Derivation of the Sabine Equation: Conservation of Energy

Consider a large room of volume $V=H \times W \times L\left(m^{3}\right)$ with perfectly reflecting walls, filled with a uniform, steady-state (i.e. equilibrium) acoustic energy density $w_{a}(\vec{r}, t, f)$ at given frequency f (Hz) within the volume V of the room. Uniform energy density means that a given time t : $w_{a}(\vec{r}, t, f)=w_{a}(t, f)=$ constant (SI units: Joules $/ m^{3}$). The large room also has a small opening of area $A\left(m^{2}\right)$ in it, as shown in the figure below:

In the steady-state, the rate of acoustical energy W_{a} input e.g. by a point sound source within the large room equals the rate at which acoustical energy is "leaking" out of the room through the hole of area A, i.e. the acoustical power input by the sound source in the room into the room $=$ the acoustical power leaving the room through the hole of area A. In this idealized model of a room with perfectly reflecting walls, the hole of area A thus represents absorption of sound in a real room with finite reflectivity walls, i.e. walls that have some absorption associated with them.

Suppose at time $t=0$ the sound source in the room \{located far from the hole \} is turned off. Since the sound energy density is uniform in the room, the sound energy contained in the room $W_{a}(t, f)=\int_{V} w_{a}(\vec{r}, t, f) d^{3} r=w_{a}(t, f) \int_{V} d^{3} r=w_{a}(t, f) V$ will thus decrease with time, since acoustical energy is (slowly) leaking out of the room through the opening of area A.

The instantaneous acoustical power at the frequency f passing through the hole of area A is the instantaneous time-rate of change of the acoustic energy in the room:

$$
P_{a}(t, f)=\frac{\partial W_{a}(t, f)}{\partial t}
$$

However, the instantaneous acoustical power loss at the frequency f associated with the flux of acoustic energy passing through the hole of area A is also $P_{a}(t, f)=-\int_{A} \vec{I}_{a}(\vec{r}, t, f) \cdot d \vec{A}$ where $\vec{I}_{a}(\vec{r}, t, f)$ is the instantaneous 3-D vector sound intensity at the point \vec{r} at frequency f (SI units: Watts $/ m^{2}$) and $d \vec{A}=d A \hat{n}$ is a infinitesimal vector area element associated with the hole of area A, and \hat{n} is the outward-pointing unit normal to the hole of area A, as shown in the above figure.

Thus:

$$
P_{a}(t, f)=\frac{\partial W_{a}(t, f)}{\partial t}=-\int_{A} \vec{I}_{a}(\vec{r}, t, f) \cdot d \vec{A}=-\int_{A} \vec{I}_{a}(\vec{r}, t, f) \cdot \hat{n} d A=-\int_{A}\left|I_{a}(t, f)\right| \cos \Theta(t) d A
$$

where $\cos \Theta(t)$ is the instantaneous direction cosine, and thus $\Theta(t)$ is the instantaneous 3-D opening angle between the two vectors $\vec{I}_{a}(t, f)$ and $\vec{A}=A \hat{n}$ (as shown in the above figure), and $\vec{I}_{a}(\vec{r}, t, f) \cdot \hat{n}=\left|I_{a}(\vec{r}, f)\right| \cos \Theta(t)$. In the steady-state, the magnitude of the 3-D vector sound intensity is constant in time at any given point \vec{r} inside the volume V of the room, and on/at the opening of the hole of area A, however the direction of the 3-D vector sound intensity at any given point \vec{r} fluctuates randomly from one moment to the next. At/on the surface of the opening of the hole of area A, the direction of the 3-D vector sound intensity associated with energy leaking out of the room of volume V is such that the direction of the 3-D sound intensity points randomly from moment-to-moment in the forward-going hemisphere, i.e. is contained within a solid angle $d \Omega$ associated only with the forward half of 4π steradians (since sound energy is leaking out of the room - sound energy is not coming into the room from the outside).

We are not interested in following the instantaneous, moment-to-moment/short-time scale fluctuations in the 3-D vector sound intensity $\vec{I}_{a}(\vec{r}, t, f)$, but we are interested in the mean power loss, time-averaged over these moment-to-moment fluctuations. For randomly fluctuating direction in $\vec{I}_{a}(\vec{r}, t, f)$, the mean power loss through the hole of area A, time-averaging over such moment-to-moment fluctuations is:

$$
\left\langle P_{a}(t, f)\right\rangle=\frac{\partial\left\langle W_{a}(t, f)\right\rangle}{\partial t}=-\left\langle\int_{A} \vec{I}_{a}\left(\vec{r}_{\text {hole }}, t, f\right) \cdot d \vec{A}\right\rangle=-\int_{A}\left|I_{a}\left(\vec{r}_{\text {hole }} f\right)\right|\langle\cos \Theta(t)\rangle d A
$$

The random, fluctuating moment-to-moment direction in the 3-D vector sound intensity $\vec{I}_{a}\left(\vec{r}_{\text {hole }}, t, f\right)=\underbrace{\left|\vec{I}_{a}\left(\vec{r}_{\text {ole }}, f\right)\right|}_{=\text {constant }} \cos \Theta(t)$ means that the fluctuating, moment-to-moment $\cos \Theta(t)$ is random at the hole opening of area A. What this means physically is that the probability density distribution $d \boldsymbol{P}(\cos \Theta) / d \cos \Theta=1 / 2$ is flat/uniform in the $\cos \Theta$ variable, as shown in the figure below:

唡

Since probability \mathcal{P} is (always) conserved, and defining $x \equiv \cos \Theta$, we must have:

$$
\int_{-1}^{+1}\left(\frac{d P(\cos \Theta)}{d \cos \Theta}\right) d \cos \Theta=\int_{-1}^{+1}\left(\frac{d P(x)}{d x}\right) d x=\int_{-1}^{+1} \frac{1}{2} d x=\frac{1}{2} \int_{-1}^{+1} d x=\left.\frac{1}{2} x\right|_{-1} ^{+1}=\frac{1}{2} \cdot 2=1
$$

However, for our physical situation here, only the forward half of this probability distribution is occupied $(0 \leq \cos \Theta \leq 1)-\{$ sound energy is leaking out of the hole, not into it $\}$. Thus, the timeaveraged value of $\cos \Theta(t)$, for a flat random distribution in $\cos \Theta$ over the forward hemisphere is:

$$
\langle\cos \Theta(t)\rangle=\int_{0}^{1}\left(\frac{d P(\cos \Theta)}{d \cos \Theta}\right) \cos \Theta d \cos \Theta=\int_{0}^{1}\left(\frac{1}{2}\right) \cos \Theta d \cos \Theta=\frac{1}{2} \int_{0}^{1} x d x=\left.\frac{1}{2} \cdot \frac{1}{2} x^{2}\right|_{0} ^{1}=\frac{1}{4}
$$

and hence:

$$
\begin{aligned}
\left\langle P_{a}(t, f)\right\rangle & =\frac{\partial\left\langle W_{a}(t, f)\right\rangle}{\partial t}=-\left\langle\int_{A} \vec{I}_{a}(\vec{r}, t, f) \cdot d \vec{A}\right\rangle=-\int_{A}\left|I_{a}(\vec{r}, f)\right|\langle\cos \Theta(t)\rangle d A \\
& =-\frac{1}{4} \int_{A}\left|I_{a}(\vec{r}, f)\right| d A=-\frac{1}{4}\left|I_{a}\left(\vec{r}_{\text {hole }}, f\right)\right| \int_{A} d A=-\frac{1}{4}\left|I_{a}\left(\vec{r}_{\text {hole }}, f\right)\right| A
\end{aligned}
$$

A clarificational note: In the steady-state, note that the time interval $\Delta t_{\text {avg }}$ needed for averaging over the moment-to-moment fluctuations in the instantaneous direction of the 3-D sound intensity $\vec{I}_{a}(\vec{r}, t, f)$ is much less than the characteristic time constant τ_{w} associated with sound energy leaking out of the room of volume V through the hole of area A, i.e. $\Delta t_{\text {avg }} \ll \tau_{W}$.

For a large room, we \{can safely\} assume that the nature of sound propagation is very similar to that in "free air" - i.e. the great outdoors. Then the instantaneous 3-D vector sound intensity $\vec{I}_{a}(\vec{r}, t, f)$ is related to the instantaneous scalar acoustic energy density $w_{a}(\vec{r}, t, f)\left(J o u l e s / m^{3}\right)$ by the relation $\vec{I}_{a}(\vec{r}, t, f)=\vec{c} w_{a}(\vec{r}, t, f)$ where $\vec{c}=$ velocity vector associated with propagation of sound in free-air with $|\vec{c}| \simeq 344 \mathrm{~m} / \mathrm{s}$ at $N T P$. Thus, from the above discussion on averaging out random, moment-to-moment fluctuations in the direction of 3-D sound intensity at the hole of area A, we see that the time-averaged version of this relation also holds:

$$
\left\langle\vec{I}_{a}(\vec{r}, t, f)\right\rangle=\left\langle\vec{c} w_{a}(\vec{r}, t, f)\right\rangle \Rightarrow\left\langle I_{a}\left(\vec{r}_{\text {hole }}, t, f\right)\right\rangle=c\left\langle w_{a}\left(\vec{r}_{\text {hole }}, t, f\right)\right\rangle
$$

Note further that in the steady-state, at time t the acoustic energy $W_{a}(t, f)$ contained within the room of volume V is related to the $\{$ uniform $\}$ acoustic energy density $w_{a}(\vec{r}, t, f)$ by:

$$
W_{a}(t, f)=\int_{V} w_{a}(\vec{r}, t, f) d^{3} r=w_{a}(t, f) \int_{V} d^{3} r=w_{a}(t, f) V
$$

This relation also holds for time-averaged quantities:

$$
\left\langle W_{a}(t, f)\right\rangle=\int_{V}\left\langle w_{a}(\vec{r}, t, f)\right\rangle d^{3} r=\left\langle w_{a}(t, f)\right\rangle \int_{V} d^{3} r=\left\langle w_{a}(t, f)\right\rangle V
$$

Since the acoustic energy leaking out of the hole comes from inside the room, by energy conservation, we see that:

$$
\begin{aligned}
\left\langle P_{a}(t, f)\right\rangle= & \frac{\partial\left\langle W_{a}(t, f)\right\rangle}{\partial t}=-\left\langle\int_{A} \vec{I}_{a}(\vec{r}, t, f) \cdot d \vec{A}\right\rangle=-\frac{1}{4}\left\langle I_{a}\left(\vec{r}_{\text {hole }}, t, f\right)\right\rangle A=-\frac{1}{4} c\left\langle w_{a}\left(\vec{r}_{\text {hole }}, t, f\right)\right\rangle A \\
= & -\frac{c A}{4 V}\left\langle W_{a}(t, f)\right\rangle \\
\text { or: } \quad & \frac{\partial\left\langle W_{a}(t, f)\right\rangle}{\partial t}=-\frac{c A}{4 V} \cdot\left\langle W_{a}(t, f)\right\rangle=-\frac{1}{\tau_{W}}\left\langle W_{a c}(t, f)\right\rangle
\end{aligned}
$$

where we have defined the characteristic time constant $\tau_{W} \equiv \frac{4 V}{c A}$ (SI units: seconds).
The equation $\frac{\partial\left\langle W_{a}(t, f)\right\rangle}{\partial t}=-\frac{1}{\tau_{W}}\left\langle W_{a}(t, f)\right\rangle$ is a linear, first-order homogeneous differential equation \{known as the diffusion, or heat equation\} which, for our situation/our initial conditions (at $t=0$) has the well-known solution of the form:

$$
\left\langle W_{a}(t, f)\right\rangle=\left\langle W_{a}^{o}(f)\right\rangle e^{-t / \tau_{W}}
$$

where $\left\langle W_{a}^{o}(f)\right\rangle$ is the time-averaged value of the acoustic energy contained in the room at the frequency f at time $t=0$. Thus, at time $t=\tau_{W}:\left\langle W_{a}\left(f, t=\tau_{W}\right)\right\rangle=\left\langle W_{a}^{o}(f)\right\rangle e^{-\tau / \tau_{W}}=\left\langle W_{a}^{o}(f)\right\rangle e^{-1}$ i.e. the $\{$ time-averaged $\}$ acoustic energy at frequency f decreases to $1 / e=1 / 2.7183=0.3679$ of its initial value in a time interval $t=\tau_{W}$.

For a large room, since $\left\langle I_{a}(f, t)\right\rangle=c\left\langle w_{a}(f, t)\right\rangle=c\left\langle W_{a}(f, t)\right\rangle / V$, we can equivalently rewrite the solution for the time-averaged acoustic energy in terms of the time-averaged sound intensity as: $\left\langle I_{a}(t, f)\right\rangle=\left\langle I_{a}^{o}(f)\right\rangle e^{-t / \tau_{w}}$ where $\left\langle I_{a}^{o}(f)\right\rangle$ is the time-averaged sound intensity at the frequency f at time $t=0$, and instead ask: how long does it take for the time-averaged sound intensity to decay to one-millionth $\left(10^{-6}\right)$ of its initial value, i.e. what is the reverberation time T_{60} ? This occurs when:

$$
\left\langle I_{a}\left(t=T_{60}, f\right)\right\rangle=\left\langle I_{a}^{o}(f)\right\rangle e^{-T_{60} / \tau_{W}}=10^{-6}\left\langle I_{a}^{o}(f)\right\rangle
$$

i.e. this occurs when $e^{-T_{00} / \tau_{W}}=10^{-6}$. Take the natural log of both sides of this relation: $\ln \left(e^{-T_{60} / \tau_{W}}\right)=\ln \left(10^{-6}\right)$. But $\ln \left(e^{-T_{60} / \tau_{W}}\right)=-T_{60} / \tau_{W}$. Thus: $-T_{60} / \tau_{W}=\ln \left(10^{-6}\right)$ or: $T_{60}=-\tau_{W} \ln \left(10^{-6}\right)$ and since $\tau_{W} \equiv \frac{4 V}{c A}$, we thus find that the reverberation time T_{60} is:

$$
T_{60}=-\tau_{W} \ln \left(10^{-6}\right)=\left\{\frac{4 V}{c A}\right\} \ln \left(10^{-6}\right)=\left\{-\frac{4 \cdot \ln \left(10^{-6}\right)}{c}\right\} \frac{V}{A}=\kappa \frac{V}{A}
$$

The numerical value of this "universal" constant, κ is:

$$
\kappa \equiv-\frac{4 \cdot \ln \left(10^{-6}\right)}{c}=+\frac{4 \cdot 13.8155}{343 \mathrm{~m} / \mathrm{s}}=+\frac{55.262}{343 \mathrm{~m} / \mathrm{s}}=0.1611 \mathrm{~s} / \mathrm{m}(=0.049 \mathrm{~s} / \mathrm{ft})
$$

Thus, the Sabine equation is: $T_{60}=0.161 \frac{\mathrm{~V}}{\mathrm{~A}}$ (metric units) $=0.049 \frac{\mathrm{~V}}{\mathrm{~A}}$ (english units).
We also see that:

$$
T_{60}=-\tau_{W} \ln \left(10^{-6.0}\right)=13.8155 \tau_{W} \text {. }
$$

Similarly, we can also show that the reverberation time T_{30}, defined as the time it takes for the time-averaged sound intensity to decay to one-thousandth $\left(10^{-3}\right)$ of its initial value is given by:

$$
T_{30}=-\tau_{W} \ln \left(10^{-3.0}\right)=6.9078 \tau_{W}=\frac{1}{2} T_{60}
$$

How do we physically measure/determine the reverberation time $T_{60}\left(\right.$ and $/$ or $\left.T_{30}\right)$?

Method I:

Note that since:

$$
\begin{aligned}
& \left\langle I_{a}\left(t=T_{60}, f\right)\right\rangle=\left\langle I_{a}^{o}(f)\right\rangle e^{-T_{60} / \tau_{W}}=10^{-6}\left\langle I_{a}^{o}(f)\right\rangle \\
& \left\langle I_{a}\left(t=T_{30}, f\right)\right\rangle=\left\langle I_{a}^{o}(f)\right\rangle e^{-T_{30} / \tau_{W}}=10^{-3}\left\langle I_{a}^{o}(f)\right\rangle
\end{aligned}
$$

Then, from the above \{time-averaged $\}$ sound intensity level formulae:

$$
\begin{aligned}
& \left\langle\operatorname{SIL}\left(t=T_{60}, f\right)\right\rangle=10 \log _{10}\left(\left\langle I_{a}\left(t=T_{60}, f\right)\right\rangle /\left\langle I_{o}\right\rangle\right) \\
& \left\langle\operatorname{SIL}\left(t=T_{30}, f\right)\right\rangle=10 \log _{10}\left(\left\langle I_{a c}\left(t=T_{30}, f\right)\right\rangle /\left\langle I_{o}\right\rangle\right)
\end{aligned}
$$

where $\left\langle I_{o}\right\rangle=10^{-12} \mathrm{Watts} / \mathrm{m}^{2}$ is the (time-averaged) reference sound intensity (at the threshold of human hearing).

At time $t=0$ we have:

$$
\begin{aligned}
\langle\operatorname{SIL}(t=0, f)\rangle & =10 \log _{10}\left(\left\langle I_{a c}(t=0, f)\right\rangle /\left\langle I_{o}\right\rangle\right) \\
& =10 \log _{10}\left(\left\langle I_{a}^{o}(f)\right\rangle /\left\langle I_{o}\right\rangle\right)
\end{aligned}
$$

Thus, the $t=0$ to $t=T_{60}$ difference in \{time-averaged\} sound intensity levels is:

$$
\begin{aligned}
\Delta\left\langle S I L\left(\Delta t=T_{60}, f\right)\right\rangle & \equiv\left\langle\operatorname{SIL}\left(t=T_{60}, f\right)\right\rangle-\langle\operatorname{SIL}(t=0, f)\rangle \\
& =10 \log _{10}\left(\left\langle I_{a}\left(t=T_{60}, f\right)\right\rangle /\left\langle I_{o}\right\rangle\right)-10 \log _{10}\left(\left\langle I_{a}(t=0, f)\right\rangle /\left\langle I_{o}\right\rangle\right) \\
& =10 \log _{10}\left(10^{-6}\left\langle I_{a}^{o}(f)\right\rangle /\left\langle I_{o}\right\rangle\right)-10 \log _{10}\left(\left\langle I_{a}^{o}(f)\right\rangle /\left\langle I_{o}\right\rangle\right) \\
& =10 \log _{10}\left(10^{-6}\right)+\underline{10 \log _{10}\left(\left\langle I_{a}^{o}(f)\right\rangle /\left\langle I_{o}\right\rangle\right)}-10 \log _{10}\left(\left\langle I_{a}^{o}(f)\right\rangle /\left\langle I_{o}\right\rangle\right) \\
& =10 \log _{10}\left(10^{-6}\right)=-60 d B
\end{aligned}
$$

Likewise, the $t=0$ to $t=T_{30}$ difference in \{time-averaged $\}$ sound intensity levels is:

$$
\begin{aligned}
\Delta\left\langle\operatorname{SIL}\left(\Delta t=T_{30}, f\right)\right\rangle & \equiv\left\langle\operatorname{SIL}\left(t=T_{30}, f\right)\right\rangle-\langle\operatorname{SIL}(t=0, f)\rangle \\
& =10 \log _{10}\left(\left\langle I_{a}\left(t=T_{30}, f\right)\right\rangle /\left\langle I_{o}\right\rangle\right)-10 \log _{10}\left(\left\langle I_{a}(t=0, f)\right\rangle /\left\langle I_{o}\right\rangle\right) \\
& =10 \log _{10}\left(10^{-3}\left\langle I_{a}^{o}(f)\right\rangle /\left\langle I_{o}\right\rangle\right)-10 \log _{10}\left(\left\langle I_{a}^{o}(f)\right\rangle /\left\langle I_{o}\right\rangle\right) \\
& =10 \log _{10}\left(10^{-3}\right)+\underline{10 \log _{10}\left(\left\langle I_{a}^{o}(f)\right\rangle /\left\langle I_{o}\right\rangle\right)}-10 \log _{10}\left(\left\langle I_{a}^{o}(f)\right\rangle /\left\langle I_{o}\right\rangle\right) \\
& =10 \log _{10}\left(10^{-3}\right)=-30 d B
\end{aligned}
$$

Now, for a large room (i.e. in a "free field" situation), the sound intensity level (SIL) will be within $\sim 0.1 d B$ of the sound pressure level (SPL) over the human auditory range ($\sim 20 \mathrm{~Hz}-20$ KHz). Thus, using an accurately-calibrated SPL meter, technically speaking, the reverberation time $T_{60}=\Delta t=t_{2}-t_{1}$ is the measured time interval corresponding to a decrease of:

$$
\begin{aligned}
\Delta\left\langle S P L\left(\Delta t=T_{60}, f\right)\right\rangle & =-60 d B \text { measured from } \Delta\left\langle S P L\left(t=t_{1}, f\right)\right\rangle=-5 d B \text { to } \\
\Delta\left\langle S P L\left(t=t_{2}, f\right)\right\rangle & =-65 d B \text { referenced to }\langle S P L(t=0, f)\rangle .
\end{aligned}
$$

Similarly, technically speaking, the reverberation time $T_{30}=\Delta t=t_{2}^{\prime}-t_{1}^{\prime}$ is the measured time interval corresponding to a decrease of:

$$
\begin{aligned}
\Delta\left\langle S P L\left(\Delta t=T_{30}, f\right)\right\rangle & =-30 d B \text { measured from } \Delta\left\langle S P L\left(t=t_{1}^{\prime}, f\right)\right\rangle=-5 d B \text { to } \\
\Delta\left\langle S P L\left(t=t_{2}^{\prime}, f\right)\right\rangle & =-35 d B \text { referenced to }\langle S P L(t=0, f)\rangle .
\end{aligned}
$$

For example, if $\langle\operatorname{SPL}(t=0, f)\rangle=100 d B$, then $\left\langle\operatorname{SPL}\left(t=t_{1}, f\right)\right\rangle=\left\langle\operatorname{SPL}\left(t=t_{1}^{\prime}, f\right)\right\rangle=95 d B$ and $\left\langle\operatorname{SPL}\left(t=t_{2}, f\right)\right\rangle=35 d B$, whereas $\left\langle\operatorname{SPL}\left(t=t_{2}^{\prime}, f\right)\right\rangle=65 d B$, thus:
and:

$$
\begin{aligned}
& \Delta\left\langle S P L\left(\Delta t=T_{60}, f\right)\right\rangle=\left\langle S P L\left(t=t_{2}, f\right)\right\rangle-\left\langle S P L\left(t=t_{1}, f\right)\right\rangle=35 d B-95 d B=-60 d B \\
& \downarrow t_{1}=t_{1}^{\prime} \\
& \Delta\left\langle S P L\left(\Delta t=T_{30}, f\right)\right\rangle=\left\langle S P L\left(t=t_{2}^{\prime}, f\right)\right\rangle-\left\langle S P L\left(t=t_{1}^{\prime}, f\right)\right\rangle=65 d B-95 d B=-30 d B
\end{aligned}
$$

These relations are shown in the figure below:

Note that the ambient noise level (aka noise floor) of the room may (often) be such that it is significantly above $\left\langle S P L\left(t=t_{2}, f\right)\right\rangle=35 d B$ (e.g. $55 d B$), hence measuring the T_{60} reverberation time will not be possible, whereas measuring the T_{30} reverberation time will be possible (as long as the noise floor of the room is below $\left.\left\langle\operatorname{SPL}\left(t=t_{2}^{\prime}, f\right)\right\rangle=65 d B\right)$. The T_{60} reverberation time can then be calculated from the measured T_{30} reverberation time using the simple relation $T_{60}=2 T_{30}$.

Note that one can also simply increase the sound power input to the room, such that with e.g. $\langle\operatorname{SPL}(t=0, f)\rangle=120 d B$, then: $\left\langle\operatorname{SPL}\left(t=t_{1}, f\right)\right\rangle=\left\langle\operatorname{SPL}\left(t=t_{1}^{\prime}, f\right)\right\rangle=115 d B$, $\left\langle S P L\left(t=t_{2}, f\right)\right\rangle=55 d B$, and $\left\langle S P L\left(t=t_{2}^{\prime}, f\right)\right\rangle=85 d B$, thus:
and:

$$
\begin{aligned}
& \Delta\left\langle S P L\left(\Delta t=T_{60}, f\right)\right\rangle=\left\langle S P L\left(t=t_{2}, f\right)\right\rangle-\left\langle S P L\left(t=t_{1}, f\right)\right\rangle=55 d B-115 d B=-60 d B \\
& \uparrow t_{1}=t_{1}^{\prime} \\
& \Delta\left\langle S P L\left(\Delta t=T_{30}, f\right)\right\rangle=\left\langle S P L\left(t=t_{2}^{\prime}, f\right)\right\rangle-\langle S P L(t=\left.\left.t_{1}^{\prime}, f\right)\right\rangle=85 d B-115 d B=-30 d B
\end{aligned}
$$

Note further that there is nothing sacred about using T_{60} or T_{30}; We can also define other reverberation times: $T_{10}, T_{20}, T_{40}, T_{50} \ldots$ which correspond to relative decreases of SIL's/SPL's of $-10,-20,-40,-50 \ldots d B$ respectively... The general relation for an arbitrary definition of the reverberation time is: $T_{x x} \equiv-\tau_{W} \ln \left(10^{-(x x / 10)}\right)$, with: $\Delta\left\langle\operatorname{SPL}\left(\Delta t=T_{x x}, f\right)\right\rangle=-x x d B$.

Method II:

Note that since: $\quad\left\langle I_{a}\left(t=\tau_{W}, f\right)\right\rangle=\left\langle I_{a}^{o}(f)\right\rangle e^{-\tau_{W} / \tau_{W}}=(1 / e)\left\langle I_{a}^{o}(f)\right\rangle=0.3679\left\langle I_{a}^{o}(f)\right\rangle$
we can use a true sound intensity meter (e.g. Bruel \& Kjaer 2260E) to measure the time interval $\Delta t=\tau_{W}-0=\tau_{W}$ that the time-averaged sound intensity falls to $1 / e=0.3679$ of its initial $(t=0)$ value. We can then subsequently calculate T_{60} and T_{30} using the relations:

$$
T_{60}=-\tau_{W} \ln \left(10^{-6.0}\right)=13.8155 \tau_{W} \text { and: } T_{30}=-\tau_{W} \ln \left(10^{-3.0}\right)=6.9078 \tau_{W}=\frac{1}{2} T_{60}
$$

However, note that if the typical T_{60} reverberation time is $\sim 1.4 \mathrm{sec}$, then $T_{30}=\frac{1}{2} T_{60} \sim 0.7 \mathrm{sec}$ and $\tau_{W} \sim 0.1 \mathrm{sec}$! Hence, experimentally it is much better to (directly) measure T_{60} and/or T_{30} if the time resolution of the measurement, $\sigma_{t} \sim \tau_{W} \sim 0.1 \mathrm{sec}$.

Note further that the following is also a difficult quantity to (accurately) measure:

$$
\begin{aligned}
\Delta\left\langle\operatorname{SIL}\left(\Delta t=\tau_{W}, f\right)\right\rangle & \equiv\left\langle\operatorname{SIL}\left(t=\tau_{w}, f\right)\right\rangle-\langle\operatorname{SIL}(t=0, f)\rangle \simeq \Delta\left\langle\operatorname{SPL}\left(\Delta t=\tau_{W}, f\right)\right\rangle \\
& =10 \log _{10}\left(\left\langle I_{a}\left(t=\tau_{W}, f\right)\right\rangle /\left\langle I_{o}\right\rangle\right)-10 \log _{10}\left(\left\langle I_{a}(t=0, f)\right\rangle /\left\langle I_{o}\right\rangle\right) \\
& =10 \log _{10}\left((1 / e)\left\langle I_{a}^{o}(f)\right\rangle /\left\langle I_{o}\right\rangle\right)-10 \log _{10}\left(\left\langle I_{a}^{o}(f)\right\rangle /\left\langle I_{o}\right\rangle\right) \\
& =10 \log _{10}(1 / e)+\underline{\left.\left.10 \log _{10}\left(\left\langle I_{a}^{o}(f)\right\rangle\right)\right\rangle\left\langle I_{o}\right\rangle\right)}-10 \log _{10}\left(\left\langle I_{a}^{o}(f)\right\rangle\right)\left\langle\left\langle I_{o}\right\rangle\right) \\
& =10 \log _{10}(1 / e)=-4.343 d B
\end{aligned}
$$

However, additionally note that one could very easily carry out a least-squares fit of the $\operatorname{SIL}(t)$ (or $S P L(t)$) data to a decaying exponential in order to obtain an accurate determination of τ_{W}.

Method III:

For a large room (i.e. in a "free field" situation), the (time-averaged) sound intensity $\left\langle I_{a}(t, f)\right\rangle$ is related to the time-averaged square of the instantaneous over-pressure by the relation:

$$
\left\langle I_{a}(t, f)\right\rangle=\left\langle p^{2}(t, f)\right\rangle / \rho_{o} c
$$

where $\rho_{o}=1.204 \mathrm{~kg} / \mathrm{m}^{3}$ is the density of air and $c=343 \mathrm{~m} / \mathrm{s}$ is the longitudinal speed of propagation of sound in air $\{$ at NTP $\}$.

Then since: $\quad\left\langle I_{a}(t, f)\right\rangle=\left\langle I_{a}^{o}(f)\right\rangle e^{-t / \tau_{W}}, \quad$ then: $\quad\left\langle p^{2}(t, f)\right\rangle=\left\langle p^{2}(t=0, f)\right\rangle e^{-t / \tau_{W}}$
For a large room (i.e. in a "free field" situation), the time-average square of the over-pressure amplitude is related to the over-pressure amplitude by:

$$
\left\langle p^{2}(t, f)\right\rangle=\left\langle p^{2}(t=0, f)\right\rangle e^{-t / \tau_{W}}=\frac{1}{2} p_{o}^{2} e^{-t / \tau_{W}}
$$

where p_{o} is the over-pressure amplitude at $t=0$, and $p(t, f)=p(t=0, f) e^{-t / \tau_{p}}=p_{o} \cos \omega t \cdot e^{-t / \tau_{p}}$ is the instantaneous over-pressure, and τ_{p} is the characteristic time constant associated with the exponential decay of the over-pressure amplitude with time.

Now, time-averaging over the rapid oscillations associated with $\cos \omega t=\cos 2 \pi f t$, but not the slow-decay of the exponential, we have:

$$
\left\langle p^{2}(t, f)\right\rangle=\left\langle p_{o}^{2} \cos ^{2} \omega t \cdot e^{-2 t \tau_{p}}\right\rangle=p_{o}^{2}\left\langle\cos ^{2} \omega t\right\rangle e^{-2 t / \tau_{p}}=\frac{1}{2} p_{o}^{2} e^{-2 t / \tau_{p}}
$$

Comparing this result with the above, we see that a relation exists between the two time constants τ_{W} and τ_{p} :

$$
\tau_{W}=\tau_{p} / 2 \text { or: } \tau_{p}=2 \tau_{W}
$$

Hence, we obtain the following relations:

$$
T_{60}=-\tau_{W} \ln \left(10^{-6.0}\right)=13.8155 \tau_{W}=13.8155 \cdot\left(\tau_{p} / 2\right)=6.90776 \tau_{p}
$$

and:

$$
T_{30}=-\tau_{W} \ln \left(10^{-3.0}\right)=6.9078 \tau_{W}=6.9078 \cdot\left(\tau_{p} / 2\right)=3.45388 \tau_{p}=\frac{1}{2} T_{60}
$$

We have developed for the UIUC Physics 406 (and Physics 193) POM course a method which has enabled us to determine the over-pressure decay time constant τ_{p} to high accuracy by: a.) 24-bit digital recording the time-dependent signal output from a (reference) pressure mic situated somewhere in the large room, stimulated by either a single frequency, or white/pink noise emanating from a sound source located somewhere in the large room.
b.) offline analyzing the pressure mic's time-dependent 24-bit digital signal data (*.wav format), using digital filtering techniques to window around the single frequency (in order to reject ambient noise), or use e.g. digital filters to window pink/white noise signals in $311 / 3$-octave bands across the full audio spectrum, calculating the standard deviations $\sigma_{p}(t)$ of the overpressure signals (which are linearly proportional to the over-pressure amplitudes) of the filtered signals in a short, running time window Δt (with $\tau_{p}\left(=2 \tau_{w}\right) \gg \Delta t \gg \tau=1 / f$), and then:
c.) carrying out least-squares fits to decaying exponentials $\sigma_{p}(t)=\sigma_{p}^{o} e^{-t / \tau_{p}}$ associated with each of the windowed standard deviations, e.g. in the first $1 / 2$ second (second $1 / 2$ second) time interval often there is more than one time constant, e.g. if the ceiling and floor of the large room are more absorptive than the walls of the room...

If interested, please see/read e.g. Serin Yoon's Fall 2012, Nathan Oliveira and Frank Horger's Fall 2010 and also Eric Egner's Fall 2007 UIUC 193 POM Final Reports, available on-line at the following URL:
http://courses.physics.illinois.edu/phys 193/193 student projects.html

