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Mathematical  Musical  Physics of the Wave Equation 
 

     The purpose of this particular set of lecture notes for this course is to investigate the 
mathematical physics (and the use) of the wave equation for describing wave behavior 
associated with different kinds of one, two and three-dimensional physical systems – which 
have relevance for various kinds of musical instruments. The wave equation mathematically 
describes the behavior of waves for a given physical system, and is “generically” given by: 

where ( , )r t 
is the displacement amplitude of the wave at the (1-, 2-, or 3-D) space position, 

r


at time, t from its equilibrium position; the symbol v represents the longitudinal speed of 
propagation of the wave and 2 is the Laplacian operator (the form of which is relevant for the 
dimensionality and symmetry of the physical system under investigation). Formally-speaking, 
the above wave equation is a linear, homogeneous 2nd-order differential equation. 
 

     For musical instrument applications, we are specifically interested in standing wave 
solutions of the wave equation (and not so much interested in investigating the traveling wave 
solutions). We have discussed the mathematical physics associated with traveling and standing 
waves in previous lecture notes for this course. Mathematically, standing wave solutions of the 
wave equation – are formally known as eigen solutions, eigen modes, and/or also known as 
normal modes – and such solutions result as a consequence of imposing specific boundary 
conditions in space on either the amplitude of the wave, ( , )r t 

– which are formally known as 
Dirichlet boundary conditions, or imposing specific boundary conditions on the spatial 1st 
derivatives of ( , )r t 

, e.g. ( , ) / |
ox xr t x  


– which are formally known as Neumann boundary 

conditions, or imposing a combination of both – i.e. mixed boundary conditions on ( , )r t 
and 

spatial 1st derivatives of ( , )r t 
– which are formally known as Cauchy boundary conditions. 

 

   Since we are specifically interested in standing wave eigen-solutions of the wave equation, 
we will “go for the jugular” in these lecture notes and dispense with discussion of the most 
general possible solutions of the wave equation for a given physical problem, in order to keep 
the length of these lecture notes tractable. The reader is requested to bear this in mind! 
 

     The reader should also note that the above linear, homogeneous wave equation is a 
mathematical description/treatment of wave phenomena at a first-order level – actual (i.e. real) 
physical systems have additional physical processes that are simultaneously operative, e.g. 
dissipative processes – such as internal/external friction and/or damping - air viscosity, various 
other energy loss mechanisms, etc. and e.g. finite stiffness effects of vibrating systems, as 
opposed to the perfectly compliant material implicitly assumed in the (derivation of the) above 
wave equation. All these “higher-order” effects are (for the time being) temporarily neglected 
here – usually these effects are small, resulting in perturbations/small (but easily 
measurable/detectable) shifts in the normal modes of vibration of the mechanical system. 
When such higher-order effects are explicitly included, they add/contribute additional 
mathematical terms to the wave equation. Thus solution(s) to the more-sophisticated/realistic 
wave equation are correspondingly more complicated and tedious to obtain.  
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     Furthermore, implicit in the mathematics of the above wave equation is the tacit assumption 
that the physical material(s) comprising the various systems we are about to discuss are linear, 
homogeneous and isotropic materials. There is nothing in the above form of the wave equation 
that explicitly takes into account the proper description of non-linear, non-homogeneous and/or 
anisotropic materials. The above wave equation is also really only valid strictly in the small-
amplitude-of-oscillations/vibrations regime. However, modifications to explicitly include such 
effects can be incorporated into the wave equation to accommodate these additional properties 
of such physical systems, if needed. Again, the solution(s) to the more-sophisticated/realistic 
wave equation are correspondingly more complicated and tedious to obtain.  
 

     Here in these lecture notes, we wish to see the overall physics “forest”, and thus temporarily 
neglect/ignore (some of) the details – the physics “trees”. 
 
A. Standing Waves In One-Dimensional Systems: 
 

A1. Transverse Standing Waves on a Vibrating String – Fixed Ends: 
 

     One-dimensional wave behavior on a vibrating string is mathematically described by the  
1-D wave equation: 

where ( , )r t 
is the instantaneous transverse displacement amplitude of the string at the point r


 

at the time t. We can (trivially) rewrite this as: 

     Notice that the LHS of this equation has only space-derivatives of the one-dimensional 
variable, x associated with it, whereas the RHS of this equation has only time-derivatives 
associated with it. This suggests we try a product solution for the wave equation, i.e. 

( , ) ( ) ( )x t U x T t  where ( )U x contains only spatially x-dependent terms and ( )T t contains 
only temporally- (i.e. time)-dependent terms.  
 

     Formally, we insert ( , ) ( ) ( )x t U x T t  into the above differential equation, and then 
explicitly carry out the differentiation: 
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     In the second line above, we’ve explicitly used the fact(s) that ( )T t and ( )U x , respectively 
are functions of time, t and space, x only. On the third line, again since ( )U x and ( )T t , 
respectively are functions only of time and space, we formally convert partial derivatives of x 
and t to total derivatives of x and t, respectively. Finally, on the fourth line, we divide both 
sides of this equation by ( , ) ( ) ( )x t U x T t  and then notice that the LHS is now a entirely 
function of ( )U x only and that the RHS is now entirely a function of ( )T t . This last equation 
must be satisfied for any/all possible values of x and t, and the only way this can happen is if 
both sides of this latter equation are equal to a constant, which we (deliberately chose to) set 
equal to –k2 (since we know what’s going to happen next…:).  We call the constant that arises 
from use of the separation of variables technique, the separation constant. Thus, here –k2 is the 
separation constant. 
 

     Using the separation of variables technique, we actually wind up with two differential/wave 
equations: 

 

Now v = f  = (/2)(2/k) =  / k; thus vk = . Rewriting the above two equations: 

Both of these equations are of the same mathematical form – both are indeed wave equations. 
The space-domain version of this linear, homogeneous 2nd –order differential equation is 
known as the Helmholtz equation. 
 

Thus far, we have not explicitly discussed any particular solution(s) of these wave equations – 
we know they are oscillatory in space and time, and again, we seek standing wave solutions. 
 

     On most stringed instruments, such as the violin, viola, cello, guitar, mandolin, piano, etc. 
the ends of the string(s) – e.g. at the bridge and nut (headstock) end of a guitar are ideally 
rigidly attached to the body of the instrument in some manner. The string(s) on the instrument 
then have (active) length, L – the distance between the two fixed ends (this is known as the 
scale length). Defining our coordinate system such that the x-axis coincides with the 
equilibrium shape of the string, one end of the string at x = 0 (e.g. the bridge), the other end at x 
= L (the nut/headstock on a guitar). Mathematically, the so-called boundary condition at the 
ends of the string(s) is that the displacement amplitude is zero at the ends of the string, 
i.e. ( 0, ) ( , ) 0x t x L t      for fixed ends, independent of time, t.  
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Thus, this boundary condition is only relevant to the U(x)-wave equation, i.e. in reality the 
boundary condition for fixed ends is ( 0) ( ) 0U x U x L    . In general, there are only two 
allowed spatially periodic standing wave solutions to this wave equation – either sin kx, or 
cos kx. The above boundary condition for fixed ends allows only the sin kx-type solutions, 
because sin 0 = 0, and sin kL = 0 if and only if  kL = n, n = 1, 2, 3, 4,  … Denoting kn = n/L, 
we see that the allowed standing wave solution(s) to the U(x)-wave equation are of the form: 
 

 

We also see that the boundary condition(s) on the spatial U(x) standing wave solutions to the 
U(x)-wave equation determine the frequencies of the eigen-modes/normal modes of vibration.  
Since  = 2/k, then n = 2/kn = 2L/n = 2L/n, n = 1, 2, 3, 4,  …Since f = v/, then fn = v/n 
and thus fn = v/n = nv/2L, n = 1, 2, 3, 4,  …  
 

The lowest mode of vibration (known as the fundamental), is when n = 1; thus this vibrational 
standing wave eigen-mode is also known as the first harmonic, with f1 = v/2L and 1 = 2L (i.e. 
L = ½ 1) and corresponding standing wave solution 1 1 1 1( ) sin sin /U x A k x A x L  , as shown 

in the figure below: 

 

Excluding the endpoints, note that the first harmonic/fundamental has no nodes in its spatial 
wave function, U1(x). 
 
The next highest eigen-mode (n = 2) is known as the second harmonic (also known as the first 
overtone) with f2 = 2v/2L = v/L and 2 = 2L/2 = L and corresponding standing wave solution 

2 2 2 2( ) sin sin 2 /U x A k x A x L   as shown below. Note that the second harmonic has one 

node in its spatial wavefunction, U2(x) at x = L/2. 
The next highest eigen-mode (n = 3) is known as the third harmonic (also known as the second 

�vertone) with f3 = 3v/2L and 3 = 3L/2, and corresponding standing wave solution  

3 3 3 3( ) sin sin 3 /U x A k x A x L  , which has two nodes in its spatial standing wave function, 

U3(x) at x = L/3 and x = 2L/3; and so on… in general, there are (n  1) nodes for the spatial 
standing wave function, Un(x).  
 
 

( ) sin( ) sin( )n n n nU x A k x A n x L 

x 
x = 0 x = L 

x 
x = 0 x = L x = ½ L 
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     We have not yet discussed the allowed solutions to the temporal Helmholtz equation, so let 
us now turn our attention to this. As stated earlier, the physical boundary conditions on the 
ends of the strings place no direct constraints on the allowed solutions, T(t) of the temporal 
Helmholtz equation. Thus, both sin t and cos t solutions in principle are (or must be) 
allowed.  
 
     Also, since spatial wavelengths and temporal frequencies are intimately related to each 
other via  f = v/, and hence also the eigen-frequencies,  fn = v/n = nv/2L,   n = vkn = nv/L, 
then the allowed solutions to the temporal Helmholtz equation, T(t)  Tn(t), with both sin nt 
and cos nt type solutions allowed. Note that the eigen-frequencies for standing waves of a 
string with fixed endpoints are integer-multiples of the lowest mode of vibration, fn =  nf1,  
n = 1, 2, 3, 4, 5, …. with  f1 = v/2L and n = 1/n with 1 = 2L. 
 
     In actuality, the detailed shape of the vibrating string at some particular instant in time 
(usually conveniently taken to be t = 0) – known as the “initial conditions” (not to be confused 
with {spatial} boundary conditions!) actually determines/defines the relative amount(s) of the 
allowed sin nt vs. cos nt type solutions – because this simply specifies, for each eigen-mode 
what its phase is/how far it is along in its oscillation cycle at time t = 0. Temporal phase 
information is “encrypted” into the allowed eigen-solutions, Tn(t) of the temporal Helmholtz 
equation as follows: 

 

With the following constraints/conditions on the coefficients bn and cn: 

Of course, one could equivalently write the allowed eigen-solutions of the temporal Helmholtz 
equation simply as one or the other of the following forms: 

These relations can be obtained directly from the above Tn(t) = bn sin nt + an cos nt relation 
using the trigonometric identities for sin(A+B) and cos(A+B), respectively. 
 

We can also write the allowed eigen-solutions of the temporal Helmholtz equation in yet 
another, equivalent form, using complex notation: 
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     The complete eigen-function solution(s) ( , ) ( ) ( )n n nx t U x T t  for standing waves on a 

vibrating string with fixed ends are of the form: 
 

           
       
       
   

( , ) ( ) ( )

sin sin cos sin / sin / cos /

sin sin sin / sin /

sin cos sin / cos /

sin sinn n

n n n

n n n n n n n n n

n n n n n n

n n n n n n

i t
n n n

x t U x T t

A k x b t c t A n x L b n vt L c n vt L

A k x t A n x L n vt L

A k x t A n x L n vt L

A k x e A n 



    

    

    




         
     
     

     // ni n vt Lx L e     

 

 

with n = 2L/n and fn = v/n = nv/2L, n = 1, 2, 3, 4, 5, … and eigen-energies 2 21
4n n nE M A . 

 

     The displacement amplitude coefficients, An are also formally specified/determined by the 
initial conditions (i.e. harmonic content) of the vibrating string at time t = 0. Physically, this 
means that the detailed shape/configuration of the vibrating string at time t = 0, e.g. a triangle, 
sawtooth or square wave-shape, etc. completely specifies – by the method of Fourier analysis 
(i.e. harmonic analysis) – the exact harmonic content (i.e. allowed fn values), the harmonic 
amplitudes (values of An) and the phases, n (or n). For example, for a symmetrical triangle-
type standing wave (which has reflection symmetry about its mid-point), only odd-n 
coefficients An are non-zero. For an asymmetrical triangle-type standing wave, which does not 
have reflection symmetry about its mid-point) both even and odd-n coefficients An are non-
zero. For a 50% duty-cycle type square wave (which also has reflection symmetry about its 
mid-point), again only odd-n coefficients An are non-zero. For further details of how this is 
accomplished, see e.g. the UIUC P498POM lecture notes on Fourier Analysis, I-IV. 
 

     As mentioned at the outset of this section, the above eigen-function solutions 
( , ) ( ) ( )n n nx t U x T t  for standing waves on a vibrating string with (idealized) fixed ends are 

relevant for a broad selection of stringed instruments, such as the violin, viola, cello, guitar, 
mandolin, piano, etc. 
 

A2. Transverse Standing Waves on a Vibrating String – Free Ends: 
 

     Certain kinds of 1-dimensional systems with free ends (Neumann boundary conditions) can 
also exhibit standing wave solutions. Mathematically, the method of analysis is exactly the 
same as above, except that for free, rather than fixed ends – i.e. Neumann boundary conditions, 
the value of the spatial derivative (= slope) of U(x) must vanish at the endpoints x = 0 and x = L 
for any/all time(s) t: 

                                              
0

( )
0

x

dU x

dx 

    and   
( )

0
x L

dU x

dx 

  

 

     The reader can easily verify that the allowed eigen-solutions Un(x) for free ends e.g. of a 
vibrating string, or a transversely-vibrating 1-dimensional rod must be of the form cos knx 
(rather than sin knx, as in the case of fixed ends/Dirichlet boundary conditions). The form of the 
temporal eigen-solutions, Tn(t) are the same for free ends/Neumann boundary conditions and 
for fixed ends/Dirichlet boundary conditions. 
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    Physically, we can envision an ideal stretched string of length, L with free ends, tension, T 
and mass per unit length  = M/L as having massless, frictionless rings attached to the ends of 
the string, each sliding frictionlessly on a perpendicular rod that constrain the motion of the 
ends of the string to be only in the transverse direction, as shown in the figures below. 
 

    The complete eigen-function solution(s) ( , ) ( ) ( )n n nx t U x T t  for standing waves on a 

vibrating string with free ends are of the form: 
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with n = 2L/n and fn = v/n = nv/2L, n = 1, 2, 3, 4, 5, … and eigen-energies 2 21
4n n nE M A . 

The first few standing wave eigen-modes for free ends on a string are shown below: 

 

     Note the phase relation between relative motion of the displacement amplitude at the left 
and right ends for odd vs. even n free-end eigen-modes. For odd n, the motion of the ends is 
180o out of phase, for even n, the motion of the ends is in-phase. 

x 
x = 0 x = L 

L = ½  

n = 1 

x 
x = 0 x = L 

L =  

n = 2 

x 
x = 0 x = L 

L = 3/2  
n = 3 
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A3. Transverse Standing Waves on a Vibrating String – Fixed End + Free End: 
 

     For completeness, we consider the possibility of standing waves on a vibrating 1-
dimensional system, such as a stretched string with mixed boundary conditions – i.e. so-called 
Cauchy boundary conditions, where one end of the string (e.g x = 0) is fixed (thus U(x=0) = 0) 
and the other end of the string (x = L) is free (U(x=L)/x = 0) (or vice-versa).  
 

     For the mixed boundary condition case, the reader can verify that fixed-free end boundary 
conditions with a node at the fixed end (x = 0) and an anti-node at the free end (x = L) requires 
spatial eigen-solutions of the form    ( ) sin sin 2 /n n n nU x A k x A x    with n = 4L/n and  

fn = v/n = nv/4L, with only odd-n integers allowed, i.e. n = 1, 3, 5, 7… etc. The complete 
eigenfunction solutions for this case have the same form as that given in Section A1 above. For 
free-fixed end conditions (U(x=0)/x = 0 and U(x= L) = 0), the spatial eigen-function 
solutions are of the form    ( ) cos cos 2 /n n n n nU x A k x A x   and thus the complete eigen-

function solutions have the same form as that given in Section A2 above, but again only odd-n 
integers are allowed, i.e. n = 1, 3, 5, 7… and with eigen-energies 2 21

4n n nE M A . 
 

     For either version of mixed fixed-free or free-fixed end conditions, the lowest mode – the 
fundamental/first harmonic (n = 1) has 1 = 4L and f1 = v/4L; the second harmonic (n = 3) has 
3 = 4L/3 and f3 = 3v/4L; the third harmonic (n = 5) has 5 = 4L/5 and f5 = 5v/4L, and so on.  
 

     The spatial waveforms for the first few/lowest eigen-modes for mixed, fixed-free end 
conditions are shown in the figures below. The spatial waveforms for eigen-modes associated 
with free-fixed end conditions are mirror-reflections of the fixed-free eigen-mode solutions. 
 

x 
x = 0 x = L 

L = ¼  

n = 1 

x 
x = 0 x = L 

L = 3/4  

n = 3 

x 
x = 0 x = L 

L = 5/4  

n = 5 
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A4. Longitudinal Standing Waves on the Singing Rod – Free Ends: 
 

     The singing rod of length, L and diameter, D << L is a one-dimensional vibrating system 
with eigen-modes that are longitudinal standing waves. The two ends of the rod at x = 0 and  
x = L vibrate longitudinally (i.e. along the axis of the rod), thus we have free-free boundary 
conditions at the rod ends, i.e. Neumann boundary conditions, zero slopes at the ends of the 
rods, (U(x=0)/x = 0 and (U(x=L)/x = 0. The spatial eigen-solutions for the singing rod are 
the same as given in Section A2 above, i.e. they are of the form 

   ( ) cos cos 2 /n n n nU x A k x A x   with n = 2L/n and fn = v/n = nv/2L, n = 1, 2, 3, 4, … 

with eigen-energies 2 21
4n n nE M A and longitudinal displacement waveforms for the first few 

eigen-modes, also as shown in Section A2 above.  
 

     For a singing rod made up of an elastic solid, such as a metal, the longitudinal speed of 

propagation of sound in the solid, vL is given by /v Y  where Y (N/m2) = Young’s modulus 

and  (kg/m3) is the density of the for the material. Physically, Young’s modulus, Y = / = 
ratio of longitudinal compressive stress ( = F/A) to longitudinal strain ( = |L2-L1|/L1 
{dimensionless}, where L1 is the equilibrium length of the rod, and L2 is the extended length of 
the rod). 
 

     To make a singing rod “sing” in one of its eigen-modes, one grasps the rod at a 
displacement node for that mode, e.g. with thumb and index finger, and then using the thumb 
and index finger of the other hand, pull sharply along the axis of the rod, toward the end of the 
rod, trying to stretch it. This works best coating the pulling thumb & index fingers first with 
crushed violin rosin, in order to really get a good “pull” on the rod. A typical displacement 
amplitude for the fundamental, f1 ~ 1670 Hz on a L ~ 1.5 m, ~ 1” diameter aluminum rod is  
(x) ~ 1 mm. Its also very loud, with measured sound pressure level of ~ 140 dB at the rod 
ends! For more information specifically on the singing rod, see the UIUC P498POM lecture 
notes on the singing rod. 
 
A5. Longitudinal Standing Waves on a Stretched String or a Thin Bar: 
 

     Longitudinal modes of vibrations of a stretched string, or a thin bar, while much less 
common than transverse standing waves in these same systems, do occur in certain 
circumstances. However, unlike transverse waves on a string or a thin bar, the longitudinal 
speed of propagation (and hence their eigen-frequencies) do not change with tension (unless 

the physical properties of the string or thin bar change with tension), since /Lv Y  . For 

both fixed ends or both free ends, the eigen-solutions ( , ) ( ) ( )n n nx t U x T t  for longitudinal 

displacement are as given in Section A1 or A2 above, respectively, both situations have n = 
2L/n and fn = vL/n = nvL/2L, n = 1, 2, 3, 4, 5,  … and eigen-energies 2 21

4n n nE M A . For mixed 

fixed-free boundary conditions, the eigen-solutions for longitudinal displacement 
( , ) ( ) ( )n n nx t U x T t  are as given in Section A3 above, with n = 4L/n and fn = vL/n = nvL/4L, 

with only odd-n integers allowed, i.e. n = 1, 3, 5, 7… and with eigen-energies 2 21
4n n nE M A . 
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A6. Longitudinal Standing Waves in Long, Narrow Organ Pipes: 
 

     The standing waves that exist in long, narrow organ pipes (diameter, D << length, L) of 
various kinds  – closed-closed, open-open and closed-open or open-closed end conditions are 
excited by air flow – hence air pressure supplies the needed energy input, rather than 
mechanical displacement.  
 

     Due to the relation between the air over-pressure amplitude, pn(x,t) and the longitudinal 
displacement amplitude, ( , )n x t , namely that ( , ) ( , ) /n air np x t B d x t dx   where Bair is the 

bulk modulus of air, the mathematical form of longitudinal displacement amplitude eigen-
solutions, ( , ) ( ) ( )n n nx t U x T t  for organ pipes with closed-closed end conditions (longitudinal 

displacement nodes and overpressure antinodes at the closed ends of the organ pipe of length, 
L) are as given above in Section A1, with n = 2L/n and fn = v/n = nv/2L, n = 1, 2, 3, 4, … and 
eigen-energies 2 21

4n air n nE M A , as shown in the figure below for the first few eigen-modes: 
 

 

    For each of the above (and following) organ pipe end-condition cases, the over-pressure 
amplitude eigen-solutions ( , )nP x t can be obtained using the above relation between over-

pressure amplitude and longitudinal displacement amplitude. 
 

     For organ pipes with open-open end conditions (longitudinal displacement antinodes and 
overpressure nodes at the open ends of the organ pipe of length, L) the mathematical form of 
longitudinal displacement eigen-solutions, ( , ) ( ) ( )n n nx t U x T t  are as given above in Section 

A2, again with n = 2L/n and fn = v/n = nv/2L, n = 1, 2, 3, 4, 5, … and eigen-energies 
2 21

4n air n nE M A , as shown in the figure below for the first few eigen-modes: 
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__________________________________________________________________________________________________________________ 

 

     For organ pipes with open-closed or closed-open end conditions (longitudinal displacement 
nodes (antinodes) and overpressure antinodes (nodes) at the closed (open) ends of the organ 
pipe of length, L, respectively) the mathematical form of longitudinal displacement eigen-
solutions, ( , ) ( ) ( )n n nx t U x T t  are as given above in Section A3, with n = 4L/n and fn = v/n = 

nv/4L, with only odd-n integers allowed,  n = 1, 3, 5, 7… and eigen-energies 2 21
4n air n nE M A  

as shown below for the first few eigen-modes of a closed-open organ pipe of length, L: 

     Note that an end correction exists – e.g. a last displacement node does not occur precisely at 
the open end of the organ pipe, but is located a distance ~ D outside it. Hence a more accurate 
wavelength formula is ' 0 1(1 ), ~ (1)n n D O m       where the 0

n are as given above. 
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B. Standing Waves In Two-Dimensional Systems: 
 

     We now turn our attention to standing waves associated with two-dimensional systems.  
 

B1. Transverse Standing Waves on a Rectangular Membrane – Fixed Edges: 
 

     For a thin, perfectly compliant (i.e. flexible) rectangular membrane (e.g. an idealized 
rectangular drum head) of dimensions Lx and Ly, the wave equation in rectangular 2-
dimensional coordinates (x,y) for the displacement amplitude, ( , , )x y t is given by: 

 

where the longitudinal speed of propagation of transverse waves on a stretched, 2-dimensional 

membrane is given by /v T   ; T  is the membrane surface tension (in Newtons/meter) and  

   M/A = M /LxLy is the areal mass density of the membrane (in kg/m2). The Laplacian 
operator, 2 in 2-D rectangular coordinates is given by: 

 

     Thus, the 2-dimensional wave equation describing the behavior of waves on a rectangular 
membrane is given by: 

 

Again, we can (trivially) rewrite this as: 

Notice again that the LHS (RHS) contains only spatial-dependent (time-dependent) functions, 
respectively. Thus, we again can use the technique of separation of variables, with 

( , , ) ( , ) ( )x y t U x y T t  where ( , )U x y contains only spatially x- and y-dependent terms and 
( )T t contains only the time-dependent term. 

 

Again, we have the relation v = f  = (/2)(2/k) =  / k; thus vk = . We again obtain a 
separation constant of – k2, and, after some simple algebraic manipulations, obtain the 
following two linear, homogeneous differential equations: 

2
2

2 2

1 ( , , )
( , , ) 0

x y t
x y t

v t

 
  



2 2
2

2 2x y

 
  

 

2 2 2

2 2 2 2

( , , ) ( , , ) 1 ( , , )
0

x y t x y t x y t

x y v t

    
  

  

2 2 2

2 2 2 2

( , , ) ( , , ) 1 ( , , )x y t x y t x y t

x y v t

    
 

  

2 2
2

2 2

2
2

2

( , ) ( , )
( , ) 0

( )
( ) 0

U x y U x y
k U x y

x y

d T t
T t

dt
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We can again use the separation of variables technique on the above Helmholtz equation, with 
a product solution of the form ( , ) ( ) ( )U x y X x Y y . Inserting this into the above Helmholtz 
equation and carrying out the (partial) differentiations, dividing by ( , ) ( ) ( )U x y X x Y y and 
carrying out a simple algebraic manipulation, we obtain the following equation: 
 

 

Since the first (second) term on the LHS depends only on x (y), respectively, in order for this 
relation to be satisfied for all possible values of (x,y), each of these two terms must be equal to 
a constant, which we call – kx

2 and  – ky
2, respectively. Thus we obtain the following relation, 

known as the so-called characteristic equation: 

with: 

 

With fixed-end/Dirichlet boundary conditions on both the X(x)- and Y(y)-solutions of: 
 

we again obtain spatial eigen-mode solutions for 2-D transverse standing waves of the form: 

where m and n are both integers, i.e. m, n = 1, 2, 3, 4, 5, … Note that solutions with m = 0 or n 
= 0 are not allowed, because then , ( , ) ( ) ( ) 0m n m nU x y X x Y y  everywhere, which are not 

(propagating) transverse standing wave solutions. 
 

     The characteristic equation for transverse standing wave eigen-mode solutions for a 2-D 
rectangular membrane and eigen-wavelengths become: 

2 2
2

2 2

1 ( ) 1 ( )

( ) ( )

d X x d Y y
k

X x dx Y y dy
  

2 2 2
x yk k k 

2
2

2

2
2

2

( )
( ) 0

( )
( ) 0

x

y

d X x
k X x

dx

d Y y
k Y y

dy

 

 

( 0) ( ) 0

( 0) ( ) 0
x

y

X x X x L

Y y Y y L

   
   

, , ,

( ) ~ sin( ) sin( )

( ) ~ sin( ) sin( )

( , ) ( ) ( ) sin( )sin( ) sin( )sin( )

m m x

n n y

m n m n m n m n m n x y

X x k x m x L

Y y k y n y L

U x y X x Y y A k x k y A m x L n y L




 





  

       2 22 22 2 2
, , ,/ / ; 2 / 2 / /

/ ; 1, 2, 3, 4, 5,...

/ ; 1, 2, 3, 4, 5,...

m n m n x y m n m n x y

m x

n y

k k k m L n L k m L n L

k m L m

k n L n
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Since  = vk, with /v T    the angular eigen-frequencies are 2 2
, ,m n m n m nvk v k k     and 

thus eigen-frequencies  fm,n  and eigen-wavelengths  m,n  are: 
 

 

The eigen-mode solutions of the associated temporal wave equation for two-dimensional 
standing waves on a rectangular membrane are of the following equivalent form(s): 

 

The complete eigen-mode solutions for two-dimensional transverse standing waves on a 
rectangular membrane of dimensions with fixed edges are thus given e.g. by: 
 

With eigen-frequencies, eigen-wavelengths and eigen-energies and eigen-energies of: 
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m n m n m n m n m n m n m n m

T t b t c t

b c b c

T t t c b b c

T t t b c c b
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     Note that the allowed standing wave eigen-solutions all have transverse displacement nodes 
along the x- and y-edges of the rectangular membrane. The lowest frequency standing-wave 

mode occurs when m = n = 1, with 2 2
1,1 2 1/ 1/x yL L    and 2 2

1,1 2 / 1/ 1/x yf v L L   and 

 2 2 2 2 2
1,1 1,14 / 1/ 1/x yE v MA L L  . The exact sequence of which m,n eigen-values have 

progressively higher frequencies depends on the detailed geometry of the rectangular plate, 
whether x yL L or x yL L , or x yL L or x yL L . 

 
Some of the lower-order eigen-modes of vibration for transverse standing waves on a 
rectangular membrane are shown (with dashed nodal lines) in the figure below, for x yL L : 

 
     For the special case of a square membrane, when x yL L L   the square membrane has 

exactly the same number of eigen-modes as that associated with a rectangular membrane 

x yL L , however the square membrane now has so-called 2-fold degeneracies associated with 

it – i.e. distinct eigen-states, , ( , , )m n x y t with m n  (e.g. 1,2 ( , , )x y t  and 2,1( , , )x y t ), but 

which have the same eigen-frequencies, eigen-wavelengths and eigen-energies: 
 

 

The 2-fold degeneracies arise because of the 2 spatial degrees of freedom (x & y) .AND. the 
rotational symmetry of the square membrane – i.e. a square is invariant under 90o rotations. 
 
 
 
 

 

 

2 2
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2 2
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, , ,4

/ / 2

2 /
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m n n m m nL
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B2. Transverse Standing Waves on a Circular Membrane – Fixed Edge: 
 

     We now consider standing waves on 2-dimensional system with circular symmetry – that of 
a thin, perfectly compliant (i.e. flexible) circular membrane (e.g. an idealized circular drum 
head) of radius R, the wave equation in cylindrical 2-dimensional coordinates (x,y  r,) for 
the displacement amplitude, ( , , )r t  is given by: 

Where the longitudinal speed of propagation of transverse waves on a stretched, 2-dimensional 

circular membrane is (also) given by /v T    where T  is the membrane surface tension  

(in Newtons/m) and    M/A = M /R2 is the areal mass density of the membrane (in kg/m2). 
With x = rcos, y = rsin, d2r = rdrd, the Laplacian operator, 2 in cylindrical 2-D 
coordinates is given by: 

     Thus, the 2-dimensional wave equation describing the behavior of waves on a cylindrical 
membrane is given by: 

Again, we can (trivially) rewrite this as: 

Notice again that the LHS (RHS) contains only spatial-dependent (time-dependent) functions, 
respectively. Thus, we again can use the technique of separation of variables, with 

( , , ) ( , ) ( )r t U r T t   where ( , )U r  contains only spatially r- and -dependent terms and 
( )T t contains only the time-dependent term. 

 

Again, we have the relation v = f  = (/2)(2/k) = /k; thus vk = . We again obtain a 
separation constant of – k2, and, after some simple algebraic manipulations, obtain the 
following two linear, homogeneous differential equations: 

We can again use the separation of variables technique on the above spatial equation, with a 
product solution of the form ( , ) ( ) ( )U r R r   . Inserting this into the above spatial equation 
and carrying out the (partial) differentiations, dividing by ( , ) ( ) ( )U r R r   and carrying out 
a simple algebraic manipulation, we obtain the following equation: 

2
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r r r r

d T t
T t

dt

   




  
   

  

 



UIUC Physics 406 Acoustical Physics of Music 
 

 
Professor Steven Errede, Department of Physics, University of Illinois at Urbana-

Champaign, Illinois 2002-2017. All rights reserved. 
 

17

     The LHS (RHS) of this equation depends only on r (), respectively. Again, this can only 
be true for all possible values of (r,), if both LHS and RHS are equal to a (dimensionless) 
constant. We know that the ()-solutions must be periodic/singled valued (i.e. (=0) = 
(=2)) or more generally, (=o) = (= o+2m)), m = 0, 1, 2, 3, 4, 5,….  
Hence we will choose this separation constant to be m2. 
 

The mathematical form of the standing-wave m() eigen-solutions we seek for modal 
vibrations on a circular membrane must satisfy: 

Thus, the m() eigen-solutions are (one of) the following two equivalent form(s): 

The radial equation is the well-known Bessel’s equation: 

The most general solution for Bessel’s equation, with m = integer (which is the case we have 
here) is of the form: 

( )mJ x { ( )mY x } are the ordinary Bessel functions of order, m of the 1st {2nd} kind, respectively. 
 

The ( )mJ x  are finite at x = 0 and are usually expressed as a power series expansion in x: 

Note that for m = integer, ( ) ( 1) ( )m
m mJ x J x   . The ( )mY x can be expressed in various ways: 

For m = integer, these can also be written as: 
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The ( )mY x are singular (they become (negative) infinite) at x = 0. However, because we used 

cylindrical coordinates for our circular membrane, the origin (r = 0) is included in this 
problem. Physically, we do NOT allow infinite amplitude displacements R(r)   for any 
value of r, since an implicit initial assumption was small amplitude oscillations! Thus all of the 
Bm coefficients for the ( )mY x must be Bm = 0 for physically allowed eigen-mode solutions of the 

2-D circular membrane. 
 

Plots of the first few ( )mJ x vs. x are shown in the figure below: 

 

Plots of the first few ( )mY x  vs. x are shown in the figure below: 
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     The radial boundary condition for transverse standing waves on a circular membrane with 
fixed edge (i.e. zero transverse displacement) at r = R is Rm(r=R) = 0, i.e. Jm(kR) = 0. Since r = 
R > 0, this means we seek the zeroes of Jm(kR), i.e. Jm(x=kR) = 0. Because of the complexity of 
the form of the Jm(x), the zeroes of Jm(x) (and the Ym(x)) are non-analytic in nature, rather, they 
are tabulated in many mathematical books, or they can be determined either by graphical 
and/or computational numeric techniques. We summarize the first few zeroes of the low-order 
Jm(x) in the table below: 

                                     n=1    n=2    n=3    zero # 
m=0:    J0(x)=0:    x   2.40,  5.52,  8.65, …. 
m=1:    J1(x)=0:    x   3.83,  7.02,10.17, …. 
m=2:    J2(x)=0:    x   5.14,  8.42,11.62, …. 

 
Since x = kR, then k = x/R and noting that again, for this 2-dimensional standing wave eigen-
value problem we have two indices, m and n to denote the eigen-wavenumbers , , /m n m nk x R , 

and the eigen-frequencies , , , ,/m n m n m n m nvk f v     with v T   . The eigen-energies, 
2 21

, , ,4m n m n m nE M A  and eigen-functions , , ,( , , ) ( ) ( ) ( )m n m n m m nr t R r T t    . The eigen-mode 

solutions of the associated temporal wave equation for two-dimensional standing waves on a 
circular membrane are of the following equivalent form(s): 
 

The complete eigen-mode solutions for two-dimensional standing waves on a circular 
membrane of radius, R with fixed edges are thus given e.g. by: 

 

with eigen-frequencies, eigen-wavelengths and eigen-energies and eigen-energies of: 

The lowest modes of transverse standing waves on a circular membrane are listed below: 
m=0, n=1:   k0,1  2.40/R   0,1  2.40v/R    0,1(r,,t) = A0,1 J0(k0,1R) T0,1(t) 
m=1, n=1:   k1,1  3.83/R   1,1  3.83v/R    1,1(r,,t) = A1,1 J1(k1,1R) [1cos  +  1sin]T1,1(t) 
m=2, n=1:   k2,1  5.14/R   2,1  5. l4v/R    2,1(r,,t) = A2,1 J2(k2,1R) [2cos2+2sin2]T2,1(t) 
m=0, n=2:   k0,2  5.52/R   0,2  5.52v/R    0,2(r,,t) = A0,2 J0(k0,2R) T0,2(t) 
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Some of the lower-order eigen-modes of vibration for transverse standing waves on a circular 
membrane (with dashed nodal lines) are shown in the figure below: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The 2-fold degeneracies for m > 0 again arise because of the 2 spatial degrees of freedom  
(x and y, or r and ) .AND. the rotational symmetry of the circular membrane – it is invariant 
under arbitrary rotations. 
 

m =0, n =1 
m+n=1;  J0(k0,1r) 

m =1, n =1 
m+n=2;  J1(k1,1r)ei 
(2-fold degenerate) 

m =2, n =1 
m+n=3;  J2(k2,1r)e2i 
(2-fold degenerate) 

m =0, n =2 
m+n=2;  J0(k0,2r) 

m =0, n =3 
m+n=3;  J0(k0,3r) 

m =1, n =2 
m+n=3;  J1(k1,2r)ei 
(2-fold degenerate) 

m =2, n =2 
m+n=4;  J2(k2,2r)e2i 
(2-fold degenerate) 

m =1, n =3 
m+n=4;  J1(k1,3r)ei 
(2-fold degenerate) 

m =2, n =3 
m+n=5;  J2(k2,3r) e2i 
(2-fold degenerate) 
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