Fourier Analysis III:

More Examples of the Use of Fourier Analysis

D. Fourier Analysis of a Periodic, Symmetrical Triangle Wave

We now consider a spatially-periodic, symmetrical, bipolar triangle wave of unit amplitude, as shown in the figure below:

Mathematically, this odd-symmetry waveform, on the "generic" interval $0 \leq \theta<2 \pi$ (i.e. one cycle of this waveform) is described as:

$$
f(\theta)=f(k x)=+(2 / \pi) \theta \quad \text { for } \quad 0 \leq \theta<\pi / 2
$$

and:

$$
f(\theta)=f(k x)=-(2 / \pi) \theta+2 \text { for } \pi / 2 \leq \theta<3 \pi / 2
$$

and:

$$
f(\theta)=f(k x)=+(2 / \pi) \theta-4 \text { for } 3 \pi / 2 \leq \theta<2 \pi
$$

Where we used the straight line equation, $y=m x+b$ to determine the slopes, m and the intercepts, b associated with each of the three line segments in the above waveform on this θ-interval.

We determine the Fourier coefficients, a_{0}, a_{n} and b_{n} from the inner products:

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi}\langle f(\theta), 1\rangle=\frac{1}{\pi} \int_{\theta=\theta_{1}}^{\theta=\theta_{2}} f(\theta) d \theta=\frac{1}{\pi} \int_{\theta=0}^{\theta=2 \pi} f(\theta) d \theta \\
& =\frac{1}{\pi}\left[\int_{\theta=0}^{\theta=\pi / 2} f(\theta) d \theta+\int_{\theta=\pi / 2}^{\theta=3 \pi / 2} f(\theta) d \theta+\int_{\theta=3 \pi / 2}^{\theta=2 \pi} f(\theta) d \theta\right] \\
& =\frac{1}{\pi}\left[\int_{\theta=0}^{\theta=\pi / 2}\left(\frac{2}{\pi}\right) \theta d \theta+\int_{\theta=\pi / 2}^{\theta=3 \pi / 2}\left(\left(\frac{-2}{\pi}\right) \theta+2\right) d \theta+\int_{\theta=3 \pi / 2}^{\theta=2 \pi}\left(\left(\frac{2}{\pi}\right) \theta-4\right) d \theta\right] \\
& =\frac{1}{\pi}\left[\left.\left(\frac{2}{\pi}\right) \frac{1}{2} \theta^{2}\right|_{0} ^{\pi / 2}+\left.\left[\left(\frac{-2}{\pi}\right) \frac{1}{2} \theta^{2}+2 \theta\right]\right|_{\pi / 2} ^{3 \pi / 2}+\left.\left[\left(\frac{2}{\pi}\right) \frac{1}{2} \theta^{2}-4 \theta\right]\right|_{3 \pi / 2} ^{2 \pi}\right] \\
& =\frac{1}{\pi}\left[\frac{1}{\pi}\left[\frac{1}{4} \pi^{2}-\frac{9}{4} \pi^{2}+\frac{1}{4} \pi^{2}+4 \pi^{2}-\frac{9}{4} \pi^{2}\right]+[3 \pi-\pi-8 \pi+6 \pi]\right]=0
\end{aligned}
$$

Since this waveform is $\underline{\text { bipolar, it has no d.c. offset, thus } a_{0}=0 .}$
The Fourier coefficients, a_{n} and b_{n} for $n>0$ are:

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi}\left\langle f(\theta), \cos \left(\theta_{n}\right)\right\rangle=\frac{1}{\pi} \int_{\theta=\theta_{1}}^{\theta=\theta_{2}} f(\theta) \cos \left(\theta_{n}\right) d \theta=\frac{1}{\pi} \int_{\theta=0}^{\theta=2 \pi} f(\theta) \cos (n \theta) d \theta \\
& =\frac{1}{\pi}\left[\int_{\theta=0}^{\theta=\pi / 2} f(\theta) \cos (n \theta) d \theta+\int_{\theta=\pi / 2}^{\theta=3 \pi / 2} f(\theta) \cos (n \theta) d \theta+\int_{\theta=3 \pi / 2}^{\theta=2 \pi} f(\theta) \cos (n \theta) d \theta\right] \\
& =\frac{1}{\pi}\left[\int_{\theta=0}^{\theta=\pi / 2}\left(\frac{2}{\pi}\right) \theta \cos (n \theta) d \theta+\int_{\theta=\pi / 2}^{\theta=3 \pi / 2}\left(\left(\frac{-2}{\pi}\right) \theta+2\right) \cos (n \theta) d \theta+\int_{\theta=3 \pi / 2}^{\theta=2 \pi}\left(\left(\frac{2}{\pi}\right) \theta-4\right) \cos (n \theta) d \theta\right] \\
b_{n} & =\frac{1}{\pi}\left\langle f(\theta), \sin \left(\theta_{n}\right)\right\rangle=\frac{1}{\pi} \int_{\theta=\theta_{1}}^{\theta=\theta_{2}} f(\theta) \sin \left(\theta_{n}\right) d \theta=\frac{1}{\pi} \int_{\theta=0}^{\theta=2 \pi} f(\theta) \sin (n \theta) d \theta \\
& =\frac{1}{\pi}\left[\int_{\theta=0}^{\theta=\pi / 2} f(\theta) \sin (n \theta) d \theta+\int_{\theta=\pi / 2}^{\theta=3 \pi / 2} f(\theta) \sin (n \theta) d \theta+\int_{\theta=3 \pi / 2}^{\theta=2 \pi} f(\theta) \sin (n \theta) d \theta\right] \\
& =\frac{1}{\pi}\left[\int_{\theta=0}^{\theta=\pi / 2}\left(\frac{2}{\pi}\right) \theta \sin (n \theta) d \theta+\int_{\theta=\pi / 2}^{\theta=3 \pi / 2}\left(\left(\frac{-2}{\pi}\right) \theta+2\right) \sin (n \theta) d \theta+\int_{\theta=3 \pi / 2}^{\theta=2 \pi}\left(\left(\frac{2}{\pi}\right) \theta-4\right) \sin (n \theta) d \theta\right]
\end{aligned}
$$

Now the indefinite integrals:

$$
\begin{array}{ll}
\int \cos (n \theta) d \theta=+\frac{\sin (n \theta)}{n} & \int \sin (n \theta) d \theta=-\frac{\cos (n \theta)}{n} \\
\int \theta \cos (n \theta) d \theta=\frac{\cos (n \theta)}{n^{2}}+\frac{\theta \sin (n \theta)}{n} & \int \theta \sin (n \theta) d \theta=\frac{\sin (n \theta)}{n^{2}}-\frac{\theta \cos (n \theta)}{n}
\end{array}
$$

Using these relations in the above formulae for determining the Fourier coefficients, a_{n} and b_{n} we obtain, after much algebra and using the fact that $\sin (3 n \pi / 2)=-\sin (n \pi / 2)$, that:

$$
a_{n}=0 \text { for all } n>0
$$

and:

$$
b_{n}=2^{*}(2 / n \pi)^{2} \sin (n \pi / 2)
$$

The even Fourier coefficients, $b_{n}=0 \quad$ for $n=2,4,6,8, \ldots$. etc.
The odd Fourier coefficients, $b_{n}=+2^{*}(2 / n \pi)^{2}$ for $n=1,5,9,13, \ldots$ etc.
The odd Fourier coefficients, $b_{n}=-2 *(2 / n \pi)^{2}$ for $n=3,7,11,15, \ldots$ etc.
Thus, the Fourier series for the symmetrical, bipolar triangle wave of unit amplitude, as shown in the above figure is given by:

$$
\left.f(\theta)\right|_{\substack{\text { triangle } \\ \text {-wave }}}=\frac{a_{0}}{2}+\sum_{n=1}^{n=\infty} a_{n} \cos \theta_{n}+\sum_{n=1}^{n=\infty} b_{n} \sin \theta_{n}=2 \sum_{\substack{n=1 \\ \text { odd }-n}}^{n=\infty}(-1)^{(n-1) / 2}\left(\frac{2}{n \pi}\right)^{2} \sin (n \theta)
$$

Using the replacement: $n_{\text {odd }}=2 m-1, m=1,2,3,4, \ldots \ldots$. in the above summation, we can alternatively write the Fourier series expansion for this triangle wave as:

$$
\left.f(\theta)\right|_{\substack{\text { triangle }}}=2 \sum_{m=1}^{m=\infty}(-1)^{m-1}\left(\frac{2}{(2 m-1) \pi}\right)^{2} \sin [(2 m-1) \theta]=\frac{8}{\pi^{2}}\left\{\sin \theta-\frac{1}{9} \sin 3 \theta+\frac{1}{25} \sin 5 \theta-\frac{1}{49} \sin 7 \theta+\ldots . .\right\}
$$

Note that the magnitudes of the non-zero amplitudes of the harmonics, $\left|r_{n}\right|=\left|b_{n}\right|=$ $8 /(n \pi)^{2}$, as shown in the figure(s) below for the first 20 harmonics.

Harmonic Content of a Bipolar Triangle Wave

The non-zero amplitudes of the harmonics, $\left|r_{n}\right|$ associated with the bipolar triangle wave decrease much faster with increasing harmonic \#, n than e.g. those associated with the bipolar, 50% duty-cycle square wave. The harmonic amplitudes, $\left|r_{n}\right|$ associated with the bipolar triangle wave vary with n as $\left|r_{n}\right| \sim 1 / n^{2}$, whereas the harmonic amplitudes, $\left|r_{n}\right|$ for the bipolar, 50% duty cycle square wave vary as $\left|r_{n}\right| \sim 1 / n$.

As can be seen from the above figure, in addition to the fundamental, at frequency, f, only the odd harmonics, at frequencies $3 f, 5 f, 7 f, 9 f$, etc. contribute to creating this waveform.

For comparison purposes, we also show the harmonic amplitudes, $\left|r_{n}\right|$ associated with the bipolar triangle wave on a semi-log plot, in the following figure:

The human ear hears a triangle-wave audio signal as being "bright", relative to e.g. a pure-tone (sine-wave) audio signal at the same frequency, but less "bright" than a square wave. The triangle wave, like the square wave audio signal also sounds a bit "harsh" to the human ear, because of the presence of all of the odd harmonics, at $3 f, 5 f, 7 f, 9 f, \ldots$. etc But again, the triangle wave is not as harsh-sounding as the square wave is to the human ear, because its higher harmonics are not as strong as those associated with the square wave.

If the loudness of the fundamental $(n=1)$ is $L_{1}=60 d B(100 \mathrm{~dB})$ for a triangle wave, this corresponds to an intensity associated with the fundamental tone of $I_{1}=10^{-6}\left(10^{-2}\right)$ $\mathrm{Watts} / \mathrm{m}^{2}$, respectively. If the ratio of the amplitude for the $n^{\text {th }}$ harmonic to the amplitude of the fundamental associated with the triangle wave is $\left|r_{n}\right| /\left|r_{1}\right|=1 / n^{2}$, for odd $n=3,5$, $7,9, \ldots$ etc. Then the ratio of intensity for the $n^{t h}$ harmonic to the intensity for the fundamental associated with the triangle wave is $I_{n} / I_{1}=(1 / n)^{4}$, and the terms, e.g for $n=3$ are:

$$
\log _{10}\left(I_{n} / I_{1}\right)=\log _{10}(1 / n)^{4}=4 \log _{10}(1 / n)=4 \log _{10}(0.3333)=-1.9085
$$

and

$$
\log _{10}\left(I_{1} / I_{o}\right)=6(10) \quad \text { for } \quad I_{1}=10^{-6}\left(10^{-2}\right) \mathrm{Watts} / \mathrm{m}^{2} \text {, respectively. }
$$

Thus, the human ear will perceive the loudness, L_{n} of the $n^{\text {th }}$ harmonic, relative to perceived loudness, L_{1} of the fundamental of the triangle wave, as heard e.g. through a loudspeaker as:

$$
L_{n} / L_{1}=1+\left\{\log _{10}\left(I_{n} / I_{1}\right) / \log _{10}\left(I_{1} / I_{o}\right)\right\}
$$

Then for the $3^{r d}$ harmonic:

$$
\begin{array}{cc}
L_{3} / L_{1}=1-\{1.9085 / 6\} & (=1-\{1.9085 / 10\}) \\
=68.2 \% & (=80.9 \%)
\end{array}
$$

for $I_{1}=10^{-6}\left(10^{-2}\right) \mathrm{Watts} / \mathrm{m}^{2}$, respectively. This is the (fractional) amount of third harmonic, as heard by the human ear for a triangle wave. This is quite large, but again, not as large as that for the square wave! Again, note that the ratio, L_{n} / L_{1} increases (logarithmically) with increasing amplitude of the square wave! For a loudness of the fundamental tone of $L_{1}=60 \mathrm{~dB}(100 \mathrm{~dB})$, the loudness of the third harmonic, for $\left|r_{3}\right| /\left|r_{1}\right|$ $=1 / 3=33.3 \%$ is:

$$
\begin{aligned}
L_{3} & =10 \log _{10}\left(I_{3} / I_{1}\right)+10 \log _{10}\left(I_{1} / I_{o}\right) \\
= & 40 \log _{10}(0.3333)+60 d B(100 d B) \\
& =-19.08 d B+60 d B(100 d B) \\
= & 40.92 d B(80.92 d B), \text { respectively. }
\end{aligned}
$$

The following figure shows the loudness ratios, L_{n} / L_{1} for the first twenty harmonics (i.e. $n<20$) associated with the bipolar triangle wave, for loudness values of the fundamental of $L_{1}=60 d B$ (\sim quiet) and for $L_{1}=100 d B$ (\sim quite loud). This is what the human ear perceives as the loudness of the harmonics relative to that of the fundamental. Note that the decrease in the loudness ratio, L_{n} / L_{1} with increasing harmonic \#, n is quite slow.

The following two figures show the "Fourier construction" of a periodic, bipolar, unitamplitude triangle wave. The waveforms in these figures were generated using truncated, finite-term version(s) of the Fourier series expansion for this waveform:
$\left.f(\theta)\right|_{\substack{\text { triangle } \\ \text {-wave }}}=2 \sum_{m=1}^{m=\infty}(-1)^{m-1}\left(\frac{2}{(2 m-1) \pi}\right)^{2} \sin [(2 m-1) \theta]=\frac{8}{\pi^{2}}\left\{\sin \theta-\frac{1}{9} \sin 3 \theta+\frac{1}{25} \sin 5 \theta-\frac{1}{49} \sin 7 \theta+\ldots ..\right\}$
The first figure shows the bipolar triangle wave (labelled as "Waveform") overlaid with three other waveforms: that associated with just the fundamental (" $n=1$ "), then the waveform associated with fundamental $+33^{r d}$ harmonic (" $n=1: 3$ "), then the waveform associated with fundamental $+3^{r d}+5^{\text {th }}$ harmonic (" $n=1: 5$ ").

Fourier Construction of a Bipolar Triangle Wave

$$
\text { Waveform } n=1-n=1: 3 _n=1: 5
$$

Note that the fundamental, a sine wave, is already a quite good approximation to the triangle wave (visually-speaking, but not auditorially so!). Just adding the first two harmonics to the fundamental brings this waveform into quite good visual agreement with the triangle wave, except at the sharp peak(s) of the triangle wave.

The second figure shows the bipolar triangle wave (labelled as "Waveform") overlaid with three other waveforms: that associated with the fundamental through the $7^{\text {th }}$ harmonic (" $n=1: 7$ "), then the waveform associated with fundamental through the $9^{\text {th }}$ harmonic (" $n=1: 9$ "), then the waveform associated with fundamental through the $13^{\text {th }}$ harmonic (" $n=1: 13$ ").

Fourier Construction of a Triangle Wave

Thus, adding on higher harmonics to the lower-order harmonics associated with the triangle wave makes for only small visual changes in the overall waveform - primarily, just the peak(s) sharpen as the higher harmonics are added.

The bipolar triangle wave has physical relevance in stringed instruments, such as the guitar or violin, when the strings are plucked at the mid-point of the string, along its length, e.g. using one's fingernail, or a guitar pick (aka plectrum).

The scale length, Lscale of a guitar is the physical length of the string(s) from the bridge to the nut at the headstock on the neck of the guitar. When one of the open (i.e. unfretted) strings vibrates, the fundamental mode of vibration of frequency, f with a wavelength, λ equal to twice the scale length of the guitar, i.e. $\lambda=2 L_{\text {scale }}$. In other words, the scale length of a guitar is half the wavelength of the fundamental, i.e. $L_{s c a l e}=\lambda / 2$. In our discussion of Fourier analysis, the wavelength, λ of the fundamental is equal to the space-domain length parameter, L, i.e. $\lambda=L$. Thus, the scale length, $L_{\text {scale }}=\lambda / 2=L / 2$.

As shown in the figure below, the fundamental has a node (i.e. points of zero transverse displacement) at both ends of its wavelength, and at its midpoint. All harmonic waves on a guitar must have nodes at the bridge and nut, since these do not
vibrate (to a first approximation). These boundary conditions mandate sine wave-type solutions!

Vibration of the Fundamental of a Guitar String

As indicated in the above figure, when an open string vibrates in the fundamental mode, this occurs only on a half-length of the fundamental (here the right-hand half) the left-hand half of the fundamental doesn't physically exist in stringed instruments.

The pick (here) is used to excite an open guitar string at its midpoint -at the $12^{\text {th }}$ fret (i.e. $1^{\text {st }}$ octave location), which is an anti-node of the fundamental (i.e. a point of maximum transverse displacement). This position is a distance of $L_{p i c k}=\lambda / 4$ from the bridge of the guitar. At this loction, the pick stretches the string transversely from its zero-displacement equilibrium position. Before the pick is released from stretching the string, the energy associated with the stretching of the string into this shape is entirely in the form of mechanical potential energy. At the precise instant the pick disengages from the stretched string, the shape of the string is a symmetric (i.e. isosceles) triangle. Immediately after the pick releases the string, the string begins to vibrate, converting the mechanical potential energy back and forth into kinetic energy (and also radiating some of this energy away as sound waves). However because of energy conservation, all the energy initially contained in each of the harmonics is also preserved (see Parseval's theorem) and thus, the initial shape of the string at the instant it was released from the disengagement of the pick is also preserved. In other words, the transverse shape of the string the instant before it is released dictates its harmonic sound-content afterward!

Guitar players do not normally play at this location on the guitar, because picking the strings of the guitar with the fingerboard/fretboard immediately underneath is difficult. However, those guitarists who have tried playing there know that the resulting sound output from the guitar is quite mellow, because picking the strings at this location predominantly excites the fundamental at frequency, f. The second harmonic, one octave above at frequency, $2 f$ is completely absent in picking the strings at this location on the guitar, because the second harmonic has a node at L pick $=\lambda / 4-$ i.e. it cannot be excited by picking here! In fact none of the even- n harmonics - at $2 f, 4 f, 6 f, 8 f, 10 f, \ldots$. etc. can be excited by picking at $L_{\text {pick }}=\lambda / 4$ because they all have nodes at this point! In addition to the fundamental, only the odd- n harmonics of the fundamental can be excited by playing at the $12^{\text {th }}$ fret of the guitar - in fact the odd- n harmonics all have anti-nodes at this point!

E. Fourier Analysis of a Periodic Sawtooth (Asymmetrical Triangle) Wave

Next, we consider a spatially-periodic bipolar sawtooth wave, i.e. an asymmetrical bipolar triangle wave of unit amplitude, as shown in the figure below:

Mathematically, this odd-symmetry waveform, on the "generic" interval $0 \leq \theta<2 \pi$ (i.e. one cycle of this waveform) is described as:

$$
f(\theta)=f(k x)=+(4 / \pi) \theta \quad \text { for } \quad 0 \leq \theta<\pi / 4
$$

and:

$$
f(\theta)=f(k x)=-(4 / 3 \pi) \theta+4 / 3 \text { for } \pi / 4 \leq \theta<7 \pi / 4
$$

and:

$$
f(\theta)=f(k x)=+(4 / \pi) \theta-8 \quad \text { for } \quad 7 \pi / 4 \leq \theta<2 \pi
$$

Where we used the straight line equation, $y=m x+b$ to determine the slopes, m and the intercepts, b associated with each of the three line segments in the above waveform on this θ-interval.

We determine the Fourier coefficients, a_{0}, a_{n} and b_{n} from the inner products:

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi}\langle f(\theta), 1\rangle=\frac{1}{\pi} \int_{\theta=\theta_{1}}^{\theta=\theta_{2}} f(\theta) d \theta=\frac{1}{\pi} \int_{\theta=0}^{\theta=2 \pi} f(\theta) d \theta \\
&=\frac{1}{\pi}\left[\int_{\theta=0}^{\theta=\pi / 4} f(\theta) d \theta+\int_{\theta=\pi / 4}^{\theta=7 \pi / 4} f(\theta) d \theta+\int_{\theta=7 \pi / 4}^{\theta=2 \pi} f(\theta) d \theta\right] \\
&=\frac{1}{\pi}\left[\int_{\theta=0}^{\theta=\pi / 4}\left(\frac{4}{\pi}\right) \theta d \theta+\int_{\theta=\pi / 4}^{\theta=7 \pi / 4}\left(\left(\frac{-4}{3 \pi}\right) \theta+\frac{4}{3}\right) d \theta+\int_{\theta=7 \pi / 4}^{\theta=2 \pi}\left(\left(\frac{4}{\pi}\right) \theta-8\right) d \theta\right] \\
&=\frac{1}{\pi}\left[\left.\left(\frac{4}{\pi}\right) \frac{1}{2} \theta^{2}\right|_{0} ^{\pi / 4}+\left.\left[\left(\frac{-4}{3 \pi}\right) \frac{1}{2} \theta^{2}+\frac{4}{3} \theta\right]\right|_{\pi / 4} ^{7 \pi / 4}+\left.\left[\left(\frac{4}{\pi}\right) \frac{1}{2} \theta^{2}-8 \theta\right]\right|_{7 \pi / 4} ^{2 \pi}\right] \\
&=\frac{1}{\pi}\left[\frac{1}{\pi}\left[\frac{1}{4} \pi^{2}-\frac{9}{4} \pi^{2}+\frac{1}{4} \pi^{2}+4 \pi^{2}-\frac{9}{4} \pi^{2}\right]+[3 \pi-\pi-8 \pi+6 \pi]\right]=0 \\
& 9
\end{aligned}
$$

Since this waveform has no d.c. offset, $a_{0}=0$. The Fourier coefficients, a_{n} and b_{n} are:

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi}\left\langle f(\theta), \cos \left(\theta_{n}\right)\right\rangle=\frac{1}{\pi} \int_{\theta=\theta_{1}}^{\theta=\theta_{2}} f(\theta) \cos \left(\theta_{n}\right) d \theta=\frac{1}{\pi} \int_{\theta=0}^{\theta=2 \pi} f(\theta) \cos (n \theta) d \theta \\
& =\frac{1}{\pi}\left[\int_{\theta=0}^{\theta=\pi / 4} f(\theta) \cos (n \theta) d \theta+\int_{\theta=\pi / 4}^{\theta=7 \pi / 4} f(\theta) \cos (n \theta) d \theta+\int_{\theta=7 \pi / 4}^{\theta=2 \pi} f(\theta) \cos (n \theta) d \theta\right] \\
& =\frac{1}{\pi}\left[\int_{\theta=0}^{\theta=\pi / 4}\left(\frac{4}{\pi}\right) \theta \cos (n \theta) d \theta+\int_{\theta=\pi / 4}^{\theta=7 \pi / 4}\left(\left(\frac{-4}{3 \pi}\right) \theta+\frac{4}{3}\right) \cos (n \theta) d \theta+\int_{\theta=7 \pi / 4}^{\theta=2 \pi}\left(\left(\frac{4}{\pi}\right) \theta-8\right) \cos (n \theta) d \theta\right] \\
b_{n} & =\frac{1}{\pi}\left\langle f(\theta), \sin \left(\theta_{n}\right)\right\rangle=\frac{1}{\pi} \int_{\theta=\theta_{1}}^{\theta=\theta_{2}} f(\theta) \sin \left(\theta_{n}\right) d \theta=\frac{1}{\pi} \int_{\theta=0}^{\theta=2 \pi} f(\theta) \sin (n \theta) d \theta \\
& =\frac{1}{\pi}\left[\int_{\theta=0}^{\theta=\pi / 4} f(\theta) \sin (n \theta) d \theta+\int_{\theta=\pi / 4}^{\theta=7 \pi / 4} f(\theta) \sin (n \theta) d \theta+\int_{\theta=7 \pi / 4}^{\theta=2 \pi} f(\theta) \sin (n \theta) d \theta\right] \\
& =\frac{1}{\pi}\left[\int_{\theta=0}^{\theta=\pi / 4}\left(\frac{4}{\pi}\right) \theta \sin (n \theta) d \theta+\int_{\theta=\pi / 4}^{\theta=7 \pi / 4}\left(\left(\frac{-4}{3 \pi}\right) \theta+\frac{4}{3}\right) \sin (n \theta) d \theta+\int_{\theta=7 \pi / 4}^{\theta=2 \pi}\left(\left(\frac{4}{\pi}\right) \theta-8\right) \sin (n \theta) d \theta\right]
\end{aligned}
$$

Now the indefinite integrals:

$$
\begin{array}{ll}
\int \cos (n \theta) d \theta=+\frac{\sin (n \theta)}{n} & \int \sin (n \theta) d \theta=-\frac{\cos (n \theta)}{n} \\
\int \theta \cos (n \theta) d \theta=\frac{\cos (n \theta)}{n^{2}}+\frac{\theta \sin (n \theta)}{n} & \int \theta \sin (n \theta) d \theta=\frac{\sin (n \theta)}{n^{2}}-\frac{\theta \cos (n \theta)}{n}
\end{array}
$$

Using these relations in the above formulae for determining the Fourier coefficients, a_{n} and b_{n}, for $n>0$. We obtain, after much algebra and using the fact(s) that $\sin (7 n \pi / 4)=$ $-\sin (n \pi / 4)$, and $\cos (7 n \pi / 4)=+\cos (n \pi / 4)$ that the Fourier coefficients:

$$
a_{n}=0 \text { for all } n>0
$$

and:

$$
b_{n}=(2 / 3) *(4 / n \pi)^{2} \sin (n \pi / 4) \text { for all } n>0
$$

The odd Fourier coefficients, $b_{n}=+(2 / 3) *(4 / n \pi)^{2} / \sqrt{ } 2$ for $n=1,9,17,25, \ldots$ etc.
The even Fourier coefficients, $b_{n}=+(2 / 3) *(4 / n \pi)^{2} \quad$ for $n=2,10,18,26, \ldots$ etc.
The odd Fourier coefficients, $b_{n}=+(2 / 3)^{*}(4 / n \pi)^{2} / \sqrt{ } 2$ for $n=3,11,19,27, \ldots$ etc.
The even Fourier coefficients, $b_{n}=0 \quad$ for $n=4,12,20,28, \ldots$. etc.
The odd Fourier coefficients, $b_{n}=-(2 / 3)^{*}(4 / n \pi)^{2} / \sqrt{ } 2$ for $n=5,13,21,29, \ldots$ etc.
The even Fourier coefficients, $b_{n}=-(2 / 3) *(4 / n \pi)^{2} \quad$ for $n=6,14,22,30, \ldots$ etc.
The odd Fourier coefficients, $b_{n}=-(2 / 3)^{*}(4 / n \pi)^{2} / \sqrt{ } 2$ for $n=7,15,23,31, \ldots$ etc.
The even Fourier coefficients, $b_{n}=0 \quad$ for $n=8,16,24,32, \ldots$. etc.

All of the even-reflection symmetry Fourier coefficients, $a_{n}=0$ because the sawtooth waveform has overall odd-reflection symmetry.

Thus, for the sawtooth form of a triangle wave, both even-n and odd-n b_{n}-harmonics are present! The reason for this is that while the overall sawtooth waveform still has odd reflection symmetry about its midpoint $(\theta=\pi)$, i.e. that for $0 \leq \theta \leq 2 \pi$, $f(\theta>\pi)=-f((2 \pi-\theta)<\pi)$, the sawtooth waveform no longer has any local reflection symmetry properties about its peaks - e.g. about $\theta=\pi / 4$ and/or about $\theta=7 \pi / 4$, i.e. locally, for $0 \leq \theta \leq \pi / 2, f(\theta>\pi / 4) \neq \pm f((\pi / 2-\theta)<\pi / 4)$, and for $3 \pi / 2 \leq \theta \leq 2 \pi$, $f(\theta>7 \pi / 4) \neq \pm f((2 \pi-\theta)<7 \pi / 4)$. Because of this, both odd-n and even- n terms in the Fourier coefficients, b_{n} are needed for the overall odd-reflection symmetry $\sin (n \theta)$ functions associated with the Fourier series expansion for the bipolar sawtooth waveform.

The Fourier series for the bipolar sawtooth wave of unit amplitude, is thus given by:

$$
\left.f(\theta)\right|_{\substack{\text { sawtooth } \\ \text { wave }}}=\frac{a_{0}}{2}+\sum_{n=1}^{n=\infty} a_{n} \cos \theta_{n}+\sum_{n=1}^{n=\infty} b_{n} \sin \theta_{n}=\frac{2}{3} \sum_{n=1}^{n=\infty}\left(\frac{4}{n \pi}\right)^{2} \sin \left(\frac{n \pi}{4}\right) \sin (n \theta)
$$

The numerical values of the Fourier coefficients, b_{n} for the bipolar sawtooth wave are shown in the figure below for the first 20 harmonics.

The magnitudes of the amplitudes of the harmonics, $\left|r_{n}\right|=\left|b_{n}\right|$ for the bipolar sawtooth wave, again decrease with increasing harmonic \#, n, as $\sim 1 / n^{2}$, as for the bipolar triangle wave. We show the numerical values of the $\left|r_{n}\right|$ for the first 20 harmonics of the bipolar sawtooth wave in the figure below. Note that this is a semi-log plot of $\left|r_{n}\right|$ vs. n.

We can compare e.g. the relative strength of the third harmonic to the fundamental for the bipolar sawtooth wave to that for the third harmonic associated with the bipolar triangle wave. For the sawtooth wave, $\left|r_{3}\right| /\left|r_{1}\right|=11.1 \%$, while for the triangle wave, we also have $\left|r_{3}\right| /\left|r_{1}\right|=11.1 \%$ - i.e. the same value of harmonic amplitude ratio! In fact the ratios $\left|r_{n}\right| /\left|r_{1}\right|$ for all odd- n harmonics are identical for triangle vs. sawtooth waves!

The phase angles, δ_{n} of the harmonics associated with the bipolar sawtooth wave are shown in the figure below for the first 20 harmonics.

Note that the first four harmonics - the fundamental (aka first harmonic), the second, third and fourth (even though it has zero strength) harmonics all have the same phase angle, δ_{n} $=+180^{\circ}$. The next four harmonics have the opposite phase angle, $\delta_{n}=-180^{\circ}$, the next four after that are in phase again with the first four harmonics, and so on. This behavior of the groups-of-four phase angle arises from the $\sin (n \pi / 4)$ term in the Fourier coefficients, b_{n} for the sawtooth waveform.

The sound of an audio sawtooth wave to the human ear is brighter than the triangle wave, due to the existence of the second harmonic in the sawtooth wave, which is absent in the triangle wave. If the loudness of the fundamental, $L_{1}=60 \mathrm{~dB}(100 \mathrm{~dB})$, then the loudness of the second harmonic is $L_{2}=50.9 \mathrm{~dB}(91.0 \mathrm{~dB})$, corresponding to a loudness ratio of $L_{2} / L_{1}=84.9 \%$ (91.0\%), respectively. For the third harmonic associated with the sawtooth wave, $L_{3}=40.9 \mathrm{~dB}(80.9 \mathrm{~dB})$, corresponding to a loudness ratio of $L_{3} / L_{1}=$ 68.2% (80.9%), respectively. Interestingly enough, these loudness results for the third harmonic of the sawtooth wave are also precisely those for the triangle wave, as are all the odd-n loudness results! The sawtooth wave differs from the triangle wave primarily because of the additional presence of the even- n harmonics, however note also that the phase relations for the odd- n harmonics are not the same for these two waves. As we have mentioned before, the human ear is not sensitive to such phase relations.

The following figure shows the loudness ratios, L_{n} / L_{1} for the first twenty harmonics (i.e. $n<20$) associated with the bipolar sawtooth wave, for loudness values of the fundamental of $L_{1}=60 \mathrm{~dB}$ (\sim quiet) and for $L_{1}=100 \mathrm{~dB}$ (\sim quite loud). This is what the human ear perceives as the loudness of the harmonics relative to that of the fundamental. Note that the decrease in the loudness ratio, L_{n} / L_{1} with increasing harmonic \#, n is again rather slow.

The following two figures show the "Fourier construction" of a periodic, bipolar, unitamplitude sawtooth wave. The waveforms in these figures were generated using truncated, finite-term version(s) of the Fourier series expansion for this waveform:

$$
\left.f(\theta)\right|_{\text {sawtooth }} ^{- \text {wave }}=\frac{2}{3} \sum_{n=1}^{n=\infty}\left(\frac{4}{n \pi}\right)^{2} \sin \left(\frac{n \pi}{4}\right) \sin (n \theta)=\frac{32}{3 \pi^{2}}\left\{\frac{1}{\sqrt{2}} \sin (\theta)+\frac{1}{4} \sin (2 n \theta)+\frac{1}{9 \sqrt{2}} \sin (3 n \theta)+0-\ldots+\ldots\right\}
$$

The first figure shows the bipolar sawtooth wave (labelled as "Waveform") overlaid with three other waveforms: that associated with just the fundamental (" $n=1$ "), then the waveform associated with fundamental $+2^{\text {nd }}$ harmonic (" $n=1: 2^{\text {") }}$, then the waveform associated with fundamental $+2^{\text {nd }}+3^{\text {rd }}$ harmonic (" $n=1: 3$ ").

Fourier Construction of a Sawtooth Wave

The second figure shows the bipolar sawtooth wave (labelled as "Waveform") overlaid with three other waveforms: that associated with the fundamental through the $5^{\text {th }}$ harmonic (" $n=1: 5$ "), then the waveform associated with fundamental through the $6^{\text {th }}$ harmonic (" $n=1: 6$ "), then the waveform associated with fundamental through the $7^{\text {th }}$ harmonic (" $n=1: 7$ ")

Fourier Construction of a Sawtooth Wave

Again, adding on higher harmonics to the lower-order harmonics associated with the sawtooth wave makes for only small visual changes in the overall waveform - primarily, just the peak(s) sharpen as the higher harmonics are added.

The sawtooth wave again has physical relevance in stringed instruments, such as the guitar or violin, when the strings are plucked at the one-quarter-point along the length of the string (as measured from the bridge), using either one's fingernail or a guitar pick, as shown in the figure below. This is the region along the strings where guitar players spend much of their time playing notes and/or chords on the guitar.

Vibration of the Fundamental and
$2^{\text {nd }}$ Harmonic of a Guitar String

As can be seen from the figure, this picking location is not at the anti-node of the fundamental. It is, however at the anti-node associated with the second harmonic, an octave above the fundamental. The picking location is near to, but not on the anti-node of the third harmonic (e.g. see diagram, $2^{\text {nd }}$ figure below). As mentioned earlier, this picking location is at the node of the fourth harmonic, which is the physical reason why it is not
excited. As we mentioned earlier, the fundamental, $2^{\text {nd }}$ and $3^{\text {rd }}$ harmonics are in phase with each other for the sawtooth wave.

F. Fourier Analysis of a Generalized Sawtooth (Asymmetrical Triangle) Wave

We can generalize our above formalism for a bipolar sawtooth (asymmetrical triangle) wave of unit amplitude, for a sawtooth wave of any kind, as shown in the figure below:

We introduce the parameter, $\alpha_{\mathrm{p}} \equiv \theta_{\mathrm{p}} / 2 \pi=k x_{\mathrm{p}} / 2 \pi=2 \pi x_{\mathrm{p}} / 2 \pi \lambda=x_{\mathrm{p}} / \lambda$ which physically represents the fractional location of the first peak in the sawtooth waveform, located at
 the sawtooth wave, $f(\theta)$ must be a single-valued function on the "generic" interval $0 \leq \theta<2 \pi$, requiring that the first peak in the sawtooth waveform lie within the "generic" interval $0 \leq \theta_{\mathrm{p}}<\pi$, which in turn corresponds to a range allowed for the α_{p}-parameter of $0<\alpha_{p}<1 / 2$.

Mathematically, the odd-symmetry sawtooth waveform, on the "generic" interval $0 \leq \theta<2 \pi$ (i.e. one cycle of this waveform) can then be described in terms of the α_{p}-parameter as:

$$
f(\theta)=f(k x)=+(1 / 2 \pi \alpha p) \theta \quad \text { for } \quad 0 \leq \theta<2 \pi \alpha_{p}
$$

and:

$$
f(\theta)=f(k x)=-(1 / \pi(1-2 \alpha \mathrm{p})) \theta+(1 /(1-2 \alpha \mathrm{p})) \text { for } 2 \pi \alpha_{\mathrm{p}} \leq \theta<2 \pi\left(1-\alpha_{\mathrm{p}}\right)
$$

and:

$$
f(\theta)=f(k x)=+(1 / 2 \pi \alpha p) \theta-(1 / \alpha \mathrm{p}) \quad \text { for } \quad 2 \pi\left(1-\alpha_{p}\right) \leq \theta<2 \pi
$$

Where we used the straight line equation, $y=m x+b$ to determine the slopes, m and the intercepts, b associated with each of the three line segments in the above waveform on this θ-interval.

Again, we can determine the Fourier coefficients, a_{0}, a_{n} and b_{n} from the inner products:

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi}\langle f(\theta), 1\rangle=\frac{1}{\pi} \int_{\theta=\theta_{1}}^{\theta=\theta_{2}} f(\theta) d \theta=\frac{1}{\pi} \int_{\theta=0}^{\theta=2 \pi} f(\theta) d \theta \\
& =\frac{1}{\pi}\left[\int_{\theta=0}^{\theta=2 \pi \alpha} f(\theta) d \theta+\int_{\theta=2 \pi \alpha}^{\theta=2 \pi(1-\alpha)} f(\theta) d \theta+\int_{\theta=2 \pi(1-\alpha)}^{\theta=2 \pi} f(\theta) d \theta\right] \\
& =\frac{1}{\pi}\left[\int_{\theta=0}^{\theta=2 \pi \alpha}\left(\frac{1}{2 \pi \alpha}\right) \theta d \theta+\int_{\theta=2 \pi \alpha}^{\theta=2 \pi(1-\alpha)}\left(\left(\frac{-1}{\pi(1-2 \alpha)}\right) \theta+\frac{1}{1-2 \alpha}\right) d \theta+\int_{\theta=2 \pi(1=\alpha)}^{\theta=2 \pi}\left(\left(\frac{1}{2 \pi \alpha}\right) \theta-\frac{1}{\alpha}\right) d \theta\right]
\end{aligned}
$$

Since this bipolar sawtooth waveform has no d.c. offset, we know that $a_{0}=0$.
The Fourier coefficients, a_{n} and b_{n} are:

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi}\left\langle f(\theta), \cos \left(\theta_{n}\right)\right\rangle=\frac{1}{\pi} \int_{\theta=\theta_{1}}^{\theta=\theta_{2}} f(\theta) \cos \left(\theta_{n}\right) d \theta=\frac{1}{\pi} \int_{\theta=0}^{\theta=2 \pi} f(\theta) \cos (n \theta) d \theta \\
& =\frac{1}{\pi}\left[\int_{\theta=0}^{\theta=2 \pi \alpha} f(\theta) \cos (n \theta) d \theta+\int_{\theta=2 \pi \alpha}^{\theta=2 \pi(1-\alpha)} f(\theta) \cos (n \theta) d \theta+\int_{\theta=2 \pi(1-\alpha)}^{\theta=2 \pi} f(\theta) \cos (n \theta) d \theta\right] \\
& =\frac{1}{\pi}\left[\int_{\theta=0}^{\theta=2 \pi \alpha}\left(\frac{1}{2 \pi \alpha}\right) \theta \cos (n \theta) d \theta+\int_{\theta=2 \pi \alpha}^{\theta=2 \pi(1-\alpha)}\left(\left(\frac{-1}{\pi(1-2 \alpha)}\right) \theta+\frac{1}{1-2 \alpha}\right) \cos (n \theta) d \theta+\int_{\theta=2 \pi(1=\alpha)}^{\theta=2 \pi}\left(\left(\frac{1}{2 \pi \alpha}\right) \theta-\frac{1}{\alpha}\right) \cos (n \theta) d \theta\right]
\end{aligned}
$$

and:

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi}\left\langle f(\theta), \sin \left(\theta_{n}\right)\right\rangle=\frac{1}{\pi} \int_{\theta=\theta_{1}}^{\theta=\theta_{2}} f(\theta) \sin \left(\theta_{n}\right) d \theta=\frac{1}{\pi} \int_{\theta=0}^{\theta=2 \pi} f(\theta) \sin (n \theta) d \theta \\
& =\frac{1}{\pi}\left[\int_{\theta=0}^{\theta=2 \pi \alpha} f(\theta) \sin (n \theta) d \theta+\int_{\theta=2 \pi \alpha}^{\theta=2 \pi(1-\alpha)} f(\theta) \sin (n \theta) d \theta+\int_{\theta=2 \pi(1-\alpha)}^{\theta=2 \pi} f(\theta) \sin (n \theta) d \theta\right] \\
& =\frac{1}{\pi}\left[\int_{\theta=0}^{\theta=2 \pi \alpha}\left(\frac{1}{2 \pi \alpha}\right) \theta \sin (n \theta) d \theta+\int_{\theta=2 \pi \alpha}^{\theta=2 \pi(1-\alpha)}\left(\left(\frac{-1}{\pi(1-2 \alpha)}\right) \theta+\frac{1}{1-2 \alpha}\right) \sin (n \theta) d \theta+\int_{\theta=2 \pi(1=\alpha)}^{\theta=2 \pi}\left(\left(\frac{1}{2 \pi \alpha}\right) \theta-\frac{1}{\alpha}\right) \sin (n \theta) d \theta\right]
\end{aligned}
$$

Again, we will need to use the indefinite integrals:

$$
\begin{array}{ll}
\int \cos (n \theta) d \theta=+\frac{\sin (n \theta)}{n} & \int \sin (n \theta) d \theta=-\frac{\cos (n \theta)}{n} \\
\int \theta \cos (n \theta) d \theta=\frac{\cos (n \theta)}{n^{2}}+\frac{\theta \sin (n \theta)}{n} & \int \theta \sin (n \theta) d \theta=\frac{\sin (n \theta)}{n^{2}}-\frac{\theta \cos (n \theta)}{n}
\end{array}
$$

And again using the fact(s) that:

$$
\sin \left(2 n \pi\left(1-\alpha_{p}\right)\right)=-\sin \left(2 n \pi \alpha_{p}\right)
$$

and that:

$$
\cos \left(2 n \pi\left(1-\alpha_{p}\right)\right)=+\cos \left(2 n \pi \alpha_{p}\right)
$$

We will again find that due to the intrinsic, overall odd-symmetry of the bipolar sawtooth waveform, that

$$
a_{n}=0 \text { for all } n>0
$$

and that:

$$
b_{n}=2 *[2 \alpha \mathrm{p} /(1-2 \alpha \mathrm{p})] *\left(\frac{1}{2 n} 2 n \pi \alpha \mathrm{p}\right)^{2} \sin \left(2 n \pi \alpha_{\mathrm{p}}\right) \text { for all } n>0
$$

The factor in brackets, $\left[{ }^{2 \alpha \mathrm{p}} /(1-2 \alpha \mathrm{p})\right]$ has physical significance - it is the (absolute-value) ratio of the slope of the middle portion of the sawtooth waveform to the slope of (either) end-portion of the sawtooth waveform, i.e.

$$
\left[{ }^{2 \alpha \mathrm{p}} /(1-2 \alpha \mathrm{p})\right]=|-(1 / \pi(1-2 \alpha \mathrm{p})) /(1 / 2 \pi \alpha \mathrm{p})|
$$

Again, the physically allowed range for α_{p} is $0<\alpha_{p}<1 / 2$. Note that the endpoints of this interval are excluded, since both $\alpha_{p}=0$ and $\alpha_{p}=1 / 2$ correspond to the sawtooth waveform "evolving" into a ramp waveform, which physically cannot happen, because of the boundary-condition requirement that each of the n harmonic waves have nodes at the endpoints of the generic interval $0 \leq \theta<2 \pi$ (and at $\theta=\pi$, for the guitar, at the nut). However note mathematically (referring to the above formula for the Fourier coefficient, b_{n}) that in fact when either $\alpha_{p}=0$ and/or $\alpha_{p}=1 / 2$, we discover that $b_{n}=0$. Thus, the mathematics tells us, because of the boundary conditions, that no wave solutions exist for $\alpha_{p}=0$ and/or $\alpha_{p}=1 / 2$.

If the value of the α_{p}-parameter for the peak location(s) of the sawtooth wave is such that $\theta=2 \pi \alpha_{\mathrm{p}}$ and $\theta=2 \pi\left(1-\alpha_{\mathrm{p}}\right)$ correspond to peak positions along the sawtooth waveform that coincide with a node for a particular harmonic, n, then the Fourier coefficient, b_{n} will vanish for that harmonic. For physically-allowed values of the α_{p}-parameter, from the above formula for the Fourier coefficients, b_{n} we see that a particular Fourier coefficient, b_{n} will vanish whenever $\sin \left(2 n \pi \alpha_{p}\right)$ vanishes, i.e. when $2 n \pi \alpha_{p}=m \pi$ (where the integer $m=1,2,3, \ldots$ etc.), i.e. when $n=m / 2 \alpha_{p}$, or equivalently, when $\alpha_{p}=m / 2 n(<1 / 2)$.

We have already encountered this phenomenon for the above specific case(s) of the bipolar triangle wave, with $\alpha_{p}=1 / 4$, corresponding to $\theta_{p}=\pi / 2$ and $\theta_{p}=3 \pi / 2$, where all of the even-n Fourier harmonics, b_{n} vanished, because they had nodes at these θ-values; and the case of the bipolar sawtooth wave, with $\alpha_{\mathrm{p}}=1 / 8$, corresponding to $\theta_{\mathrm{p}}=\pi / 4$ and $\theta_{\mathrm{p}}=7 \pi / 4$, where the $n=4^{\text {th }}, 8^{\text {th }}, 12^{\text {th }}, 16^{\text {th }}, \ldots$ etc. Fourier harmonics, b_{n} vanished, because they too had nodes at these θ-locations.

Thus, for $n \geq 2$ (e.g. $n=2,3,4,5,6, \ldots$. etc.), whenever the value of the α_{p}-parameter is such that $\alpha_{p}=1 / 2 n$, corresponding to $\theta_{\mathrm{p}}=2 \pi \alpha_{\mathrm{p}}=2 \pi / 2 n=\pi / n$ and $\theta_{\mathrm{p}}=2 \pi\left(1-\alpha_{\mathrm{p}}\right)=$ $2 \pi(1-1 / 2 n)$, the Fourier coefficient, b_{n} will vanish for that harmonic associated with the bipolar sawtooth wave.

If the value of the α_{p}-parameter is such that $\theta_{\mathrm{p}}=2 \pi \alpha_{\mathrm{p}}$ and $\theta_{\mathrm{p}}=2 \pi(1-\alpha)$ correspond to anti-nodes associated with one (or more) Fourier harmonics, b_{n} then the harmonic amplitudes, $\left|r_{n}\right|=\left|b_{n}\right|$ associated with the bipolar sawtooth wave will be particularly strong. This occurs when $\sin \left(2 n \pi \alpha_{p}\right)=1$, i.e. when $\left(2 n \pi \alpha_{p}\right)=(2 m-1) \pi / 2$ (where m is again an integer $m=1,2,3 \ldots$ etc.), i.e. when $n=(2 m-1) / 4 \alpha_{p}$, or equivalently, when $\alpha_{p}=(2 m-1) / 4 n$ (with $\left.0<\alpha_{p}<1 / 2\right)$.

Again, we have already have experience with this phenomenon, in the above example of the bipolar sawtooth wave, where $\alpha_{p}=1 / 8$, corresponding to $\theta_{\mathrm{p}}=\pi / 4$ and $\theta_{\mathrm{p}}=7 \pi / 4$, which are anti-nodes of the $n=2^{\text {nd }}, 6^{\text {th }}, 10^{\text {th }}, 14^{\text {th }}, \ldots$ etc. Fourier harmonics, b_{n}, but which also simultaneously correspond to nodes of the $n=4^{\text {th }}, 8^{\text {th }}, 12^{\text {th }}, 16^{\text {th }}, \ldots$ etc. Fourier harmonics, b_{n}, as shown in the figure below, for the first six harmonics:

Some of the anti-nodes (nodes) associated with each harmonic in the above figure are explicitly marked with a solid bullet (open circle), respectively. Note also that all of these harmonics are drawn as being in-phase with each other. If one imagines a vertical line drawn for the ($\theta_{\mathrm{p}}=2 \pi \alpha_{\mathrm{p}}$)-parameter (representing the peak location of the triangle wave) ranging between $0<\left(\theta_{\mathrm{p}}=2 \pi \alpha_{\mathrm{p}}\right)<\pi$, the intersection of this line with each of the harmonics, will indicate whether or not that harmonic is in-phase or out-of-phase with the fundamental, and/or whether the harmonics are at a node or anti-node for this value of θ_{p}.

To connect these results with the physical world, we return to the example of the guitar. As shown (again) in the figure below, the scale length, $L_{\text {scale }}$ of the guitar corresponds to half the wavelength, λ of the fundamental, for open-string notes played on the guitar, i.e. $L_{\text {scale }}=1 / 2 \lambda$. For a pick position distance, $L_{\text {pick }}$ (referenced from the bridge of the guitar), this is a fractional distance, $\beta_{\text {pick }} \equiv L_{\text {pick }} / L_{\text {scale }}=2 L_{\text {pick }} / \lambda$.

Vibration of the Fundamental and $2^{\text {nd }}$ Harmonic of a Guitar String

In the following table, we summarize the $\beta_{\text {pick }} \equiv L_{\text {pick }} / L_{\text {scale }}$ locations for the nodes and anti-nodes associated with the first 10 harmonics. Playing at the anti-node locations will result in enhancing that particular harmonic, while playing at the nodal-locations will cause that harmonic to be absent. Physically, values of $\beta_{\text {pick }} \equiv L_{\text {pick }} / L_{\text {scale }}<1 / 2$ correspond to playing between the bridge and the bottom end of the neck, at the body of the guitar. Smaller values of $\beta_{\text {pick }} \equiv L_{\text {pick }} / L_{\text {scale }}$ are closer to the bridge end of the guitar.

Harmonic \# n	$\begin{gathered} \hline \beta_{\text {pick }} \equiv L_{p \text { pick }} / L_{\text {scale }} \\ \text { for Node } \end{gathered}$	$\beta_{\text {pick }} \equiv L_{\text {pick }} / L_{\text {scale }}$ for Anti-Node
1 (Fundamental)	-	$1 / 2$
2	1/2	$1 / 4,3 / 4$
3	$1 / 3,2 / 3$	$1 / 6,3 / 6=1 / 2,5 / 6$
4	$1 / 4,2 / 4=1 / 2,3 / 4$	$1 / 8,3 / 8,5 / 8,7 / 8$
5	$1 / 5,2 / 5,3 / 5,4 / 5$	$1 / 10,{ }^{3 / 10, ~}{ }^{5 / 10}=1 / 2,7 / 10,{ }^{9 / 10}$
6	$1 / 6,2 / 6=1 / 3,3 / 6=1 / 2,4 / 6=2 / 3,5 / 6$	1/12, ${ }^{3 / 12}=1 / 4,5 / 12,7 / 12 \ldots$
7	$1 / 7,2 / 7,3 / 7,4 / 7,5 / 7,6 / 7$	$1 / 14,3 / 14,5 / 14,7 / 14=1 / 2,9 / 14 \ldots$
8	$1 / 8,{ }^{2} / 8=1 / 4,3 / 8,4 / 8=1 / 2,5 / 8, \ldots$	$1 / 16,{ }^{3 / 16, ~}, 5 / 16,7 / 16,{ }^{9} / 16,11 / 16, .$.
9	$1 / 9,2 / 9,3 / 9=1 / 3,4 / 9,5 / 9, \ldots$.	$1 / 18,3 / 18=1 / 6,{ }^{5 / 18},{ }^{7} / 18, \ldots$
10	$1 / 10,{ }^{2 / 10}=1 / 5,3 / 10,4 / 10,5 / 10, \ldots$	$1 / 20,3 / 20,5 / 20=1 / 4,7 / 20, \ldots$

Thus, from the above table, we can see that for playing on nodes associated with the $n^{\text {th }}$ harmonic, that $\beta_{\text {pick }} \equiv L_{\text {pick }} / L_{s c a l e}=m / n$, where n is the harmonic \#, and m is an integer such that $m=1,2,3, \ldots .<n$. For playing on anti-nodes associated with the $n^{\text {th }}$ harmonic, we see that $\beta_{p i c k} \equiv L_{p i c k} / L_{\text {scale }}=(2 m-1) / 2 n$, where again, m is an integer such that $m=1,2,3, \ldots .<n$.

We can also relate the formulae for the $\beta_{\text {pick }}$ node and anti-node locations with those we obtained above for the node and anti-node locations, in terms of the α_{p}-parameter, since both of these variables describe the (same) peak locations of the sawtooth waveform, where the pick is located along the length of the open string(s) guitar, referenced to the bridge end of the guitar.

For nodes associated with the $n^{\text {th }}$ harmonic, we have:

$$
\beta_{\text {pick }} \equiv L_{\text {pick }} / L_{\text {scale }}=m / n \quad\left(\text { with } 0<\beta_{\text {pick }}<1\right)
$$

and:

$$
\alpha_{p}=m / 2 n \quad \text { (with } 0<\alpha_{p}<1 / 2 \text {) }
$$

For anti-nodes associated with the $n^{\text {th }}$ harmonic, we have:

$$
\beta_{p i c k} \equiv L_{p i c k} / L_{\text {scale }}=(2 m-1) / 2 n\left(\text { with } 0<\beta_{p i c k}<1\right)
$$

and:

$$
\left.\alpha_{p}=(2 m-1) / 4 n \quad \text { (with } 0<\alpha_{p}<1 / 2\right)
$$

where m is an integer such that $m=1,2,3, \ldots .<n$. Thus, we see that $2 \alpha_{p}=\beta_{\text {pick }}$.
We can also see this from the definition of the α_{p}-parameter:

$$
\alpha_{\mathrm{p}} \equiv \theta_{\mathrm{p}} / 2 \pi=k x_{\mathrm{p}} / 2 \pi=2 \pi x_{\mathrm{p}} / 2 \pi \lambda=x_{\mathrm{p}} / \lambda
$$

Since the location of the first peak of the triangle wave is x_{p}, referenced from the bridge of the guitar, then $x_{\mathrm{p}}=L_{\text {pick. }}$. Since the wavelength, λ of the fundamental is twice the scale length of the guitar, i.e. $\lambda=2 L_{\text {scale }}$, then:

$$
\alpha_{p}=x_{p} / \lambda .=L_{p i c k} / 2 L_{\text {scale }}=1 / 2 \beta_{\text {pick }}
$$

Every guitarist knows that for maximum "twang", he or she can play notes close to the bridge. The harmonic content of the notes played here "brightens" up considerably in comparison to playing near the top of the neck, where it joins the body of the guitar, or e.g. playing notes at the $12^{\text {th }}$ fret on the neck, as discussed above. The higher harmonics contribute more and more as the strings of the guitar are picked closer and closer to the bridge. Can we understand how this happens?

First, look at the diagram two figures that shows the first few harmonics ($n=1: 6$). Note that e.g. in the region below $\theta<\pi / 8$, all of the harmonics shown have non-zero amplitudes, $\left|r_{n}\right|=\left|b_{n}\right|$. Since $\alpha_{p} \equiv \theta_{\mathrm{p}} / 2 \pi=1 / 2 \beta_{\text {pick }}=L_{\text {pick }} / 2 L_{\text {scale }}$, then for $\theta_{\mathrm{p}}<\pi / 8$, we have $\theta_{\mathrm{p}}=2 \pi L_{\text {pick }} / 2 L_{\text {scale }}=\pi L_{\text {pick }} / L_{\text {scale }}<\pi / 8$, or $L_{\text {pick }} / L_{\text {scale }}=\beta_{\text {pick }}<1 / 8$. Thus, picking in a region near the bridge which is within $1 / 8$ of the overall scale length will tend to excite all of these harmonics. The ability to excite the fundamental from this picking location is reduced from that e.g. near the top of the neck, where it joins the body of the guitar. Thus, the fundamental is suppressed near the bridge. Likewise for the other
harmonics, but deferentially, the fundamental is suppressed moreso than the other harmonics, the second harmonic suppressed less, the third harmonic, even less suppressed, and so on, near the bridge, for the first few harmonics, with $\beta_{\text {pick }}=L_{\text {pick }} / L_{\text {scale }}<1 / 8$, or equivalently, $\alpha_{\mathrm{p}}=1 / 2 \beta_{\text {pick }}<1 / 16$.

Suppose we decide to pick very close to the bridge, such that the fractional distance, $\beta_{\text {pick }}=L_{\text {pick }} / L_{\text {scale }} \ll 1 / 8$, corresponding to $\alpha_{p}=1 / 2 \beta_{\text {pick }} \ll 1 / 16$. For definiteness' sake, let us choose $\beta_{\text {pick }}=L_{\text {pick }} / L_{\text {scale }}=1 / 2 / 25=1 / 50=0.0200 \ll 1 / 8=0.1250$, corresponding to $\alpha_{p}=1 / 2 \beta_{\text {pick }}=1 / 2 / 50=1 / 100=0.0100 \ll 1 / 16=0.0625$.

Now let us look at the generalized expression we obtained above for the oddsymmetry Fourier coefficients, b_{n} associated with the sawtooth wave:

$$
b_{n}=2 *[2 \alpha \mathrm{p} /(1-2 \alpha \mathrm{p})] *(1 / 2 n \pi \alpha \mathrm{p})^{2} \sin \left(2 n \pi \alpha_{\mathrm{p}}\right) \text { for all } n>0
$$

If we consider only the lower-order harmonics, e.g. $n \leq 5$, then the argument of the sine function in the above formula, $\left(2 n \pi \alpha_{p}\right)<2 * 5 * \pi / 100=\pi / 10=0.314159 \ldots$

Now note that $\sin (\pi / 10)=\sin (0.314159 \ldots)=0.309017 \ldots$ The numerical value of $\sin (\pi / 10)=0.309017 \ldots$ is within $\sim 2 \%$ of the argument of the sine function, $\pi / 10=0.314159 . .$. The reason this is so, can be understood from the Taylor series expansion of the $\sin (x)$ function:

$$
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots=\sum_{n=1}^{n=\infty} \frac{(-1)^{n-1} x^{2 n-1}}{(2 n-1)!}
$$

For small values of the argument, x of the $\sin (x)$ function, e.g. $x \ll 1$, then the higherorder terms in the Taylor series expansion of $\sin (x)$ are negligible, and thus $\sin (x) \sim x$ for $x \ll 1$. This also works reasonably well for $x<1$ (not just $x \ll 1$), as we have seen above, as an approximation.

Thus, for $n \leq 5$ and for $\beta_{\text {pick }}=L_{\text {pick }} / L_{\text {scale }}=1 / 2 / 25=1 / 50=0.0200$, then

$$
\sin \left(2 n \pi \alpha_{p}\right) \leq \sin (\pi / 10) \sim \pi / 10
$$

or simply, $\sin \left(2 n \pi \alpha_{p}\right) \sim 2 n \pi \alpha_{p}$ for $n \leq 5$ and $\beta_{\text {pick }}=L_{p i c k} / L_{\text {scale }}=1 / 2 / 25=0.0200$.
Then:

$$
b_{n} \sim 2 *[2 \alpha \mathrm{p} /(1-2 \alpha \mathrm{p})] *(1 / 2 n \pi \alpha \mathrm{p})^{2} 2 n \pi \alpha_{\mathrm{p}}=2 *[2 \alpha \mathrm{p} /(1-2 \alpha \mathrm{p})] *(1 / 2 n \pi \alpha \mathrm{p})
$$

or:

$$
b_{n} \sim 2 *(1 / n \pi) *[1 /(1-2 \alpha p)]
$$

Now:

$$
\alpha_{\mathrm{p}}=1 / 2 \beta_{\text {pick }}=1 / 2 / 50=1 / 100=0.0100 \ll 1 / 16=0.0625 .
$$

Thus, $2 \alpha_{\mathrm{p}}=\beta_{\text {pick }}=1 / 8 \ll 1$, and we can also approximate the factor $[1 /(1-2 \alpha \mathrm{p})]$ in the above approximate expression for the odd-function Fourier coefficients, b_{n} by taking the leading terms in the Taylor series expansion for the function $1 /(1-\varepsilon)$ for $\varepsilon \ll 1$:

$$
\frac{1}{1-\varepsilon}=1+\varepsilon+\varepsilon^{2}+\varepsilon^{3}+\varepsilon^{4}+\ldots .=\sum_{n=1}^{n=\infty} \varepsilon^{n} \quad \text { for } \quad-1<\varepsilon<1
$$

Thus, for $\varepsilon \ll 1,1 /(1-\varepsilon) \sim 1+\varepsilon$. Thus for $2 \alpha_{\mathrm{p}}=1 / 8 \ll 1$, the factor $[1 /(1-2 \alpha \mathrm{p})] \sim 1+2 \alpha_{\mathrm{p}}$.
Then, for $n \leq 5$ and $\beta_{\text {pick }}=L_{\text {pick }} / L_{\text {scale }}=1 / 2 / 25=0.0200$, we have (approximately) that:

$$
b_{n} \sim 2 *(1 / n \pi) *[1 /(1-2 \alpha \mathrm{p})] \sim 2 *(1 / n \pi) *\left(1+2 \alpha_{p}\right) \sim 2 / n \pi
$$

This (approximate) result for the low-order harmonic, odd-function Fourier coefficients, b_{n}, and thus the magnitudes of the harmonic amplitudes, $\left|r_{n}\right|=\left|b_{n}\right|$ shows that they decrease as $\sim 1 / n$ for the harmonic $\#, n$ when picking notes very near to the bridge of the guitar.

However, from the above discussions associated with the bipolar triangle and sawtooth waves, we found, for picking notes e.g. near the mid-point and/or the quarter point on the strings of the guitar, that the harmonic amplitudes, $\left|r_{n}\right|=\left|b_{n}\right|$ decreased as $\sim 1 / n^{2}$ (not as $\sim 1 / n$)!!! Therefore, picking notes on the strings very near to the bridge of the guitar, the tone is much brighter there because the low-order harmonics do not fall off in amplitude nearly as fast as they do when playing far away from the bridge!

In the following figure, we show the exact (i.e. no approximations-made) results for the magnitudes of the harmonic amplitudes, $\left|r_{n}\right|=\left|b_{n}\right|$ associated with the sawtooth wave for the case when $\beta_{\text {pick }}=L_{p i c k} / L_{\text {scale }}=1 / 2 / 25=1 / 50=0.0200$.

Harmonic Content of a Sawtooth Wave

Note that because the picking notes on the guitar strings is done very near the bridge, the harmonics shown in the above figure are all in phase with each other, with phase angles, $\delta_{n}=\tan ^{-1}\left(b_{n} / a_{n}\right)=\pi=180^{\circ}$. This can also be seen in the above figure showing the waveforms of the first six harmonics. If one imagines a vertical line drawn on this plot for the ($\theta_{\mathrm{p}}=2 \pi \alpha_{\mathrm{p}}$)-parameter (representing the peak location of the triangle wave) in the region of $\theta_{\mathrm{p}} \sim 0$, the intersection of this line with each of the harmonics shows that these harmonics are indeed all in phase with each other.

It can be seen that the harmonic amplitudes associated with a sawtooth wave for $\beta_{\text {pick }}=0.02$, for picking guitar strings very close to the bridge, do not decrease with increasing harmonic \#, n very rapidly, as we anticipated. Compare this result, and the following figure, which shows a semi-log plot of the harmonic amplitudes, with those above, for the triangle wave, with $\beta_{\text {pick }}=1 / 2$, and for the sawtooth wave, with $\beta_{\text {pick }}=1 / 4$.

If the harmonic amplitudes, $\left|r_{n}\right|$ for $\beta_{\text {pick }}=0.02$ fall off with increasing harmonic \#, n as $\left|r_{n}\right| \sim 1 / n$, Then the product of $n^{*}\left|r_{n}\right|$ should be close to being a constant value, roughtly independent of the harmonic \#, n. The following plot shows that for $\beta_{\text {pick }}=0.02$, this is indeed the case, at least approximately so!

The following plot shows the loudness ratios, L_{n} / L_{1} for the first twenty harmonics (i.e. $n<20$) associated with the bipolar sawtooth wave, for $\beta_{\text {pick }}=0.02$, for loudness values of the fundamental of $L_{1}=60 \mathrm{~dB}$ (\sim quiet) and for $L_{1}=100 \mathrm{~dB}$ (\sim quite loud). This is what the human ear perceives as the loudness of the harmonics relative to that of the fundamental. Note that the decrease in the loudness ratio, L_{n} / L_{1} with increasing harmonic \#, n is extremely slow, in comparison to that associated with the triangle wave, with $\beta_{\text {pick }}=1 / 2$, and for the sawtooth wave, with $\beta_{\text {pick }}=1 / 4$.

The following two figures show the "Fourier construction" of a periodic, bipolar, unitamplitude sawtooth wave. The waveforms in these figures were generated using truncated, finite-term version(s) of the Fourier series expansion for this waveform:

$$
\left.f(\theta)\right|_{\substack{\text { sawtooth } \\- \text { wave }}}=\sum_{n=1}^{n=\infty} b_{n} \sin (n \theta)=2\left[\frac{2 \alpha_{p}}{\left(1-2 \alpha_{p}\right)}\right] \sum_{n=1}^{n=\infty}\left(\frac{1}{2 n \pi \alpha_{p}}\right)^{2} \sin \left(2 n \pi \alpha_{p}\right) \sin (n \theta)
$$

The first figure shows the bipolar sawtooth wave (labelled as "Waveform") overlaid with three other waveforms: that associated with just the fundamental (" $n=1$ "), then the waveform associated with fundamental $+2^{\text {nd }}$ harmonic (" $n=1: 2$ "), then the waveform associated with fundamental $+2^{\text {nd }}+3^{\text {rd }}$ harmonic (" $n=1: 3$ "). It can be seen that using just these first three harmonics, that the replication of the sawtooth waveform is not very good, because of the extremely sharp/rapid changes in this waveform at its ends.

Fourier Construction of a Sawtooth Wave

_Waveform $n=1-n=1: 2 \quad n=1: 3$

The second figure shows the bipolar sawtooth wave (labelled as "Waveform") overlaid with three other waveforms: that associated with the fundamental through the $5^{\text {th }}$ harmonic (" $n=1: 5$ "), then the waveform associated with fundamental through the $6{ }^{\text {th }}$ harmonic (" $n=1: 6$ "), then the waveform associated with fundamental through the $7^{\text {th }}$ harmonic ("n = 1:7")

Fourier Construction of a Sawtooth Wave

Adding the additional harmonics up to $\mathrm{n}=7$ helps improve the agreement, but it can be seen that many more of the higher harmonics are needed to replicate the sharp break at the ends of the sawtooth waveform!

Fourier analysis of waveforms has many potential uses and applications. In these notes we have laid down the basics of Fourier analysis, given a few basic examples and connected them to various physical systems, such as the guitar. We shall also see other examples of the use of Fourier analysis elsewhere in this course.

Exercises:

1. Compute the Fourier coefficients, a_{0}, a_{n} and b_{n} for the "flipped" bipolar, triangle wave, in the time domain:

$$
\begin{aligned}
& f(\theta)=f(k x)=-(2 / \pi) \theta \quad \text { for } \quad 0 \leq \theta<\pi / 2 \\
& f(\theta)=f(k x)=+(2 / \pi) \theta-2 \text { for } \pi / 2 \leq \theta<3 \pi / 2 \\
& f(\theta)=f(k x)=-(2 / \pi) \theta+4 \quad \text { for } \quad 3 \pi / 2 \leq \theta<2 \pi
\end{aligned}
$$

Compare these Fourier coefficients with those obtained above for the "unflipped" bipolar triangle wave.
2. Compute the Fourier coefficients, a_{0}, a_{n} and b_{n} for the "shifted" bipolar triangle wave, in the time domain:

$$
\begin{aligned}
& f(\theta)=f(k x)=+(2 / \pi) \theta-1 \text { for } 0 \leq \theta<\pi \\
& f(\theta)=f(k x)=-(2 / \pi) \theta+3 \text { for } \pi \leq \theta<2 \pi
\end{aligned}
$$

Compare these Fourier coefficients with those obtained above for the "unflipped" and "flipped" bipolar triangle waves.
3. Work your way through the details of computing the Fourier coefficients, a_{0}, a_{n} and b_{n} for the above-discussed specific case of the bipolar sawtooth wave.
4. Concoct a waveform shape of your own interest, write out its mathematical representation, $f(\theta)$ over the interval $0 \leq \theta<2 \pi$, and compute the Fourier coefficients, a_{0}, a_{n} and b_{n} associated with your waveform.
5. For each of the above exercises, use e.g. MathLab, or a spreadsheet program, such as Excel to make plots of the harmonic amplitudes, $\left|r_{n}\right|$, the loudness ratios, L_{n} / L_{1} and Fourier contruction of the original waveform, for e.g. the first few harmonics.

References for Fourier Analysis and Further Reading:

1. Fourier Series and Boundary Value Problems, $2^{\text {nd }}$ Edition, Ruel V. Churchill, McGraw-Hill Book Company, 1969.
2. Mathematics of Classical and Quantum Physics, Volumes 1 \& 2, Frederick W. Byron, Jr. and Robert W. Fuller, Addison-Wesley Publishing Company, 1969.
3. Mathematical Methods of Physics, $2^{\text {nd }}$ Edition, Jon Matthews and R.L. Walker, W.A. Benjamin, Inc., 1964.

Legal Disclaimer and Copyright Notice:

Legal Disclaimer:

The author specifically disclaims legal responsibility for any loss of profit, or any consequential, incidental, and/or other damages resulting from the mis-use of information contained in this document. The author has made every effort possible to ensure that the information contained in this document is factually and technically accurate and correct.

Copyright Notice:

The contents of this document are protected under both United States of America and International Copyright Laws. No portion of this document may be reproduced in any manner for commercial use without prior written permission from the author of this document. The author grants permission for the use of information contained in this document for private, non-commercial purposes only.

