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Fourier Analysis I: 
 

Determination of the Harmonic Content of a Periodic Waveform 
 

     The harmonic content of a periodic waveform - one which repeats itself in time or in 
space, can be obtained using the mathematical formalism known as Fourier analysis 
(also known as harmonic analysis), named after the French mathematician, Joseph 
Fourier (1768-1830). The periodic waveform(s) analyzed using this method could be e.g. 
either a poly-phonic input stimulus to a given system, and/or the linear or non-linear 
output response waveform associated with that system. Another example of the use of  
Fourier analysis is to determine the harmonic distortion content and/or the 
intermodulation distortion content associated with the non-linear response of a system, to 
which a pure-tone input stimulus is applied. 

 

     Mathematically, any arbitrary function,  f(x) that is finite, single-valued and piece-wise 
continuous over the interval x1   x  x2, can be exactly represented by a power series 
(with suitably-chosen values of the constant coefficients, an), due to the fact that the 
powers of x, xn form a complete set of basis vectors for the function “space” associated 
with the interval x1   x  x2: 

In this abstract, infinite-dimensional mathematical space, each of the xn, as basis vectors, 
are analogous to the x, y and z axes in real, 3-dimensional space. Except that the complete 
set of basis vectors, xn aren’t all mutually perpendicular (i.e. orthogonal) to each other, 
like the the x, y and z axes are to each other, in our real, 3-dimensional space. However, 
certain linear combinations of the complete set of xn are orthogonal to each other. Thus, 
these certain linear combinations of the xn in this abstract, infinite-dimensional 
mathematical space do behave exactly analogously to the x, y and z axes in our real, 3-
dimensional space. Also, just as one can carry out an infinitude of possible rotations in 
our real, 3-dimensional space, to obtain a entirely new sets of x, y and z axes in our real, 
3-dimensional space, obtaining new x, y and z axes (which are linear combinations of 
the original x, y and z axes), one can also carry out analogous rotations in the abstract, 
infinite-dimensional mathematical space, to obtain new complete sets of othogonal basis 
vectors there, too.  

 

     Now, the sine and cosine functions, sin (x) and cos (x) have Taylor series expansions 
in powers of x - i.e. the sin (x) and cos (x) functions are certain specific linear 
combinations of the xn: 

and: 
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     For an as-above-defined well-behaved, but arbitrary function,  f(x), defined in the 
spatial interval x1   x  x2 (with x2 = x1+ L), if  f(x) is periodic - i.e. it repeats with a 
spatial period, L, such that  f(x+L) = f(x),  as shown in the figure below: 
 

 
Then the periodic function,  f(x) in the space-domain, can be precisely replicated by the 
following Fourier series expansion: 
 

 
The constant coefficient, a0 is needed, as it represents a d.c. offset (i.e. constant) term. 
The constant coefficients an and bn are the (harmonic) amplitudes associated with the 
cosine and sine functions, for the nth term (n = 1, 2, 3, ...) in each of the above sums, 
respectively. 

 
Note also that the spatial period, L physically corresponds to the (spatial) wavelength, , 
i.e. L = . The wavenumber, k  2/. Thus, we can rewrite the above Fourier series 
expansion as: 
 

 
     It needs to be stated here that the wavelength,  and hence the wavenumber, k are 
associated with the lowest, or fundamental frequency,  f  (i.e. when n = 1 in the above 
summations) since  f  = , where  is the speed of propagation of the wave. The 
harmonics of the fundamental are then integer multiples of the fundamental frequency, 
i.e. fn = nf, and thus the wavelengths and wavenumbers associated with the nth harmonic 
are n = /n and kn = nk, respectively, for n = 1, 2, 3, 4, 5, .... etc. 
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     Note that we can also write the Fourier series expansion of  f(x) in the time-domain, 
simply by changing the variable x   t and changing the spatial period, L to the temporal 
(i.e. time) period, ,  i.e. L  . Then since the frequency,  f = 1/, and  = 2 f, also 
with the relation  /k = , we have: 

 
In the time-domain, the corresponding figure for the periodic temporal function,  f(t) is: 
 

     Note further that since the sine and cosine functions, sin (x) and cos (x), respectively, 
are linear combinations of  powers of  x,(i.e. their Taylor series expansions), then together 
with 1, they encompass all powers of  x. Since the xn form  a complete set of basis vectors 
for the function “space” associated with the interval x1   x  x2, then 1, and the Taylor 
series expansions for sin(x) and cos(x) also form a complete set of basis vectors for the 
function “space” associated with the interval x1   x  x2. This is the reason that any 
mathematically well-behaved, periodic function,  f(x) can be precisely replicated by an 
appropriate linear combination of 1, sin(nkx) and cos(nkx) - i.e. a  Fourier series 
expansion, as defined above. 
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     Now it turns out that, as basis vectors in the mathematical space associated with the 
interval x1   x  x2, the sin (nkx) and cos (nkx) functions, and 1 are  orthogonal (i.e. 
mutually perpendicular) to each other. In real, 3-dimensional space, the orthogonality of 
two vectors, A = Ax x + Ay y + Az z  and  B = Bx x + By y + Bz z, where (Ax, Ay, Az) are the 
(x, y, z)-components of the vector A, and (Bx, By, Bz) are the (x, y, z)-components of the 
vector B, and x,  y and z are unit vectors (i.e. vectors with unit length) pointing along the 
x,  y and  z  axes, respectively, is defined by the so-called dot, or inner product of the two 
vectors, A and B: 

AB    Ax Bx + Ay By + Az Bz  
 
     The two vectors, A and B are orthogonal (i.e. perpendicular to each other) if their dot 
product, AB = 0. For example, if the vector, A is oriented entirely along the x-direction, 
then A = Ax x + 0 y + 0 z, or equivalently, A = (Ax, 0, 0). If the vector, B is oriented, e.g. 
only along the y-direction, then B = 0 x + By y + 0 z, or equivalently, B = (Bx, By, Bz). 
Then here, the dot product AB =  Ax*0 +  0*By + 0*0 = 0. The length (i.e. magnitude) of 
a vector, A is defined as | A |  (Ax

2 + Ay
2 + Az

2 )½. Thus, the dot, or inner product, AB  
has physical units of (length)2. 
 
     In this abstract, infinite-dimensional mathematical function space associated with the 
interval x1   x  x2, the analog of the dot, or inner product between two mathematically 
well-behaved, but arbitrary “vectors” in this space - the functions,  f(x) and g(x) is defined 
as: 

 
If this integral is zero, then the two functions,  f(x) and g(x) are orthogonal to each other. 
 
Since f(x) and g(x), as well-behaved functions over the interval, x1   x  x2 can each be 
represented as separate Fourier series expansions, then the above inner product becomes: 
 

 
If we expand this expression out, term-by term, then there will be an infinite number of 
integrals on the right hand side. If the two arbitrary functions,  f(x) and g(x) are to be 
orthogonal to each other, then each of these integrals must vanish, separately from each 
other. Thus, the inner product term: 

 
which, in general can vanish only if either of the coefficients, ao or co (or both) are zero, 
for an arbitrary interval, x1   x  x2. Since the constant (n = m = 0) terms in the Fourier 
series, e.g. ao = ao*1, then obviously the inner product of the basis vector, 1 with itself, 
i.e. < 1, 1 > cannot vanish, since (any) basis vector cannot be orthogonal to itself! 
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Similarly, each of the following inner products must vanish, for all values of n and m: 

 
Each of these terms does vanish, because the functions f(x) and g(x) are periodic - i.e. 
they repeat themselves for x2 = x1 + L. Since the wavenumber, k = 2/L, then for arbitrary 
values of n, m (= 1,2,3,...), then, e.g.: 

 

sin (mkx2) = sin (2mx2/L) = sin (2m(x1+L)/L) = sin (2mx1/L + 2m) =  sin (2mx1/L) 
 

cos (mkx2) = cos (2mx2/L) = cos (2m(x1+L)/L) = cos (2mx1/L + 2m) =  cos (2mx1/L) 
 

These results explicitly demonstrate that, since the constant (n = m = 0) terms in the 
Fourier series, e.g. ao = ao*1, that the sin (mkx) and cos (mkx)  functions (with m > 0),  
as basis vectors, are orthogonal to 1 on the interval, x1   x  x2. 

 

Similarly, each of the following inner products must all vanish, for all values of n and m: 

 

 

 
For the cases where n  m, each of the above three types of integrals does vanish, because 
the sin (mkx) and cos (mkx) functions are periodic on the interval,  x1   x  x2. These 
results explicitly demonstrate that for n  m, that the cos (nkx) and cos (mkx) functions, as 
basis vectors, are orthogonal to each other; the sin (nkx) and cos (mkx) functions are also 
orthogonal to each other; and the sin (nkx) and sin (mkx) functions are also orthogonal to 
each other on the interval, x1   x  x2. 
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For the cases where n = m, these integrals become: 

 

 
The first and third of these type of integrals, the inner product of cos (nkx) with itself and 
the inner product of sin (nkx) with itself, respectively, vanish only when e.g. either of the 
coefficients, an or cn (or both) are zero, and either of the coefficients, bn or dn (or both) 
are zero, respectively, for an arbitrary interval, x1   x  x2. The second of these type of 
integrals vanishes, because the sin (mkx) and cos (mkx) functions are periodic on the 
interval,  x1   x  x2, thus explicitly demonstrating that for n = m, the sin (nkx) and  
cos (nkx) functions, as basis vectors, are orthogonal to each on the interval, x1   x  x2. 

 

     Thus, we have proved that the basis vectors 1, the sin (nkx) and cos (nkx) functions in 
this abstract, infinite-dimensional mathematical function space  are orthogonal (i.e. 
mutually perpendicular) to each other over the interval x1   x  x2. 

 

     We have also shown that, on the interval x1   x  x2, that two arbitrary, but 
mathematically well-behaved, periodic functions,  f(x) and g(x), each expressed as a 
Fourier series, cannot be orthogonal to each other unless certain of their respective 
Fourier coefficients, (an and/or bn) and (cn and/or dn) vanish in such a way to enable the 
inner product, < f(x), g(x) > to vanish - this result is described by the so-called 
generalized Parseval identity - the inner product of the functions  f(x) with g(x): 

 

The inner product of the function,  f(x) with itself is known as Parseval’s identity: 

     These identities are named in honor of the French mathematician, Marc Antoine 
Parseval des Chenes (1755-1836), who derived them. Physically, Parseval’s identity, 
<f(x), f(x)> = .... in the space-domain (time-domain) is proportional to the total average 
linear energy density, < utot > (power, < Ptot >) in the waveform over one cycle, 
respectively. The average linear energy density (power) associated with the nth harmonic,  
< un > (< Pn >), respectively, can therefore be obtained from this relation! 
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     If the periodic function,  f(x) is known on the interval x1   x  x2, then we can use the 
orthogonality properties of the basis vectors, 1, the sin (nkx) and cos (nkx) functions to 
determine each of the Fourier coefficients, an and bn in the Fourier series! By taking the 
inner product of  f(x) with each of the basis vectors, because of the orthogonality 
properties of the basis vectors, the inner product of  the function,  f(x) with a given basis 
vector “projects” out that component of  the “vector” f(x) in this infinite-dimensional 
function space lying along, or parallel to that basis vector, i.e.: 

 
Thus, the d.c. (i.e. n = 0) term in the Fourier series expansion can be determined from: 

 
Similarly, the inner product of the function,  f(x) with the cos (nkx) and sin (nkx) basis 
vectors projects out the an and  bn coefficients, respectively, of the Fourier series 
expansion of  f(x), i.e.: 

 

 
Thus, the Fourier coefficients,  an and  bn  can be determined from: 

 
     By a simple change of variables, we can write the Fourier series expansion of a 
“generic” periodic function,  f(), where   (in units of radians) is a “generic” variable, 
e.g. defined as   = kx (for work in the space-domain), or   =  t (for work in the time-
domain). Then the “generic” variable, n  = nkx = n , or n  = n t = n . Thus: 
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     Since   = kx  or    =  t, then in the space-domain, since  f(x) is a periodic function, 
i.e.  f(x2) =  f(x1) with x2 = x1 + L, or, in the time-domain, since  f(t) is a periodic function, 
i.e.  f(t2)  =  f(t1) with t2 = t1 + , then generically-speaking,  f() is also periodic function, 
i.e.  f(2) =  f(1) with 2 = 1 + 2. Thus, x2  x1 = x = L,   t2  t1 =  t = ,  and we also 
have 2  1 =   = 2, since e.g. 2  1 = k (x2  x1) = 2/ *(x2  x1) = 2/L *(x2  x1) 
=  2(L/L) = 2, since L =  (= 2/k), the wavelength of the fundamental, whose 
frequency is  f =  /2, and period   = 1/f.  

 

The inner products, used to determine the Fourier coefficients, can also be written 
“generically” as: 

 
    We can also write the “generic” Fourier series expansion of the periodic function,  f()  
in complex form, using  the relations: 

 

exp(+in) = e+ in = cos n + i sin n     and      exp( in) = e  in = cos n    i sin n     
 

Where i is defined as i   (1), thus i* i = 1, and i* i = +1. (One can prove these 
relations e.g. by using the Taylor series expansions for both sides of each equation.) 
Conversely, one can also show that: 

 

cos n  = ½ (e+ in + e in)     and     i sin n  = ½ (e+ in   e in)  
Then: 

This expression for the periodic function,  f( ) can be written as a single sum, if we 
define complex Fourier coefficients, cn that are linear combinations of  the an and bn 
Fourier coefficients: 

 

co  ao,    cn  ½ (an  i bn)    and    c-n  ½ (an + i bn)  (= cn*) 
 

Then the “generic” periodic function,  f( ) can be written compactly as: 

 

Note that the last two sums on the right hand side extends (in integer steps) from n =   
to n = +. 
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     The complex Fourier coefficients, cn can be determined by taking the inner product(s) 
of the periodic function,  f() with each of  these new, complex basis vectors, exp(+in): 

     We can also write the Fourier series expansion of the periodic function,  f( ) in yet 
another way, thereby gaining some additional physical insight as to the meaning of the 
harmonic terms in the series. Consider the nth harmonic term in the Fourier series:  

 

an cos n + bn sin n = ½ an (e+ in + e in)     ½ ibn (e+ in   e in) 
= ½ (an  ibn) e+ in  +  ½ (an + ibn) e in 

 

then, again defining cn  ½ (an  i bn) and thus cn*  ½ (an + i bn), the magnitude of  cn  
(a real number) is defined as: 

 

|cn|  (cn cn*)½ =  ½ [(an  i bn)(an + i bn)]½ = ½ (an
2 + bn

2)½   
 

However, we can define a new complex variable, rn such that rn  ½ cn  = (an  i bn)  and   
rn*  ½ cn* = (an + i bn). The magnitude of rn (a real number) is thus defined as  
|rn|  (rn rn*)½  = (an

2 + bn
2)½ = ½ |cn|. Thus, we can define a phase angle, n (in units of 

radians) such that: 
 

cos n  an / |rn|   and   sin n  bn / |rn|  
or equivalently: 

an  |rn| cos n    and    bn  |rn| sin n 
thus: 

 

tan n =  sin n / cos n  =  (bn / |rn| ) / (an / |rn| )  =  bn / an,    and thus n =  tan1 (bn / an). 
 

Then the nth harmonic term in the Fourier series becomes: 
 

an cos n + bn sin n = ½ (an  ibn) e+ in  +  ½ (an + ibn) e in 
= ½ |rn| (cos n  i sin n) e+ in  + ½ |rn| (cos n + i sin n ) e in 

= ½ |rn| e in e+ in  + ½ |rn| e+ in e in = ½ |rn| [e+ i (n  n) + e i (n  n )] 
= |rn| cos (n n) 

 

Thus, the “generic” Fourier series expansion for the periodic function,  f()  may also be 
equivalently written as (defining |r0|  a0): 

 
    Physically, then, it can be seen that the “generic” periodic function,  f( ) consists of a 
superposition (i.e. a linear combination) of waveforms, consisting of a d.c. offset (i.e. 
time-averaged, or frequency-independent/constant) term, |r0|/2, a fundamental harmonic, 
cos 1 with amplitude, |r1| and phase angle, 1, with additional contributions from all 
higher (i.e. n > 1) harmonics, cos n, each with amplitude, |rn| and phase angle, n. 
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     Defining a new phase angle, n  /2  n,  or  n  /2  n,  it can be easily shown 
that  an  |rn| sin n and bn  |rn| cos n, thus tan n =  sin n / cos n =  an / bn, and thus 
n =  tan1 (an / bn) , and therefore we may also equivalently write the “generic” Fourier 
series expansion for the periodic function,  f( )  as: 

 
While these latter two mathematical forms of the Fourier series expansion for a “generic” 
periodic function,  f() are perhaps more physically intuitive, operationally, they are more 
difficult to work with, because of the fact that one of the parameters (n or n) for the nth 
harmonic appears inside the argument of the cosine (or sine) function for that harmonic. 
This makes for difficulties, e.g. in computing inner products, for determining both of the 
parameters, |rn| and n (or n) for each harmonic. 

 
     Operationally-speaking, it is easier to use the above-defined inner products that enable 
one to determine the Fourier coefficients, a0,  an and bn for each harmonic. After having 
determined these, then one can compute the magnitude of the complex amplitude, |rn| and 
phase angle, n (or n) for each harmonic, using the relations: 

 

|rn| = (an
2 + bn

2)½    and    n =  tan1 (bn / an)     (or:  n =  tan1 (an / bn) ) 
 

     We can obtain an even better physical understanding of  these relations if we draw 
what is happening in the complex plane, as shown in the figure below: 
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     We see that the Fourier coefficients, an and bn are the real (“in-phase”) and imaginary 
(“90o out-of-phase”) components of the nth complex harmonic amplitude, rn, respectively.  
The Fourier coefficients, an = |rn| cos n = |rn| sin n  and bn = |rn| sin n = |rn| cos n, 
where the magnitude of the the nth complex harmonic amplitude is |rn| = (an

2 + bn
2)½.  

 
     We also see that n and n are complementary phase angles associated with the nth 
harmonic, since they are related to each other by n = /2  n = 90o  n. Note also that 
the phase angles, n (n) are referenced to the real (imaginary) axes of the complex plane, 
respectively. By convention, usually we are most interested in the phase angle, n. 
 
Exercises: 
 
1. Work your way through the mathematical details of changing over from the 

representation(s) of the Fourier series in the space-domain, to those in the time-
domain. 

 
2. Work your way through the mathematical details of obtaining the Fourier 

coefficients, a0,  an and bn from their inner products, in the time-domain. 
 
3. Prove, using the Taylor series expansions for ex, sin (x) and cos (x) that 

e+ in = cos n + i sin n and  e  in = cos n    i sin n, where i   (1), 
thus i * i = 1, and  i * i = +1. 
 

4. Work your way through the mathematical details of obtaining the complex Fourier 
series expansion(s) with the cn & c-n Fourier coefficients, from that with the a0,  an 
and bn Fourier coefficients. 

 
5. Work your way through the mathematical details of deriving 

from the Fourier series expansion with the the a0,  an and bn Fourier coefficients. 
 
 
 
References for Fourier Analysis and Further Reading: 
 
1. Fourier Series and Boundary Value Problems, 2nd Edition, Ruel V. Churchill, 

McGraw-Hill Book Company, 1969. 
 
2. Mathematics of  Classical and Quantum Physics, Volumes 1 & 2, Frederick W. 

Byron, Jr. and Robert W. Fuller, Addison-Wesley Publishing Company, 1969. 
 
3. Mathematical Methods of Physics, 2nd Edition, Jon Matthews and R.L. Walker,  

W.A. Benjamin, Inc., 1964. 
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