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Fourier Analysis III: 
 

More Examples of the Use of Fourier Analysis 
 

D. Fourier Analysis of a Periodic, Symmetrical Triangle Wave 
 

     We now consider a spatially-periodic, symmetrical, bipolar triangle wave of unit 
amplitude, as shown in the figure below: 
 

 
     Mathematically, this odd-symmetry waveform, on the “generic” interval 0    < 2 
(i.e. one cycle of this waveform) is described as: 

 
 f ( ) = f (kx) =  +(2/)         for       0    <  /2 

and: 
 f ( ) = f (kx) = (2/)  + 2   for   /2   < 3/2 

and: 
 f ( ) = f (kx) = +(2/)   4   for    3/2   < 2 

 
Where we used the straight line equation,  y = mx + b to determine the slopes, m and the 
intercepts, b associated with each of the three line segments in the above waveform on 
this  -interval. 
 
 
 
 
 
 
 

f(kx) 

f(kx) = +1 

f(kx) = 1 

kx 
kx1   = 0  kx2   = kL     

         = 2 

k(x2x1)  
   = kL   
   = 2 
 

f(kx) = 0 

½  kL 
  =    
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     We determine the Fourier coefficients, a0, an and bn from the inner products: 
 

 
Since this waveform is bipolar, it has no d.c. offset, thus a0 = 0.  
 
The Fourier coefficients, an and bn for n > 0 are: 
 

 

 
Now the indefinite integrals: 
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Using these relations in the above formulae for determining the Fourier coefficients, an 
and bn we obtain, after much algebra and using the fact that sin(3n/2) =  sin(n/2), that: 

 

an = 0 for all n > 0 
and: 

bn = 2*(2/n)2 sin(n/2) 
 

The even Fourier coefficients, bn =   0              for n = 2, 4,  6,  8, ..... etc.  
 

The odd  Fourier coefficients, bn = +2*(2/n)2 for n = 1, 5,  9, 13, .... etc. 
 

The odd  Fourier coefficients, bn = 2*(2/n)2 for n = 3, 7, 11, 15, ... etc.  
 

Thus, the Fourier series for the symmetrical, bipolar triangle wave of  unit amplitude, as 
shown in the above figure is given by: 

Using the replacement: nodd = 2 m 1, m = 1, 2, 3, 4, ....... in the above summation, we 
can alternatively write the Fourier series expansion for this triangle wave as: 

 
     Note that the magnitudes of the non-zero amplitudes of the harmonics,  |rn| = |bn| = 
8/(n)2, as shown in the figure(s) below for the first 20 harmonics. 
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     The non-zero amplitudes of the harmonics, |rn| associated with the bipolar triangle 
wave decrease much faster with increasing harmonic #, n than e.g. those associated with 
the bipolar, 50% duty-cycle square wave. The harmonic amplitudes, |rn| associated with 
the bipolar triangle wave vary with n as |rn| ~ 1/n2, whereas the harmonic amplitudes, |rn| 
for the bipolar, 50% duty cycle square wave vary as |rn| ~ 1/n.  
 
      As can be seen from the above figure, in addition to the fundamental, at frequency,  f, 
only the odd harmonics, at frequencies 3f, 5f, 7f, 9f, .... etc. contribute to creating this 
waveform. 
 
    For comparison purposes, we also show the harmonic amplitudes, |rn| associated with 
the bipolar triangle wave on a semi-log plot, in the following figure: 
 

 
 
 
     The human ear hears a triangle-wave audio signal as being “bright”, relative to e.g. a 
pure-tone (sine-wave) audio signal at the same frequency, but less “bright” than a square 
wave. The triangle wave, like the square wave audio signal also sounds a bit “harsh” to 
the human ear, because of the presence of all of the odd harmonics, at 3f, 5f, 7f, 9f, .... etc. 
But again, the triangle wave is not as harsh-sounding as the square wave  is to the human 
ear, because its higher harmonics are not as strong as those associated with the square 
wave. 
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     If the loudness of the fundamental (n = 1) is L1 = 60 dB (100 dB) for a triangle wave, 
this corresponds to an intensity associated with the fundamental tone of  I1 = 106 (102) 
Watts/m2, respectively. If the ratio of the amplitude for the nth harmonic to the amplitude 
of the fundamental associated with the triangle wave is |rn| / |r1|  = 1/n2, for odd n = 3, 5, 
7, 9, ... etc. Then the ratio of intensity for the nth harmonic to the intensity for the 
fundamental associated with the triangle wave is  In / I1 = (1/n)4, and the terms, e.g for  
n = 3 are: 

 
log10 (In / I1) = log10 (1/n)4  =  4 log10 (1/n) = 4 log10 (0.3333) = 1.9085 

and 
log10 (I1 / Io) = 6 (10)     for     I1 = 106 (102) Watts/m2,   respectively. 

 
Thus, the human ear will perceive the loudness, Ln of the nth harmonic, relative to 
perceived loudness, L1 of the fundamental of the triangle wave, as heard e.g. through a 
loudspeaker as: 

 

Ln / L1 = 1 +  {log10 (In / I1) / log10 (I1 / Io)} 
 

Then for the 3rd harmonic: 
 

L3 / L1 = 1  {1.9085 / 6}  (= 1  {1.9085 / 10}) 
= 68.2%              (=  80.9%) 

 
for I1 = 106 (102) Watts/m2, respectively. This is the (fractional) amount of third 
harmonic, as heard by the human ear for a triangle wave. This is quite large, but again, 
not as large as that for the square wave! Again, note that the ratio, Ln / L1 increases 
(logarithmically) with increasing amplitude of the square wave! For a loudness of the 
fundamental tone of L1 = 60 dB (100 dB), the loudness of the third harmonic, for |r3| / |r1|  
= 1/3 = 33.3% is:  

 
L3 = 10 log10 (I3 / I1) + 10 log10 ( I1 / Io) 
= 40 log10 (0.3333) + 60 dB (100 dB) 

=  19.08 dB + 60 dB (100 dB) 
= 40.92 dB (80.92 dB), respectively. 

 
     The following figure shows the loudness ratios, Ln / L1 for the first twenty harmonics 
(i.e. n < 20) associated with the bipolar triangle wave, for loudness values of the 
fundamental of L1 = 60 dB  (~ quiet) and for L1 = 100 dB (~ quite loud). This is what the 
human ear perceives as the loudness of the harmonics relative to that of the fundamental. 
Note that the decrease in the loudness ratio, Ln / L1 with increasing harmonic #, n is quite 
slow. 
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     The following two figures show the “Fourier construction” of a periodic, bipolar, unit-
amplitude triangle wave. The waveforms in these figures were generated using truncated, 
finite-term version(s) of the Fourier series expansion for this waveform: 

 The first figure shows the bipolar triangle wave (labelled as “Waveform”) overlaid with 
three other waveforms: that associated with just the fundamental (“n = 1”), then the 
waveform associated with fundamental + 3rd harmonic (“n = 1:3”), then the waveform 
associated with fundamental + 3rd + 5th harmonic (“n = 1:5”). 
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     Note that the fundamental, a sine wave, is already a quite good approximation to the 
triangle wave (visually-speaking, but not auditorially so!). Just adding the first two 
harmonics to the fundamental brings this waveform into quite good visual agreement 
with the triangle wave, except at the sharp peak(s) of the triangle wave. 

 

     The second figure shows the bipolar triangle wave (labelled as “Waveform”) overlaid 
with three other waveforms: that associated with the fundamental through the 7th 
harmonic (“n = 1:7”), then the waveform associated with fundamental through the 9th 
harmonic (“n = 1:9”), then the waveform associated with fundamental through the 13th 
harmonic (“n = 1:13”). 

     Thus, adding on higher harmonics to the lower-order harmonics associated with the 
triangle wave makes for only small visual changes in the overall waveform - primarily, 
just the peak(s) sharpen as the higher harmonics are added. 

 

     The bipolar triangle wave has physical relevance in stringed instruments, such as the 
guitar or violin, when the strings are plucked at the mid-point of the string, along its 
length, e.g. using one’s fingernail, or a guitar pick (aka  plectrum).  

 

     The scale length, Lscale of a guitar is the physical length of the string(s) from the 
bridge to the nut at the headstock on the neck of the guitar. When one of the open  
(i.e. unfretted) strings vibrates, the fundamental mode of vibration of frequency,  f  with a 
wavelength,  equal to twice the scale length of the guitar, i.e.  = 2Lscale. In other words, 
the scale length of a guitar is half the wavelength of the fundamental, i.e. Lscale = /2.  
In our discussion of Fourier analysis, the wavelength,  of the fundamental is equal to the 
space-domain length parameter, L, i.e.  = L. Thus, the scale length, Lscale = /2 = L/2.  

 

     As shown in the figure below, the fundamental has a node (i.e. points of zero 
transverse displacement) at both ends of its wavelength, and at its midpoint.  All 
harmonic waves on a guitar must have nodes at the bridge and nut, since these do not 
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vibrate (to a first approximation). These boundary conditions mandate sine wave-type 
solutions! 

     As indicated in the above figure, when an open string vibrates in the fundamental 
mode, this occurs only on a half-length of the fundamental (here the right-hand half)  
the left-hand half of the fundamental doesn’t physically exist in stringed instruments. 

 

     The pick (here) is used to excite an open guitar string at its midpoint  at the 12th fret 
(i.e. 1st octave location), which is an anti-node of the fundamental (i.e. a point of 
maximum transverse displacement). This position is a distance of  Lpick = /4 from the 
bridge of the guitar. At this loction, the pick stretches the string transversely from its 
zero-displacement  equilibrium position. Before the pick is released from stretching the 
string, the energy associated with the stretching of the string into this shape is entirely in 
the form of mechanical potential energy. At the precise instant the pick disengages from 
the stretched string, the shape of the string is a symmetric (i.e. isosceles) triangle. 
Immediately after the pick releases the string, the string begins to vibrate, converting the 
mechanical potential energy back and forth into kinetic energy (and also radiating some 
of this energy away as sound waves). However because of energy conservation, all the 
energy initially contained in each of the harmonics is also preserved (see Parseval’s 
theorem) and thus, the initial shape of  the string at the instant it was released from the 
disengagement of the pick is also preserved. In other words, the transverse shape of the 
string the instant before it is released dictates its harmonic sound-content afterward! 

 

     Guitar players do not normally play at this location on the guitar, because picking the 
strings of the guitar with the fingerboard/fretboard immediately underneath is difficult. 
However, those guitarists who have tried playing there know that the resulting sound 
output from the guitar is quite mellow, because picking the strings at this location 
predominantly excites the fundamental at frequency,  f. The second harmonic, one octave 
above at frequency, 2f is completely absent in picking the strings at this location on the 
guitar, because the second harmonic has a node at Lpick = /4 - i.e. it cannot be excited by 
picking here! In fact none of the even-n harmonics - at 2f, 4f, 6f, 8f, 10f, .... etc.  can be 
excited by picking at Lpick = /4 because they all have nodes at this point! In addition to 
the fundamental, only the odd-n harmonics of the fundamental can be excited by playing 
at the 12th fret of the guitar - in fact the odd-n harmonics all have anti-nodes at this point! 

Lscale 
= /2

 = L = 2Lscale 

  Nut, @ 
Headstock 

Bridge 

Vibration of the Fundamental of a Guitar String 

Pick 

Lpick 
= /4 

  Pick @ 12th 
Fret on Neck 

  Triangle Wave: 
  Fundamental + 
Higher Harmonics 
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E. Fourier Analysis of a Periodic Sawtooth (Asymmetrical Triangle) Wave 
 

     Next, we consider a spatially-periodic bipolar sawtooth wave, i.e. an asymmetrical 
bipolar triangle wave of unit amplitude, as shown in the figure below: 

     Mathematically, this odd-symmetry waveform, on the “generic” interval 0    < 2 
(i.e. one cycle of this waveform) is described as: 

 

 f ( ) = f (kx) =  +(4/)            for       0    <  /4 
and: 

 f ( ) = f (kx) = (4/3) + 4/3  for   /4   < 7/4 
and: 

 f ( ) = f (kx) = +(4/)    8     for    7/4   < 2 
 

Where we used the straight line equation,  y = mx + b to determine the slopes, m and the 
intercepts, b associated with each of the three line segments in the above waveform on 
this  -interval. 

 

We determine the Fourier coefficients, a0, an and bn from the inner products: 
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Since this waveform has no d.c. offset, a0 = 0. The Fourier coefficients, an and bn are: 
 

 

 
Now the indefinite integrals: 

 

 
     Using these relations in the above formulae for determining the Fourier coefficients, 
an and bn, for n > 0. We obtain, after much algebra and using the fact(s) that sin(7n/4) = 
 sin(n/4), and cos(7n/4) = + cos(n/4) that the Fourier coefficients: 

 

an = 0 for all n > 0 
and: 

bn = (2/3)*(4/n)2 sin(n/4) for all n > 0 
 

The odd  Fourier coefficients, bn = +(2/3)*(4/n)2/2 for n = 1,   9, 17, 25, .... etc. 
The even Fourier coefficients, bn = +(2/3)*(4/n)2      for n = 2, 10, 18, 26, .... etc. 
The odd  Fourier coefficients, bn = +(2/3)*(4/n)2/2 for n = 3, 11, 19, 27, .... etc. 
The even Fourier coefficients, bn =     0                       for n = 4, 12, 20, 28, .... etc.  
The odd  Fourier coefficients, bn = (2/3)*(4/n)2/2 for n = 5, 13, 21, 29, .... etc.  
The even Fourier coefficients, bn = (2/3)*(4/n)2      for n = 6, 14, 22, 30, .... etc. 
The odd  Fourier coefficients, bn = (2/3)*(4/n)2/2 for n = 7, 15, 23, 31, .... etc.  
The even Fourier coefficients, bn =     0                       for n = 8, 16, 24, 32, .... etc.  
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All of the even-reflection symmetry Fourier coefficients, an = 0 because the sawtooth 
waveform has overall odd-reflection symmetry. 
 
     Thus, for the sawtooth form of a triangle wave, both even-n and odd-n bn-harmonics 
are present! The reason for this is that while the overall sawtooth waveform still has odd 
reflection symmetry about its midpoint (  = ), i.e. that for 0     2,   
f (  > ) =  f ((2   ) < ),  the sawtooth waveform no longer has any local reflection 
symmetry properties about its peaks - e.g. about   = /4 and/or about   = 7/4, i.e. 
locally, for 0     /2,  f (  > /4)   f ((/2   ) < /4), and for 3/2     2,  
f (  > 7/4)   f ((2   ) < 7/4). Because of this, both odd-n and even-n terms in the 
Fourier coefficients, bn are needed for the overall odd-reflection symmetry sin (n ) 
functions associated with the Fourier series expansion for the bipolar sawtooth waveform. 
 
The Fourier series for the bipolar sawtooth wave of  unit amplitude, is thus given by: 

 
The numerical values of the Fourier coefficients, bn for the bipolar sawtooth wave are 
shown in the figure below for the first 20 harmonics.  
 

 
     The magnitudes of the amplitudes of the harmonics, |rn| = |bn| for the bipolar sawtooth 
wave, again decrease with increasing harmonic #, n, as ~ 1/n2, as for the bipolar triangle 
wave. We show the numerical values of the |rn| for the first 20 harmonics of the bipolar 
sawtooth wave in the figure below. Note that this is a semi-log plot of  |rn| vs. n. 
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     We can compare e.g. the relative strength of the third harmonic to the fundamental for 
the bipolar sawtooth wave to that for the third harmonic associated with the bipolar 
triangle wave. For the sawtooth wave, |r3| /|r1| = 11.1%, while for the triangle wave,  
we also have |r3| /|r1| = 11.1% - i.e. the same value of harmonic amplitude ratio! In fact 
the ratios |rn| /|r1| for all odd-n harmonics are identical for triangle vs. sawtooth waves! 
 
     The phase angles, n of the harmonics associated with the bipolar sawtooth wave are 
shown in the figure below for the first 20 harmonics. 
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Note that the first four harmonics - the fundamental (aka first harmonic), the second, third 
and fourth (even though it has zero strength) harmonics all have the same phase angle, n 
= + 180o. The next four harmonics have the opposite phase angle, n =  180o, the next 
four after that are in phase again with the first four harmonics, and so on. This behavior 
of the groups-of-four phase angle arises from the sin (n/4) term in the Fourier 
coefficients, bn for the sawtooth waveform. 

 

     The sound of an audio sawtooth wave to the human ear is brighter than the triangle 
wave, due to the existence of the second harmonic in the sawtooth wave, which is absent 
in the triangle wave. If the loudness of the fundamental, L1 = 60 dB (100 dB), then the 
loudness of the second harmonic is L2 = 50.9 dB (91.0 dB), corresponding to a loudness 
ratio of L2 / L1 =  84.9% (91.0%), respectively. For the third harmonic associated with the 
sawtooth wave, L3 = 40.9 dB (80.9 dB), corresponding to a loudness ratio of L3 / L1 =  
68.2% (80.9%), respectively. Interestingly enough, these loudness results for the third 
harmonic of the sawtooth wave are also precisely those for the triangle wave, as are all 
the odd-n loudness results! The sawtooth wave differs from the triangle wave primarily 
because of the additional presence of the even-n harmonics, however note also that the 
phase relations for the odd-n harmonics are not the same for these two waves. As we 
have mentioned before, the human ear is not sensitive to such phase relations. 

 

     The following figure shows the loudness ratios, Ln / L1 for the first twenty harmonics 
(i.e. n < 20) associated with the bipolar sawtooth wave, for loudness values of the 
fundamental of L1 = 60 dB  (~ quiet) and for L1 = 100 dB (~ quite loud). This is what the 
human ear perceives as the loudness of the harmonics relative to that of the fundamental. 
Note that the decrease in the loudness ratio, Ln / L1 with increasing harmonic #, n is again 
rather slow. 
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     The following two figures show the “Fourier construction” of a periodic, bipolar, unit-
amplitude sawtooth wave. The waveforms in these figures were generated using 
truncated, finite-term version(s) of the Fourier series expansion for this waveform: 
 

 
 The first figure shows the bipolar sawtooth wave (labelled as “Waveform”) overlaid with 
three other waveforms: that associated with just the fundamental (“n = 1”), then the 
waveform associated with fundamental + 2nd harmonic (“n = 1:2”), then the waveform 
associated with fundamental + 2nd + 3rd harmonic (“n = 1:3”). 
 

 
 
The second figure shows the bipolar sawtooth wave (labelled as “Waveform”) overlaid 
with three other waveforms: that associated with the fundamental through the 5th 
harmonic (“n = 1:5”), then the waveform associated with fundamental through the 6th 
harmonic (“n = 1:6”), then the waveform associated with fundamental through the 7th 
harmonic (“n = 1:7”) 
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     Again, adding on higher harmonics to the lower-order harmonics associated with the 
sawtooth wave makes for only small visual changes in the overall waveform - primarily, 
just the peak(s) sharpen as the higher harmonics are added. 

 

     The sawtooth wave again has physical relevance in stringed instruments, such as the 
guitar or violin, when the strings are plucked at the one-quarter-point along the length of 
the string (as measured from the bridge), using either one’s fingernail or a guitar pick, as 
shown in the figure below. This is the region along the strings where guitar players spend 
much of their time playing notes and/or chords on the guitar. 

     As can be seen from the figure, this picking location is not at the anti-node of the 
fundamental. It is, however at the anti-node associated with the second harmonic, an 
octave above the fundamental. The picking location is near to, but not on the anti-node of 
the third harmonic (e.g. see diagram, 2nd figure below). As mentioned earlier, this picking 
location is at the node of the fourth harmonic, which is the physical reason why it is not 
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excited. As we mentioned earlier, the fundamental, 2nd and 3rd harmonics are in phase 
with each other for the sawtooth wave. 
 

F. Fourier Analysis of a Generalized Sawtooth (Asymmetrical Triangle) Wave 
 

     We can generalize our above formalism for a bipolar sawtooth (asymmetrical triangle) 
wave of unit amplitude, for a sawtooth wave of any kind, as shown in the figure below: 

     We introduce the parameter, p  p/2 = kxp/2 = 2xp/2 = xp/ which physically 
represents the fractional location of the first peak in the sawtooth waveform, located at  
p = kxp = p kL = 2p. The parameter p cannot physically be larger than ½, because 
the sawtooth wave,  f ( ) must be a single-valued function on the “generic” interval 
0    < 2, requiring that the first peak in the sawtooth waveform lie within the 
“generic” interval 0  p < , which in turn corresponds to a range allowed for the  
p-parameter of  0 < p < ½.  
 

     Mathematically, the odd-symmetry sawtooth waveform, on the “generic” interval  
0    < 2 (i.e. one cycle of this waveform) can then be described in terms of the  
p-parameter as: 

 

 f ( ) = f (kx) =  + (1/2 p)                          for              0    < 2p 
and: 

 f ( ) = f (kx) =  (1/ (12p))  +  (1/(12p))  for   2p   < 2(1p) 
and: 

 f ( ) = f (kx) = + (1/2 p)   (1/p)              for      2(1p)   < 2 
 

Where we used the straight line equation,  y = mx + b to determine the slopes, m and the 
intercepts, b associated with each of the three line segments in the above waveform on 
this  -interval. 

f(kx) 

f(kx) = +1 
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= kL     
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   = kL   
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=  
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Again, we can determine the Fourier coefficients, a0, an and bn from the inner products: 

 
Since this bipolar sawtooth waveform has no d.c. offset, we know that a0 = 0.  
 
The Fourier coefficients, an and bn are: 

 
and: 

 
Again, we will need to use the indefinite integrals: 

 

 
 
And again using the fact(s) that: 

sin(2n(1p)) =  sin(2np) 
and that: 

cos(2n(1p)) = + cos(2np) 
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     We will again find that due to the intrinsic, overall odd-symmetry of the bipolar 
sawtooth waveform, that 

an = 0 for all n > 0 
and that: 

bn = 2*[2p/(12p)]*(1/2np)2 sin(2np) for all n > 0 
 

     The factor in brackets, [2p/(12p)] has physical significance - it is the (absolute-value) 
ratio of the slope of the middle portion of the sawtooth waveform to the slope of (either) 
end-portion of the sawtooth waveform, i.e. 
 

[2p/(12p)] = |(1/ (12p))/(1/2 p)| 
 
     Again, the physically allowed range for p  is 0 < p < ½. Note that the endpoints of 
this interval are excluded, since both p = 0 and p = ½ correspond to the sawtooth 
waveform “evolving” into a ramp waveform, which physically cannot happen, because of 
the boundary-condition requirement that each of the n harmonic waves have nodes at the 
endpoints of the generic interval 0    < 2 (and at   = , for the guitar, at the nut). 
However note mathematically (referring to the above formula for the Fourier coefficient,  
bn) that in fact when either p = 0 and/or p = ½, we discover that bn = 0. Thus, the 
mathematics tells us, because of the boundary conditions, that no wave solutions exist for 
p = 0 and/or p = ½. 
 
     If the value of the p-parameter for the peak location(s) of the sawtooth wave is such 
that   = 2p and   = 2(1p) correspond to peak positions along the sawtooth 
waveform that coincide with a node for a particular harmonic, n, then the Fourier 
coefficient, bn will vanish for that harmonic. For physically-allowed values of  the  
p-parameter, from the above formula for the Fourier coefficients, bn  we see that a 
particular Fourier coefficient, bn will vanish whenever sin(2np) vanishes, i.e. when 
2np = m (where the integer m = 1, 2, 3, ... etc.), i.e. when n = m/2p, or equivalently, 
when p = m/2n ( < ½). 
 
     We have already encountered this phenomenon for the above specific case(s) of the 
bipolar triangle wave, with p = 1/4, corresponding to p = /2 and p = 3/2, where all 
of the even-n  Fourier harmonics, bn vanished, because they had nodes at these  -values; 
and the case of the bipolar sawtooth wave, with p = 1/8, corresponding to  p = /4 and 
p = 7/4, where the n = 4th, 8th, 12th, 16th, ... etc. Fourier harmonics, bn vanished, because 
they too had nodes at these  -locations. 
 
     Thus, for n  2 (e.g. n = 2, 3, 4, 5, 6, .... etc.), whenever the value of the p-parameter 
is such that p = 1/2n, corresponding to  p = 2p = 2/2n = /n and p  = 2(1p) =  
2(1  1/2n), the Fourier coefficient, bn will vanish for that harmonic associated with the 
bipolar sawtooth wave. 
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     If  the value of the p-parameter is such that  p = 2p and p = 2(1  ) correspond 
to anti-nodes associated with one (or more) Fourier harmonics, bn then the harmonic 
amplitudes, |rn| = |bn| associated with the bipolar sawtooth wave will be particularly 
strong. This occurs when sin(2np) = 1, i.e. when (2np) = (2m1)/2 (where m  is 
again an integer m = 1,2, 3... etc.), i.e. when n = (2m1)/4p, or equivalently, when  
p = (2m1)/4n (with 0 < p < ½). 
 
     Again, we have already have experience with this phenomenon, in the above example 
of the bipolar sawtooth wave, where p = 1/8, corresponding to  p = /4 and p = 7/4, 
which are anti-nodes of the n = 2nd, 6th, 10th, 14th, ... etc. Fourier harmonics, bn , but 
which also simultaneously correspond to nodes of the n = 4th, 8th, 12th, 16th, ... etc. Fourier 
harmonics, bn, as shown in the figure below, for the first six harmonics: 

     Some of the anti-nodes (nodes) associated with each harmonic in the above figure are 
explicitly marked with a solid bullet (open circle), respectively. Note also that all of these 
harmonics are drawn as being in-phase with each other. If one imagines a vertical line 
drawn for the ( p = 2p)-parameter (representing the peak location of the triangle wave) 
ranging between 0 < ( p = 2p) < , the intersection of this line with each of the 
harmonics, will indicate whether or not that harmonic is in-phase or out-of-phase with the 
fundamental, and/or whether the harmonics are at a node or anti-node for this value of p. 

 = 0  = 2  =  

        n = 1 
(Fundamental) 

n = 2 

n = 3 

n = 4 

n = 5 

n = 6 

 = /2  = 3/2 
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     To connect these results with the physical world, we return to the example of the 
guitar. As shown (again) in the figure below, the scale length, Lscale of the guitar 
corresponds to half the wavelength,  of the fundamental, for open-string notes played on 
the guitar, i.e. Lscale = ½ . For a pick position distance, Lpick (referenced from the bridge 
of the guitar), this is a fractional distance, pick  Lpick / Lscale = 2Lpick / .  
 

     In the following table, we summarize the pick  Lpick / Lscale locations for the nodes 
and anti-nodes associated with the first 10 harmonics. Playing at the anti-node locations 
will result in enhancing that particular harmonic, while playing at the nodal-locations will 
cause that harmonic to be absent. Physically, values of pick  Lpick / Lscale < ½ correspond 
to playing between the bridge and the bottom end of the neck, at the body of the guitar. 
Smaller values of  pick  Lpick / Lscale are closer to the bridge end of the guitar. 
 

Harmonic #  
n 

pick  Lpick / Lscale 
for Node 

pick  Lpick / Lscale 
for Anti-Node 

1 (Fundamental)  1/2  
2 1/2  1/4, 3/4  
3 1/3, 2/3  1/6, 3/6=1/2, 5/6  
4 1/4, 2/4 =1/2 , 3/4  1/8, 3/8, 5/8, 7/8 
5 1/5, 2/5, 3/5, 4/5  1/10, 3/10, 5/10=1/2, 7/10, 9/10 
6 1/6, 2/6=1/3, 3/6=1/2, 4/6=2/3, 5/6  1/12, 3/12=1/4, 5/12, 7/12 ... 
7 1/7, 2/7, 3/7, 4/7, 5/7, 6/7  1/14, 3/14, 5/14, 7/14=1/2, 9/14 ... 
8 1/8, 2/8=1/4, 3/8, 4/8=1/2, 5/8, ... 1/16, 3/16, 5/16, 7/16, 9/16,11/16, .. 
9 1/9, 2/9, 3/9=1/3, 4/9, 5/9, .... 1/18, 3/18=1/6, 5/18, 7/18, ... 
10 1/10, 2/10=1/5, 3/10, 4/10, 5/10, ... 1/20, 3/20, 5/20=1/4, 7/20, ...  

 
 
Thus, from the above table, we can see that for playing on nodes associated with the nth 
harmonic, that pick  Lpick / Lscale  = m / n, where n is the harmonic #, and m is an integer 
such that m = 1, 2, 3, .... < n. For playing on anti-nodes associated with the nth harmonic, 
we see that pick  Lpick / Lscale  = (2m  1) / 2n, where again, m is an integer such that  
m = 1, 2, 3, .... < n.  

Lscale 
= /2

 = L = 2Lscale 

  Nut, @ 
Headstock 

Bridge 

Vibration of the Fundamental and  
 2nd Harmonic of a Guitar String 

Pick 

Lpick 
= /8 

     Pick @ 
Lpick = ¼ Lscale 

  Sawtooth Wave: 
  Fundamental + 
Higher Harmonics 
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     We can also relate the formulae for the pick node and anti-node locations with those 
we obtained above for the node and anti-node locations, in terms of the p-parameter, 
since both of these variables describe the (same) peak locations of the sawtooth 
waveform, where the pick is located along the length of the open string(s) guitar, 
referenced to the bridge end of the guitar.  
 
For nodes associated with the nth harmonic, we have: 

 
pick  Lpick / Lscale  = m/n  (with 0 < pick < 1) 

and: 
p    =  m/2n                       (with 0 <  p  <  ½) 

 
For anti-nodes associated with the nth harmonic, we have: 

 
pick  Lpick / Lscale  = (2m  1)/2n  (with 0 < pick < 1) 

and: 
p    =  (2m1)/4n                            (with 0 <  p  <  ½) 

 
where m is an integer such that m = 1, 2, 3, .... < n. Thus, we see that 2p = pick.  
 
We can also see this from the definition of the p-parameter: 

 
p  p/2 = kxp/2 = 2xp/2 = xp/ 

 
Since the location of the first peak of the triangle wave is xp,  referenced from the bridge 
of the guitar, then xp = Lpick. Since the wavelength,  of the fundamental is twice the scale 
length of the guitar, i.e.  = 2Lscale, then: 
 

p = xp/. = Lpick / 2Lscale = ½ pick  
 
     Every guitarist knows that for maximum “twang”, he or she can play notes close to the 
bridge. The harmonic content of the notes played here “brightens” up considerably in 
comparison to playing near the top of the neck, where it joins the body of the guitar, or 
e.g. playing notes at the 12th fret on the neck, as discussed above. The higher harmonics 
contribute more and more as the strings of the guitar are picked closer and closer to the 
bridge. Can we understand how this happens? 
 
 First, look at the diagram two figures that shows the first few harmonics (n = 1:6). 
Note that e.g. in the region below   < /8, all of the harmonics shown have non-zero 
amplitudes, |rn| = |bn|. Since p  p/2 = ½ pick = Lpick / 2Lscale , then for  p < /8, we 
have  p = 2Lpick / 2Lscale = Lpick / Lscale < /8, or Lpick / Lscale  = pick < 1/8. Thus, picking 
in a region near the bridge which is within 1/8 of the overall scale length will tend to 
excite all of these harmonics. The ability to excite the fundamental from this picking 
location is reduced from that e.g. near the top of the neck, where it joins the body of the 
guitar. Thus, the fundamental is suppressed near the bridge. Likewise for the other 
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harmonics, but deferentially, the fundamental is suppressed moreso than the other 
harmonics, the second harmonic suppressed less, the third harmonic, even less 
suppressed, and so on, near the bridge, for the first few harmonics, with  
pick = Lpick / Lscale  < 1/8, or equivalently, p = ½ pick < 1/16. 
 
     Suppose we decide to pick very close to the bridge, such that the fractional distance, 
pick = Lpick / Lscale  << 1/8, corresponding to p = ½ pick << 1/16. For definiteness’ sake, 
let us choose pick = Lpick / Lscale  = ½ / 25  = 1/50 = 0.0200 << 1/8 = 0.1250, 
corresponding to  p  =  ½ pick  = ½ / 50 = 1/100 = 0.0100 << 1/16 = 0.0625. 
 
 Now let us look at the generalized expression we obtained above for the odd-
symmetry Fourier coefficients, bn associated with the sawtooth wave: 
 

bn = 2*[2p/(12p)]*(1/2np)2 sin(2np) for all n > 0 
 
If we consider only the lower-order harmonics, e.g. n  5, then the argument of the sine 
function in the above formula, (2np) < 2*5*/100 = /10 = 0.314159... 
 
     Now note that sin(/10) = sin(0.314159...) = 0.309017... The numerical value of  
sin(/10) = 0.309017... is within ~ 2% of the argument of the sine function,  
/10 = 0.314159... The reason this is so, can be understood from the Taylor series 
expansion of the sin (x) function: 

 
     For small values of the argument, x of the sin (x) function, e.g. x << 1, then the higher-
order terms in the Taylor series expansion of  sin (x) are negligible, and thus sin (x) ~ x 
for x << 1. This also works reasonably well for x < 1 (not just x << 1), as we have seen 
above, as an approximation. 
 
     Thus, for n  5 and for pick = Lpick / Lscale  = ½ / 25  = 1/50 = 0.0200, then  
 

sin(2np)  sin(/10) ~ /10 
 

or simply, sin(2np) ~ 2np for n  5 and pick = Lpick / Lscale  = ½ / 25  = 0.0200. 
 
Then: 

bn ~ 2*[2p/(12p)]*(1/2np)2 2np = 2*[2p/(12p)]*(1/2np)  
or: 

bn ~  2*(1/n) *[1/(12p)] 
Now: 

p  =  ½ pick  = ½ / 50 = 1/100 = 0.0100 << 1/16 = 0.0625. 
 












n

n

nn

n

xxxx
xx

1

121753

)!12(

)1(
...

!7!5!3
)sin(



UIUC Physics 406 Acoustical Physics of Music 

 
 

Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, IL,  
2000 - 2017. All rights reserved 

23 

Thus, 2p  = pick = 1/8 << 1, and we can also approximate the factor [1/(12p)] in the 
above approximate expression for the odd-function Fourier coefficients, bn by taking the 
leading terms in the Taylor series expansion for the function 1/(1) for  << 1: 

Thus, for  << 1,  1/(1) ~ 1 + . Thus for 2p = 1/8 << 1, the factor [1/(12p)] ~ 1 + 2p. 
 

Then, for n  5 and pick = Lpick / Lscale  = ½ / 25  = 0.0200, we have (approximately) that: 
 

bn ~  2*(1/n) *[1/(12p)] ~ 2*(1/n)*(1 + 2p) ~ 2/n 
 

      This (approximate) result for the low-order harmonic, odd-function Fourier 
coefficients, bn, and thus the magnitudes of the harmonic amplitudes, |rn| = |bn| shows that 
they decrease as ~ 1/n for the harmonic #, n when picking notes very near to the bridge of 
the guitar.  

 

     However, from the above discussions associated with the bipolar triangle and 
sawtooth waves,  we found, for picking notes e.g. near the mid-point and/or the quarter 
point on the strings of the guitar, that the harmonic amplitudes, |rn| = |bn| decreased as  
~ 1/n2 (not as ~ 1/n)!!!  Therefore, picking notes on the strings very near to the bridge of 
the guitar, the tone is much brighter there because the low-order harmonics do not fall off 
in amplitude nearly as fast as they do when playing far away from the bridge! 

 

     In the following figure, we show the exact (i.e. no approximations-made) results for 
the magnitudes of the harmonic amplitudes, |rn| = |bn| associated with the sawtooth wave 
for the case when pick = Lpick / Lscale  = ½ / 25  = 1/50 = 0.0200. 
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     Note that because the picking notes on the guitar strings is done very near the bridge, 
the harmonics shown in the above figure are all in phase with each other, with phase 
angles, n = tan1(bn/an) =  = 180o. This can also be seen in the above figure showing the 
waveforms of the first six harmonics. If one imagines a vertical line drawn on this plot 
for the ( p = 2p)-parameter (representing the peak location of the triangle wave) in the 
region of  p ~ 0, the intersection of this line with each of the harmonics shows that these 
harmonics are indeed all in phase with each other. 
 
     It can be seen that the harmonic amplitudes associated with a sawtooth wave for  
pick = 0.02, for picking guitar strings very close to the bridge, do not decrease with 
increasing harmonic #, n very rapidly, as we anticipated. Compare this result, and the 
following figure, which shows a semi-log plot of the harmonic amplitudes, with those 
above, for the triangle wave, with pick = ½,  and for the sawtooth wave, with pick = ¼. 

If the harmonic amplitudes, |rn| for pick = 0.02 fall off with increasing harmonic #, n as  
|rn| ~ 1/n, Then the product of n*|rn| should be close to being a constant value, roughtly 
independent of the harmonic #, n. The following plot shows that for pick = 0.02, this is 
indeed the case, at least approximately so! 
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The following plot shows the loudness ratios, Ln / L1 for the first twenty harmonics (i.e.  
n < 20) associated with the bipolar sawtooth wave, for pick = 0.02, for loudness values of 
the fundamental of L1 = 60 dB  (~ quiet) and for L1 = 100 dB (~ quite loud). This is what 
the human ear perceives as the loudness of the harmonics relative to that of the 
fundamental. Note that the decrease in the loudness ratio, Ln / L1 with increasing 
harmonic #, n is extremely slow, in comparison to that associated with the triangle wave, 
with pick = ½,  and for the sawtooth wave, with pick = ¼. 
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     The following two figures show the “Fourier construction” of a periodic, bipolar, unit-
amplitude sawtooth wave. The waveforms in these figures were generated using 
truncated, finite-term version(s) of the Fourier series expansion for this waveform: 
 

 
 The first figure shows the bipolar sawtooth wave (labelled as “Waveform”) overlaid with 
three other waveforms: that associated with just the fundamental (“n = 1”), then the 
waveform associated with fundamental + 2nd harmonic (“n = 1:2”), then the waveform 
associated with fundamental + 2nd + 3rd harmonic (“n = 1:3”). It can be seen that using 
just these first three harmonics, that the replication of the sawtooth waveform is not very 
good, because of the extremely sharp/rapid changes in this waveform at its ends. 

 
 
 
 
The second figure shows the bipolar sawtooth wave (labelled as “Waveform”) overlaid 
with three other waveforms: that associated with the fundamental through the 5th 
harmonic (“n = 1:5”), then the waveform associated with fundamental through the 6th 
harmonic (“n = 1:6”), then the waveform associated with fundamental through the 7th 
harmonic (“n = 1:7”) 
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Adding the additional harmonics up to n = 7 helps improve the agreement, but it can be 
seen that many more of the higher harmonics are needed to replicate the sharp break at 
the ends of the sawtooth waveform! 
 
Fourier analysis of waveforms has many potential uses and applications. In these notes 
we have laid down the basics of Fourier analysis, given a few basic examples and 
connected them to various physical systems, such as the guitar. We shall also see other 
examples of the use of Fourier analysis elsewhere in this course. 
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Exercises: 
 
1. Compute the Fourier coefficients, a0,  an and bn for the “flipped” bipolar, triangle 

wave, in the time domain: 
 f ( ) = f (kx) =  (2/)         for       0    <  /2 
 f ( ) = f (kx) = +(2/)   2   for   /2   < 3/2 
 f ( ) = f (kx) = (2/)  + 4   for    3/2   < 2 

Compare these Fourier coefficients with those obtained above for the “unflipped” 
bipolar triangle wave. 

 
2. Compute the Fourier coefficients, a0,  an and bn for the “shifted” bipolar triangle  

wave, in the time domain: 
 f ( ) = f (kx) = +(2/)   1   for  0    <   
 f ( ) = f (kx) = (2/)  + 3   for     < 2 

Compare these Fourier coefficients with those obtained above for the “unflipped” and 
“flipped” bipolar triangle waves. 
 

3. Work your way through the details of computing the Fourier coefficients, a0,  an and 
bn for the above-discussed specific case of the bipolar sawtooth wave. 

 
4. Concoct a waveform shape of your own interest, write out its mathematical 

representation,  f ( ) over the interval 0    <  2, and compute the Fourier 
coefficients, a0,  an and bn associated with your waveform. 
 

5. For each of the above exercises, use e.g. MathLab, or a spreadsheet program, such as 
Excel to make plots of the harmonic amplitudes, |rn|, the loudness ratios, Ln / L1 and 
Fourier contruction of the original waveform, for e.g. the first few harmonics. 

 
 
References for Fourier Analysis and Further Reading: 
 
1. Fourier Series and Boundary Value Problems, 2nd Edition, Ruel V. Churchill, 

McGraw-Hill Book Company, 1969. 
 
2. Mathematics of  Classical and Quantum Physics, Volumes 1 & 2, Frederick W. 

Byron, Jr. and Robert W. Fuller, Addison-Wesley Publishing Company, 1969. 
 
3. Mathematical Methods of Physics, 2nd Edition, Jon Matthews and R.L. Walker,  

W.A. Benjamin, Inc., 1964. 
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