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Derivation of the Sabine Equation: Conservation of Energy 
 

     Consider a large room of volume V = HWL (m3) with perfectly reflecting walls, filled with 
a uniform, steady-state (i.e. equilibrium) acoustic energy density  , ,aw r t f


 at given frequency f 

(Hz) within the volume V of the room. Uniform energy density means that a given time t: 

   , , ,a aw r t f w t f constant 


 (SI units: Joules/m3). The large room also has a small opening 

of area A (m2) in it, as shown in the figure below: 

 

     In the steady-state, the rate of acoustical energy aW  input e.g. by a point sound source within 

the large room equals the rate at which acoustical energy is “leaking” out of the room through 
the hole of area A, i.e. the acoustical power input by the sound source in the room into the room 
= the acoustical power leaving the room through the hole of area A. In this idealized model of a 
room with perfectly reflecting walls, the hole of area A thus represents absorption of sound in a 
real room with finite reflectivity walls, i.e. walls that have some absorption associated with them.  
 

     Suppose at time t = 0 the sound source in the room {located far from the hole} is turned off. 
Since the sound energy density is uniform in the room, the sound energy contained in the room 

       3 3, , , , ,a a a aV V
W t f w r t f d r w t f d r w t f V   


 will thus decrease with time, since 

acoustical energy is (slowly) leaking out of the room through the opening of area A. 
 

     The instantaneous acoustical power at the frequency  f  passing through the hole of area A is 
the instantaneous time-rate of change of the acoustic energy in the room: 
 

   ,
, a

a

W t f
P t f

t





 

 

     However, the instantaneous acoustical power loss at the frequency  f  associated with the flux 

of acoustic energy passing through the hole of area A is also    , , ,a aA
P t f I r t f dA 

    where  

 , ,aI r t f
 

 is the instantaneous 3-D vector sound intensity at the point r


at frequency f (SI units: 

Watts/m2) and ˆdA dAn


 is a infinitesimal vector area element associated with the hole of area A, 
and n̂  is the outward-pointing unit normal to the hole of area A, as shown in the above figure. 
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Thus: 

           ,
ˆ, , , , , , cosa

a a a aA A A

W t f
P t f I r t f dA I r t f ndA I t f t dA

t


       

   
     

 

where  cos t is the instantaneous direction cosine , and thus  t is the instantaneous 3-D 

opening angle between the two vectors  ,aI t f


and ˆA An


 (as shown in the above figure), and 

     ˆ, , , cosa aI r t f n I r f t 
   . In the steady-state, the magnitude of the 3-D vector sound 

intensity is constant in time at any given point r


inside the volume V of the room, and on/at the 
opening of the hole of area A, however the direction of the 3-D vector sound intensity at any 
given point r


fluctuates randomly from one moment to the next. At/on the surface of the opening 

of the hole of area A, the direction of the 3-D vector sound intensity associated with energy 
leaking out of the room of volume V is such that the direction of the 3-D sound intensity points 
randomly from moment-to-moment in the forward-going hemisphere, i.e. is contained within a 
solid angle d associated only with the forward half of 4 steradians (since sound energy is 
leaking out of the room – sound energy is not coming into the room from the outside). 
 
     We are not interested in following the instantaneous, moment-to-moment/short-time scale 

fluctuations in the 3-D vector sound intensity  , ,aI r t f
 

, but we are interested in the mean 

power loss, time-averaged over these moment-to-moment fluctuations. For randomly fluctuating 

direction in  , ,aI r t f
 

, the mean power loss through the hole of area A, time-averaging over such 

moment-to-moment fluctuations is:  
 

         
,

, , , cosa
a a hole a holeA A

W t f
P t f I r t f dA I r f t dA

t


     

  
    

  

The random, fluctuating moment-to-moment direction in the 3-D vector sound intensity 

     
  

, , , cosa hole a hole

constant

I r t f I r f t



 
  


 means that the fluctuating, moment-to-moment  cos t  is 

random at the hole opening of area A. What this means physically is that the probability density 
distribution  cos cos 1 2d d  P  is flat/uniform in the cos  variable, as shown in the 

figure below: 
뼀 
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Since probability P  is (always) conserved, and defining cosx   , we must have: 
 

   1 1 1 1 1

11 1 1 1

cos 1 1 1 1
cos 2 1

cos 2 2 2 2

d d x
d dx dx dx x

d dx

    

   

   
             

   
P P

 

 

However, for our physical situation here, only the forward half of this probability distribution is 
occupied  0 cos 1    - {sound energy is leaking out of the hole, not into it}. Thus, the time-

averaged value of  cos t , for a flat random distribution in cos  over the forward hemisphere is: 
 

   1 1 1 12

00 0 0

cos 1 1 1 1 1
cos cos  cos cos  cos  

cos 2 2 2 2 4

d
t d d x dx x

d

                   
  

P
 

 

and hence: 

         

     

,
, , , , cos

1 1 1
                 , , ,

4 4 4

a
a a aA A

a a hole a holeA A

W t f
P t f I r t f dA I r f t dA

t

I r f dA I r f dA I r f A


     



     

 

 

  

  
 

 

A clarificational note: In the steady-state, note that the time interval avgt needed for averaging 

over the moment-to-moment fluctuations in the instantaneous direction of the 3-D sound 

intensity  , ,aI r t f
 

is much less than the characteristic time constant W   associated with sound 

energy leaking out of the room of volume V through the hole of area A, i.e. avg Wt   . 
 

     For a large room, we {can safely} assume that the nature of sound propagation is very similar 
to that in “free air” – i.e. the great outdoors. Then the instantaneous 3-D vector sound intensity 

 , ,aI r t f
 

is related to the instantaneous scalar acoustic energy density  , ,aw r t f


 (Joules/m3) by 

the relation    , , , ,a aI r t f cw r t f
   

 where c


 = velocity vector associated with propagation of 

sound in free-air with 344c
  m/s at NTP. Thus, from the above discussion on averaging out 

random, moment-to-moment fluctuations in the direction of 3-D sound intensity at the hole of 
area A, we see that the time-averaged version of this relation also holds: 
 

   , , , ,a aI r t f cw r t f
   

    , , , ,a hole a holeI r t f c w r t f
 

 
 

Note further that in the steady-state, at time t the acoustic energy  ,aW t f  contained within the 

room of volume V is related to the {uniform} acoustic energy density  , ,aw r t f


by:  
 

       3 3, , , , ,a a a aV V
W t f w r t f d r w t f d r w t f V   


 

 

This relation also holds for time-averaged quantities: 
 

       3 3, , , , ,a a a aV V
W t f w r t f d r w t f d r w t f V   


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Since the acoustic energy leaking out of the hole comes from inside the room, by energy 
conservation, we see that: 
 

         

 

, 1 1
, , , , , , ,

4 4

                ,
4

a
a a a hole a holeA

a

W t f
P t f I r t f dA I r t f A c w r t f A

t
cA

W t f
V


      



 


   

 

 

or:   
     

, 1
, ,

4
a

a ac
W

W t f cA
W t f W t f

t V 


    


 

where we have defined the characteristic time constant 
4

W

V

cA
  (SI units: seconds). 

     The equation 
   

, 1
,a

a
W

W t f
W t f

t 


 


 is a linear, first-order homogeneous differential 

equation {known as the diffusion, or heat equation} which, for our situation/our initial conditions 
(at t = 0) has the well-known solution of the form: 
 

   , Wto
a aW t f W f e   

 

where  o
aW f  is the time-averaged value of the acoustic energy contained in the room at the 

frequency f at time t = 0. Thus, at time Wt  :       1, Wo o
a W a aW f t W f e W f e         

i.e. the {time-averaged} acoustic energy at frequency f decreases to 1/e = 1/2.7183 = 0.3679  
of its initial value in a time interval Wt  . 
 

     For a large room, since      , , ,a a aI f t c w f t c W f t V  ,  we can equivalently 

rewrite the solution for the time-averaged acoustic energy in terms of the time-averaged sound 

intensity as:    , Wto
a aI t f I f e   where  o

aI f  is the time-averaged sound intensity at 

the frequency f at time t = 0, and instead ask: how long does it take for the time-averaged sound 
intensity to decay to one-millionth (106) of its initial value, i.e. what is the reverberation time 
T60? This occurs when: 
 

     60 6
60 , 10WTo o

a a aI t T f I f e I f     
 

i.e. this occurs when 60 610WTe   . Take the natural log of both sides of this relation: 

   60 6ln ln 10WTe   .  But  60
60ln WT

We T    . Thus:  6
60 ln 10WT     or: 

 6
60 ln 10WT     and since 

4
W

V

cA
  , we thus find that the reverberation time 60T  is: 

 

     6

6 6
60

4 ln 104
ln 10 ln 10W

V V V
T

cA c A A
 


 

           
    
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The numerical value of this “universal” constant,   is:  
 

   
64 ln 10 4 13.8155 55.262

0.1611   0.049
343 343

s m s ft
c m s m s


 

         

 

Thus, the Sabine equation is: 60 0.161   (  ) 0.049   (  )
V V

T metric units english units
A A

  . 

 

We also see that:   6.0
60 ln 10 13.8155W WT     .   

 

Similarly, we can also show that the reverberation time 30T , defined as the time it takes for  the 

time-averaged sound intensity to decay to one-thousandth (103) of its initial value is given by: 
 

     3.0 1
30 602ln 10 6.9078W WT T      

 

How do we physically measure/determine the reverberation time 60T (and/or 30T )?  
 

Method I:  
 

Note that since: 

     60 6
60 , 10WTo o

a a aI t T f I f e I f     

     30 3
30 , 10WTo o

a a aI t T f I f e I f     
 

Then, from the above {time-averaged} sound intensity level formulae: 
 

    60 10 60, 10 log ,a oSIL t T f I t T f I    

    30 10 30, 10 log ,ac oSIL t T f I t T f I    
 

where 12 210oI Watts m is the (time-averaged) reference sound intensity (at the threshold of 

human hearing). 
 

At time 0t   we have: 

    
  

10

10

0, 10log 0,

                         10log

ac o

o
a o

SIL t f I t f I

I f I

  


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Thus, the 0t   to 60t T difference in {time-averaged} sound intensity levels is: 
 

     
     

     

60 60

10 60 10

6
10 10

, , 0,

                                 10log , 10log 0,

                                 10log 10 10log

                                 

a o a o

o o
a o a o

SIL t T f SIL t T f SIL t f

I t T f I I t f I

I f I I f I

      

   

 

     6
10 1010log 10 10log o

a oI f I    1010 log o
a oI f I

 6
10                                 10log 10 60 dB  

 

 

Likewise, the 0t   to 30t T difference in {time-averaged} sound intensity levels is: 
 

     
     

     

30 30

10 30 10

3
10 10

, , 0,

                                 10log , 10log 0,

                                 10log 10 10log

                                 

a o a o

o o
a o a o

SIL t T f SIL t T f SIL t f

I t T f I I t f I

I f I I f I

      

   

 

     3
10 1010log 10 10log o

a oI f I    1010 log o
a oI f I

 3
10                                 10log 10 30 dB  

 

 

     Now, for a large room (i.e. in a “free field” situation), the sound intensity level (SIL) will be 
within ~ 0.1 dB of the sound pressure level (SPL) over the human auditory range (~ 20 Hz – 20 
KHz). Thus, using an accurately-calibrated SPL meter, technically speaking, the reverberation 
time 60 2 1T t t t    is the measured time interval corresponding to a decrease of:  
 

  60 , 60 SPL t T f dB      measured from  1, 5 SPL t t f dB    to      

       2 , 65 SPL t t f dB     referenced to  0,SPL t f .  
 

     Similarly, technically speaking, the reverberation time 30 2 1T t t t      is the measured time 

interval corresponding to a decrease of: 
 

  30 , 30 SPL t T f dB      measured from  1, 5 SPL t t f dB    to     

      2 , 35 SPL t t f dB     referenced to  0,SPL t f . 
 

     For example, if  0, 100 SPL t f dB  , then    1 1, , 95 SPL t t f SPL t t f dB     

and  2 , 35 SPL t t f dB  , whereas  2 , 65 SPL t t f dB  , thus: 
 

     60 2 1, , , 35 95 60 SPL t T f SPL t t f SPL t t f dB dB dB            

and:                   1 1t t  

     30 2 1, , , 65 95 30 SPL t T f SPL t t f SPL t t f dB dB dB             
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These relations are shown in the figure below: 
 

 
 

     Note that the ambient noise level (aka noise floor) of the room may (often) be such that it is 

significantly above  2 , 35 SPL t t f dB   (e.g. 55 dB ), hence measuring the 60T  reverberation 

time will not be possible, whereas measuring the 30T  reverberation time will be possible (as long 

as the noise floor of the room is below  2 , 65 SPL t t f dB  ). The 60T  reverberation time can 

then be calculated from the measured 30T  reverberation time using the simple relation 60 302T T .  
 

     Note that one can also simply increase the sound power input to the room, such that with e.g. 

 0, 120 SPL t f dB  , then:    1 1, , 115 SPL t t f SPL t t f dB    , 

 2 , 55 SPL t t f dB  , and  2 , 85 SPL t t f dB  , thus: 
 

      60 2 1, , , 55 115 60 SPL t T f SPL t t f SPL t t f dB dB dB            

and:                   1 1t t  

      30 2 1, , , 85 115 30 SPL t T f SPL t t f SPL t t f dB dB dB             

 
     Note further that there is nothing sacred about using 60T or 30T ; We can also define other 

reverberation times: 10 20 40 50, , ,  ...T T T T  which correspond to relative decreases of SIL′s/SPL′s of 

10, 20, 40, 50 ... dB     respectively… The general relation for an arbitrary definition of the 

reverberation time is:   10ln 10 xx
xx WT    ,  with:  ,  xxSPL t T f xx dB     . 

t  

 ,SPL t f  

100 dB  

95 dB  

65 dB  

35 dB  

 ,   30 SPL t f dB    

0t   1 1t t t   2t t  2t t  

 ,   60 SPL t f dB    

30 2 1T t t t       

60 2 1 302T t t t T      

Ambient Noise Level 
aka Noise Floor,  

e.g. 55 dB 

Sound Pressure Level 
from Sound Source 
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Method II:  
 

     Note that since:             , 1 0.3679W Wo o o
a W a a aI t f I f e e I f I f       

 

we can use a true sound intensity meter (e.g. Bruel & Kjaer 2260E) to measure the time interval 
0W Wt      that the time-averaged sound intensity falls to 1/e = 0.3679 of its initial (t = 0) 

value. We can then subsequently calculate 60T  and 30T  using the relations:  
 

 6.0
60 ln 10 13.8155W WT       and:  3.0 1

30 602ln 10 6.9078W WT T      
 

     However, note that if the typical 60T  reverberation time is ~ 1.4 sec, then 1
30 602 ~ 0.7secT T  

and ~ 0.1secW ! Hence, experimentally it is much better to (directly) measure 60T  and/or 30T if 

the time resolution of the measurement, ~ ~ 0.1sect W  . 
 

Note further that the following is also a difficult quantity to (accurately) measure: 
 

       
     

       
10 10

10 10

, , 0, ,

                                 10log , 10log 0,

                                 10log 1 10log

                           

W W W

a W o a o

o o
a o a o

SIL t f SIL t f SIL t f SPL t f

I t f I I t f I

e I f I I f I

  



         

   

 



    10 10      10log 1 10log o
a oe I f I    1010 log o

a oI f I

 10                                 10log 1 4.343 e dB  

 

 

     However, additionally note that one could very easily carry out a least-squares fit of the SIL(t) 
(or SPL(t)) data to a decaying exponential in order to obtain an accurate determination of W . 
 

Method III:  
 

For a large room (i.e. in a “free field” situation), the (time-averaged) sound intensity  ,aI t f  

is related to the time-averaged square of the instantaneous over-pressure by the relation: 
 

   2, ,a oI t f p t f c  
 

where 31.204 o kg m  is the density of air and 343c m s is the longitudinal speed of 

propagation of sound in air {at NTP}.  
 

Then since:     , Wto
a aI t f I f e  ,    then:       2 2, 0, Wtp t f p t f e     

 

     For a large room (i.e. in a “free field” situation), the time-average square of the over-pressure 
amplitude is related to the over-pressure amplitude by: 
 

   2 2 21
2, 0, W Wt t

op t f p t f e p e      
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where op is the over-pressure amplitude at t = 0, and    , 0, cosp pt t

op t f p t f e p t e       

is the instantaneous over-pressure, and p is the characteristic time constant associated with the 

exponential decay of the over-pressure amplitude with time. 
 

     Now, time-averaging over the rapid oscillations associated with cos cos 2t ft   , but not 
the slow-decay of the exponential, we have: 
 

  2 2 22 2 2 2 2 21
2, cos cosp p pt t t

o o op t f p t e p t e p e          
 

Comparing this result with the above, we see that a relation exists between the two time 
constants W  and p :  

2W p    or: 2p W   
 

Hence, we obtain the following relations: 
 

     6.0
60 ln 10 13.8155 13.8155 2 6.90776 W W p pT            

and: 

     3.0 1
30 602ln 10    6.9078    6.9078 2 3.45388 W W p pT T           

 

     We have developed for the UIUC Physics 406 (and Physics 193) POM course a method 
which has enabled us to determine the over-pressure decay time constant p to high accuracy by: 

a.) 24-bit digital recording the time-dependent signal output from a (reference) pressure mic 
situated somewhere in the large room, stimulated by either a single frequency, or white/pink 
noise emanating from a sound source located somewhere in the large room.  
 

b.) offline analyzing the pressure mic’s time-dependent 24-bit digital signal data (*.wav format), 
using digital filtering techniques to window around the single frequency (in order to reject 
ambient noise), or use e.g. digital filters to window pink/white noise signals in 31  1/3-octave 
bands across the full audio spectrum, calculating the standard deviations  p t  of the over-

pressure signals (which are linearly proportional to the over-pressure amplitudes) of the filtered 
signals in a short, running time window t (with  2 1p W t f      ), and then: 

c.) carrying out least-squares fits to decaying exponentials   pto
p pt e     associated with each 

of the windowed standard deviations, e.g. in the first ½ second (second ½ second) time interval – 
often there is more than one time constant, e.g. if the ceiling and floor of the large room are more 
absorptive than the walls of the room… 
 

     If interested, please see/read e.g. Serin Yoon’s Fall 2012, Nathan Oliveira and Frank Horger’s 
Fall 2010 and also Eric Egner’s Fall 2007 UIUC 193 POM Final Reports, available on-line at the 
following URL: 
 

http://courses.physics.illinois.edu/phys193/193_student_projects.html 
 


