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Beats Phenomenon 
 

     Linearly superpose (i.e. add) two signals with amplitudes A1(t) and A2(t), and which have 
similar/comparable frequencies,  2(t) ~ 1(t), with instantaneous phase of the second signal 
relative to the first of 21(t): 
 

 
 
 
 

     Note that at the amplitude level, there is nothing explicitly overt and/or obvious in the above 
mathematical expression for the overall/total/resultant amplitude, Atot(t) that easily explains the 
phenomenon of beats associated with adding together two signals that have comparable 
amplitudes and frequencies. 
 

     However, let us consider the (instantaneous) phasor relationship between the individual 
amplitudes for the two signals, A1(t) and A2(t) respectively. Their relative initial phase 
difference at time t = 0 is 21(t=0) and the resultant/total amplitude, Atot(t=0) is shown in the 
figure below, for time, t = 0: 
 
 
 
 
 
 
 

     From the law of cosines, the magnitude of the total amplitude, Atot(t) at an arbitrary time, t 
is obtained from the following: 
 
 
 
Thus, 
 
 
 
 
 
For equal amplitudes, A10 = A20 = A0, zero relative initial phase, 21 = 0 and constant (i.e. 
time-independent) frequencies, 2 and 1, this expression reduces to: 
 
 
     The phase of the total amplitude, Atot(t) relative to that of the first amplitude A1(t), at an 
arbitrary time, t is (t) and is obtained from the projections of the total amplitude phasor, 
Atot(t) onto the y- and x- axes of the 2-D phasor plane: 
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     The total amplitude, Atot(t) = A1(t) + A2(t) vs. time, t is shown in the figure below, for time-
independent/constant frequencies of f1 = 1000 Hz and f2 = 980 Hz, equal amplitudes of unit 
strength,  A10 = A20 = 1.0 and zero relative phase, 21 = 0.0 

 
 
     Clearly, the beats phenomenon can be seen in the above waveform of total amplitude, Atot(t) 
= A1(t) + A2(t) vs. time, t. From the above graph, it is obvious that the beat period, beat = 1/fbeat 
= 0.050 sec = 1/20th sec, corresponding to a beat frequency, fbeat = 1/beat = 20 Hz, which is 
simply the frequency difference, fbeat  | f1  f2| between f1 = 1000 Hz and f2 = 980 Hz. Thus, 
the beat period, beat = 1/fbeat = 1/| f1  f2|. When f1 = f2, the beat period becomes infinitely long, 
and no beats are heard. 
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    In terms of the phasor diagram, as time progresses, the individual amplitudes A1(t) and A2(t) 
actually precess at (angular) rates of 1 = 2f1 and 2 = 2f2 radians per second respectively, 
completing one revolution in the phasor diagram, for each cycle/each period of 1 = 2/1 = 
1/f1 and 2 = 2/2 = 1/f2, respectively. If at time t = 0 the two phasors are precisely in phase 
with each other (i.e. with initial relative phase 21 = 0.0), then the resultant/total amplitude, 
Atot(t = 0) = A1(t = 0) + A2(t = 0)  will be as shown in the figure below. 
 
 
 
 
 
     As time progresses, if 1  2, (phasor 1 with angular frequency 1 = 2f1 = 2*1000 = 
2000 radians/sec and 2 = 2f2 = 2*980 = 1960 radians/sec in our example above) phasor 
1, with higher angular frequency will precess more rapidly than phasor 2 (by the difference in 
angular frequencies,    = (1  2) = (2000  1960) = 40 radians/second). Thus, as time 
increases, phasor 1 will lead phasor 2; eventually (at time t = ½beat = 0.025 = 1/40th sec in our 
above example) phasor 2 will be exactly  =  radians, or 180 degrees behind in phase 
relative to phasor 1. Phasor 1 at time t = ½beat = 0.025 sec = 1/40th sec will be oriented exactly 
as it was at time t = 0.0 (having precessed exactly N1 = 1t/2 = 2f1t/2 = f1t = 25.0 
revolutions in this time period), however phasor 2 will be pointing in the opposite direction at 
this instant in time (having precessed only N2 = 2t/2 = 2f2t/2 = f2t = 24.5 revolutions in 
this same time period), and thus the total amplitude Atot(t = ½beat) = A1(t = ½beat) + A2(t = 
½beat) will be zero (if the magnitudes of the two individual amplitudes are precisely equal to 
each other), or minimal (if the magnitudes of the two individual amplitudes are not precisely 
equal to each other), as shown in the figure below.  
 
 
 
 
 
     As time progresses further, phasor 2 will continue to lag farther and farther behind, and 
eventually (at time t = beat = 0.050 sec = 1/20th sec in our above example) phasor 2, having 
precessed through N2 = 49.0 revolutions will now be exactly  = 2 radians, or 360 degrees 
(or one full revolution) behind in phase relative to phasor 1 (which has precessed through N1 = 
50.0 full revolutions), thus, the net/overall result is the same as being exactly in phase with 
phasor 1! At this point in time, Atot(t = beat) = A1(t = beat) + A2(t = beat) = 2A1(t = beat) = 
2A1(t = beat), and the phasor diagram looks precisely like that at time t = 0. 
 

     Thus, it should (hopefully) now be clear to the reader that the phenomenon of beats is 
manifestly that of time-dependent alternating constructive/destructive interference between two 
periodic signals of comparable frequency, at the amplitude level. This is by no means a trivial 
point, as often the beats phenomenon is discussed in physics textbooks in the context of 
intensity, Itot(t) = |Atot(t)|2 = |A1(t) + A2(t)|2.  From the above discussion, the physics origin of 
the beats phenomenon has absolutely nothing to do with the intensity of the overall/ resultant 
signal. 

A1(t=0) A2(t=0) 

Atot(t=0) = A1(t=0) + A2(t=0) 

A2(t = ½beat) = A1(t = ½beat) 

Atot(t = ½beat) = A1(t = ½beat) + A2(t = ½beat) = 0 
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     The primary reason that the phenomenon of beats is discussed more often in terms of 
intensity, rather than amplitude is that the physics is perhaps easier to understand from the 
intensity perspective – at least mathematically, things appear more obvious, physically: 
 
 
 
 
Let us define: 
 
 
And then let us use the mathematical identity: 
 
 
Thus: 
 
 
 
The let us define: 
 
 
We then obtain: 
 
 
 
 
Using the identity: 
 
 
We then obtain the additional relation, which is not usually presented and/or discussed in 
physics textbooks: 
 
 
 
 
 
 
This latter formula shows that there are a.) DC (i.e. zero frequency) components/constant 
terms associated with both amplitudes, A10 and A20, b.) 2nd harmonic components with 2f1 and 
2f2, as well as c.) a component associated with the sum of the two frequencies, 21 = f1 + f2, 
and d.) a component associated with the difference of the two frequencies, f21 = f1 – f1. This 
is a remarkably similar result to that associated with the output response from a system with a 
quadratic non-linear response to a pure/single-frequency sine-wave input! 
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A Special/Limiting Case – Amplitude Modulation: 
 
    When A10 >> A20 and f1 >> f2, then the exact expression for the total amplitude, 
 

 

can be approximated by the following expression(s), neglecting terms of order m2  (A20/A10)2 
<< 1 under the radical sign, and, defining 21(t)  (1(t)  2(t)), and noting that for f1 >> f2, 
21(t)  (1(t)  2(t))  1(t): 
 

 

     However, when f1 >> f2, the relative phase difference 21(t) changes by 2 radians 
(essentially) for each cycle of the frequency, f1. Hence we can safely set to zero this phase 
difference, i.e. 21(t) = 0 because its (time-averaged) effect in the f1 >> f2 limit is negligible. 

Using the Taylor series expansion 1
21 1    for the case when  << 1, the expression for 

the total amplitude then becomes: 
 

 

     The ratio m  (A20/A10) << 1 is known as the (amplitude) modulation depth of the high-
frequency carrier wave A1(t), with amplitude A10 >> A20 and frequency f1 >> f2, modulated by 
the low frequency wave A2(t), with amplitude A20 and frequency f2. This is the underlying 
principle of AM radio – AM stands for Amplitude Modulation… 
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