A1i cos (1 t + 1)   and   S2i (t) = A2i cos (2 t + 2) 
 
No loss of generality, nor any difference in the corresponding physics is encountered, 
with or without the explicit inclusion of such phases - they are merely equivalent to a 
redefinition of the choice of the zero of time for the problem. We leave it as an exercise 
for the rabidly enthusiastic reader to work through the above (and following) examples 
for two input signals that are not in phase with each other at  t = 0.  
 
     It is also straightforward to extend the above discussions(s) associated with 
simultaneous mixing of two pure-tone input signals, to the case(s) for simultaneous 
mixing of three (or more)  pure-tone input signals, for a system with a quadratic, non-
linear response, Ro(Si) = K (Si +  Si

2). 
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     For n pure-tone input stimuli, each with frequency,  fk and amplitude, Aki for the kth 
input stimulus, Ski (t) = Aki cos (k t) the overall input stimulus is: 

 
The overall output response, Ro(t) for a quadratically non-linear system for n pure-tone 
input stimuli is: 

 

This expression for the overall output response, Ro(t) for a quadratically non-linear 
system for n pure-tone input stimuli can be written most compactly as: 

 
C. Output Response from a Cubically Non-Linear System 

 

     If two pure tones of different frequencies,  f1 and f2 are simultaneously applied as input 
stimuli to a system which has a small, cubic nonlinear response, 

 

Ro(Si) = K (Si +  Si
3) = K Si (1+  Si

2)        ( | Si
2| << 1) 

then if 
Si (t) = S1i (t) + S2i (t) = A1i cos (1t) + A2i cos (2 t) 

 

the overall output response is: 
 

Ro(t) = Ro(Si(t)) = K (A1i cos (1t) + A2i cos (2 t)) +  K [A1i cos (1t) + A2i cos (2 t)]3 
 

or: 
 

   Ro(t) = K (A1i cos (1t) + A2i cos (2 t)) +  K [A1i
3 cos3 (1t) ) + A2i

3 cos3 (2 t)] 
+  K [3A1i

2A2i cos2(1t) cos (2 t) + 3A1i A2i
2 cos (1t) cos2 (2 t)] 

 

Again, using the trigonometric identities: 
 

cos2  = ½ (cos 0 +  cos 2 ) = ½ (1 +  cos 2)    and     cos3  = 3/4 cos  +  1/4 cos 3  
 

and the generalized relation: 
 

cos 1* cos 2  = ½ [cos (1  2) +  cos (1 + 2)] 
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we obtain, after some algebra, combining similar terms: 
 

Ro(t) = KA1i [1 + 3/2  (½ A1i
2 + A2i

2)] cos (1t)  
         + KA2i [1 + 3/2  (½ A2i

2 + A1i
2)] cos (2 t) 

+  1/4  K A1i
3 cos (31 t)  +  1/4  K A2i

3 cos (32 t) 
+  3/4  K A1i

2 A2i [cos ((21  2) t) + cos ((21 + 2) t)]  
+  3/4  K A1i A2i

2 [cos ((1  22) t) + cos ((1 + 22) t)] 
 

     The overall output response of this cubically non-linear system is dominated by the 
two fundamental frequency contributions, K A1i [1 + 3/2  (½ A1i

2 + A2i
2)] cos (1 t) and  

K A2i [1 + 3/2  (½ A2i
2 + A1i

2)] cos (2 t). Note that each of these have terms associated 
with the linear portion of the response for each separate frequency, as well as cubic non-
linear contributions associated with both frequencies! In addition, we see that we have 
two third-harmonic contributions,  1/4  K A1i

3 cos (31 t) and 1/4  K A2i
3 cos2 (32 t) that 

are associated with the individual quadratic non-linear responses to the pure-tone inputs, 
applied to this system one at a time. There are also four new response terms,  
3/4  K A1i

2 A2i cos ((21  2) t) and 3/4  K A1i A2i
2 cos ((1  22) t) which contribute 

harmonics at the (absolute value of the) difference between the 2nd harmonic of one input 
signal and the fundamental of the other, e.g. the frequency difference, |2f1  f2|, and the 
terms 3/4  K A1i

2 A2i cos ((21 + 2) t) and 3/4  K A1i A2i
2 cos ((1 + 22) t) which 

contribute harmonics at the sum of the 2nd harmonic of one input signal and the 
fundamental of the other, e.g., (2f1 + f2). These latter four output response harmonics 
arise from the non-linear mixing of the two input signals, and correspond to 
intermodulation distortion of the output response waveform. 

 

     In the figure below, we show a comparison of the linear vs. quadratic and cubic non-
linear output response waveforms, for an elapsed time of t = 0.0015 seconds, for 
parameter values of  f1 = 1000 Hz,  f2 = 990 Hz, A1i = A2i = K = 1.0,  and a relatively 
large value of the non-linearity parameter,   = + 0.25, so as to exaggerate the effect of 
the non-linearity term, to make it easily visible on the graph. 
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     The following plot shows a comparison of the linear vs. quadratic and cubic non-
linear output response waveforms, for parameter values of  f1 = 1000 Hz,  f2 = 950 Hz, 
A1i = A2i = K = 1.0,  and a value of   = + 0.25, for an elapsed time of  t = 0.040 
seconds, or 40 (38) cycles of the 1000 (950) Hz signal, respectively. This time interval 
also corresponds to 2 cycles of the beat frequency, i.e. the frequency difference,  fB = f 
= |f1  f2| = 50 Hz, since the period of oscillation,  is related to the frequency by  = 1/f.  

 
     We also show a comparison of the linear vs. quadratic and cubic non-linear output 
response waveforms in the figure below, for an elapsed time of t = 0.0015 seconds, for 
parameter values of  f1 =1000 Hz,  f2 =11.111 KHz, A1i = A2i = K = 1.0,  and   = + 0.25. 
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     As we saw for the single-frequency quadratic and cubic non-linear response 
waveforms, if the sign of the non-linearity parameter is changed from e.g.   = + 0.25 to 
  =  0.25, then for the two-frequency quadratic non-linear reponse, the phase of the 
second harmonic, relative to the fundamental is shifted by 180o, however for the two-
frequency cubic non-linear response, the amplitudes of both the fundamental and third 
harmonic components of the output response are affected by this sign change. 
 

     In the figure below, we show a comparison of the linear vs. quadratic and cubic non-
linear output response waveforms, for an elapsed time of t = 0.0015 seconds, for 
parameter values of  f1 = 1000 Hz,  f2 = 990 Hz, A1i = A2i = K = 1.0,  and a relatively 
large value of the non-linearity parameter,   =   0.25, so as to exaggerate the effect of 
the non-linearity term, to make it easily visible on the graph. As can be seen by 
comparing this figure with its corresponding one above, the cubic non-linear output 
response here has been significantly altered by this sign change of the   parameter. 

 
     The following plot shows a comparison of the linear vs. quadratic and cubic non-
linear output response waveforms, for parameter values of  f1 = 1000 Hz,  f2 = 950 Hz, 
A1i = A2i = K = 1.0,  but for a value of   =  0.25, for an elapsed time of  t = 0.040 
seconds, or 40 (38) cycles of the 1000 (950) Hz signal, respectively. As can be seen by 
comparing this figure with its corresponding one above, the cubic non-linear output 
response here has also been significantly altered by this sign change of the   parameter. 
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     We also show a comparison of the linear vs. quadratic and cubic non-linear output 
response waveforms in the figure below, for an elapsed time of t = 0.0015 seconds, for 
parameter values of  f1 = 1000 Hz,  f2 = 11.111 KHz, A1i = A2i = K = 1.0,  and  
  =  0.25. Again, the cubic non-linear output response here has also been significantly 
altered by this sign change of the   parameter 
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   Again, it is also straightforward (but now more tedious) to extend the above discussions 
associated with simultaneous mixing of two pure-tone input signals, to the case(s) for 
simultaneous mixing of three (or more)  pure-tone input signals, for a system with a 
cubic, non-linear response, Ro(Si) = K (Si +  Si

3). 
 

     For n pure-tone input stimuli, each with frequency,  fk and amplitude, Aki for the kth 
input stimulus, Ski (t) = Aki cos (k t) the overall input stimulus is: 

 

The overall output response, Ro(t) for a cubically non-linear system for n pure-tone input 
stimuli, after much algebra, combining similar terms, is: 

 
     The overall output response of this cubically non-linear system is dominated by the n 
fundamental frequency contributions, associated with the first summation over terms 
proportional to cos (k t). Note that each of these have terms associated with the linear 
portion of the response for each separate frequency, as well as cubic non-linear 
contributions associated with all n input signal frequencies! In addition, in the second 
summation, we see that we have n third-harmonic contributions, associated with the 
summation over terms proportional to cos (31 t), that are the individual quadratic non-
linear responses to the pure-tone inputs, applied to this system one at a time. In the 
double summation, there are 2n response terms that are proportional to cos [(2k  j) t] 
which contribute harmonics at the (absolute value of the) difference between the 2nd 
harmonic of one input signal and the fundamental of the other, e.g. the frequency 
difference, |2f1  f2|, and 2n response terms, that are proportional to cos [(2k + j) t] 
which contribute harmonics at the sum of the 2nd harmonic of one input signal and the 
fundamental of the other, e.g., (2f1 + f2). Lastly, the triple summation, which exists only 
for n  3 input signals, contains (n2)2 terms that are proportional to three types of triple 
fundamental frequency differences and a sum of three fundamental frequencies, with 
terms proportional to cos [(l  k + j) t], cos [(l + k  j) t], cos [(l  k  j) t], 
and cos [(l + k + j) t]. Here again, the terms in the output response harmonics 
associated with frequency differences and sums of frequencies are output response 
harmonics that arise from the non-linear mixing of the n input signals, and correspond to 
intermodulation distortion of the output response waveform. 
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 Output Response of a System with Higher-Order Non-Linearities 
 
    By following the above methodology, one can also show that non-linear output 
responses, Ro(Si) associated with systems that have purely quartic ( K Si

4), quintic  
( K Si

5), and/or higher-order terms (e.g   K Si
6, etc.) will also produce higher harmonics 

 4th, 5th, 6th, etc. harmonics, respectively, of the fundamental frequencies,  fk associated 
with two or more pure-tone input stimuli of the system, as well as harmonic components 
associated with sums and differences of frequencies, and even higher-order effects. One 
can also work through cases for systems e.g. with non-linear exponential-type responses, 
approximating the non-linear exponential response of such systems by the Taylor series 
expansion to the desired order. While these cases are more complicated and lengthy to 
carry out in detail, with some determination, stamina and care, the rabidly enthusiastic 
reader can work through them and discover many interesting phenomena associated with 
each such system! 
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