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Mathematical  Musical  Physics of the Wave Equation – Part 2 
 

C. Standing Waves In Three-Dimensional Systems: 
 

     Before “diving in” on discussing specific, but still simple systems exhibiting acoustical 
standing wave phenomena in three dimensions, we make a few brief comments that are relevant/ 
common to all such systems. First, there are (at least) two general perspectives associated with 
acoustical standing waves in 3-dimensional systems. For (idealized) three dimensional 
membrane-like structures (e.g. idealized 3-D “drums”), one is interested in solving the 
appropriate two-dimensional wave equation, with appropriate boundary conditions, in order to 
obtain the standing wave eigen-solutions, etc. associated with transverse displacement of the 2-D 
membrane surfaces on a 3-D structure as a function of any/all positions on these surfac(es) and 
as a function of time. We will not discuss these here. We will discuss finding the eigen-solutions, 
etc. to the 3-D wave equation associated with longitudinal acoustic standing waves confined 
within the interior region of a (rigid) 3-D structure (e.g. idealized 3-D “organ pipes”), which of 
course are associated with longitudinal displacement and/or (over-)pressure standing waves in 
the air inside the interior of the 3-D structure. In addition, these situations are also eminently 
applicable to fluid-filled and/or elastic solid 3-D structures. 
 

     Note that longitudinal acoustic standing waves in 3-D “organ pipe”-like structures are excited 
by air flow, and hence pressure should rightly be viewed as the primary physical parameter, 
solving the (over-)pressure wave equation with appropriate boundary conditions ( / 0p n   , 
where n is the normal (i.e. perpendicular) direction to the local {matter} surface {if present}) 
and then relating the eigen-solutions associated with longitudinal pressure standing waves to 
those associated with the longitudinal displacement amplitude, via use of the (appropriately 
modified) ( , ) ( , )airp r t B r t   

 
. 

 

     However, one can instead solve the wave equation with the appropriate boundary conditions 
for longitudinal displacement amplitude at the internal boundaries of the 3-D structure to obtain 
the eigen-solutions, etc. describing longitudinal displacement amplitude standing waves confined 
within the interior of the structure, and then use the above (over-) pressure – gradient-of-
longitudinal displacement relation to obtain the eigen-solutions associated with the (over-) 
pressure longitudinal standing waves. 
 

   There is actually a deep physical principle operative here, to explain why this works. At the 
microscopic (i.e. atomic) level, the collision(s) of air molecules with each other, arising from the 
presence of additional energy (provided by the presence of the acoustic standing waves internal 
to the 3-D structure), all involve elastic scattering of air molecules with each other, and with the 
atoms making up the interior walls of the 3-D structure. All such elastic scatterings of atoms with 
other atoms manifestly involves the electromagnetic force – one of the four (known) fundamental 
forces of nature. At the microscopic/atomic/elementary particle level, the electromagnetic force 
manifestly obeys time-reversal invariance – i.e. microscopically, the physics is exactly the same 
whether time goes forward or backward. A person watching a movie of atoms/molecules 
elastically scattering off of one another (via the electromagnetic interaction) in this physical 
situation cannot tell/determine whether time is going forward or backward.  
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This is no small/ trivial issue – e.g. because the weak force (responsible for radioactivity/beta-
decay), in certain situations/systems violates time reversal invariance – i.e. one can 
tell/determine if time is/is not going forward or backward, watching a movie of certain types of 
weak interaction processes! 
 

     Thus, because of the fundamental nature of the electromagnetic interaction at the 
microscopic/atomic level, the macroscopic parameters of (over-)pressure, ( , )P r t


 and 

displacement amplitude, ( , )r t 
 are intimately connected to each other. Which “causes” which is 

really not the question, because a (local) displacement of air molecules from their equilibrium 
positions results in a corresponding (local) change in (over-)pressure{via 

( , ) ( , )airP r t B r t   
 

} and vice versa! Both macroscopic parameters change together, as 

described by this relation between them.  
 

    Another way to look at/view this is from consideration of the microscopic energy density 
associated with the gas. An (ideal) gas in thermal equilibrium and no sound waves has an 
average, or mean energy density, u   associated with it, due to it being at finite temperature, 
and which is the same value everywhere in the gas. Now add e.g. acoustic standing waves. 
Locally, at any specific instant in time, a small microscopic region in the gas will either have an 
excess of energy or a deficit of energy, relative to u  . An excess of local energy at the 
microscopic level in a gas implies an increase in the frequency of local atomic/molecular 
collisions, which macroscopically corresponds to an increase in the local pressure and also 
corresponds to a (negative) increase in the gradient of the displacement of air molecules from 
their equilibrium positions. A deficit of local energy at the microscopic level in a gas implies a 
decrease in the frequency of local atomic/molecular collisions, which macroscopically 
corresponds to a decrease in the local pressure and also corresponds to a (positive) increase in the 
gradient of the displacement of air molecules from their equilibrium positions. 
 

     Thus, in the following, we attempt to be “universal” in our discussions of the various 3-D 
systems. We will thus focus on discussing the eigen-solutions, etc of standing wave solutions of 
the 3-D wave equations associated with displacement amplitudes, the longitudinal standing wave 
over-pressure amplitudes eigen-solutions can be derived from the longitudinal displacement 
amplitude eigen-solutions. 
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C1. Longitudinal Acoustic Standing Waves inside a 3-D Rectangular Box: 
 

     For a rectangular box of L x W x H dimensions Lx, Ly and Lz, the wave equation(s) in 
rectangular 3-dimensional coordinates (x,y,z) for the longitudinal displacement amplitude, 

( , , , )x y z t  and over-pressure amplitude, ( , , )p x y z are given by: 

where the longitudinal speed of propagation of waves is v and the longitudinal displacement 
amplitude is related to the overpressure amplitude by ( , , , ) ( , , , )airp x y z t B x y z t    . The 

Laplacian operator, 2 in rectangular 3-D coordinates is given by: 

     Thus, the 3-dimensional wave equation describing the behavior of longitudinal waves in a 
rectangular box is given by: 

Again, we can (trivially) rewrite this as: 

Notice again that the LHS (RHS) contains only spatial-dependent (time-dependent) functions, 
respectively. Thus, we again can use the technique of separation of variables, with 

( , , , ) ( , , ) ( )x y z t U x y z T t  where ( , , )U x y z contains only spatially x- and y-dependent terms and 
( )T t contains only the time-dependent term. 

 

Again, we have the relation v = f  = (/2)(2/k) =  / k; thus vk = . We again obtain a 
separation constant of – k2, and, after some simple algebraic manipulations, obtain the following 
two linear, homogeneous differential equations: 
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We can again use the separation of variables technique on the above Helmholtz equation, with a 
product solution of the form ( , , ) ( ) ( ) ( )U x y z X x Y y Z z . Inserting this into the above Helmholtz 
equation and carrying out the (partial) differentiations, dividing by 

( , , ) ( ) ( ) ( )U x y z X x Y y Z z and carrying out a simple algebraic manipulation, we obtain the 
following equation: 

 

Since the first (second) {third} terms on the LHS depend only on x (y) {z}, respectively, then in 
order for this relation to be satisfied for all possible values of (x,y,z), each of these terms must be 
equal to a constant, which we call – kx

2, – ky
2 and – kz

2, respectively. Thus we obtain the 
following characteristic equation: 

with: 

 

The boundary conditions for the 6 sides closed on the surface of the rectangular box depend on 
the three types of modes of propagation of acoustic standing waves inside the box: 
 

a.) 1-D or so-called axial modes, simply associated with the 1-D wave equation. 
b.) 2-D or so-called transverse modes,    associated with the 2-D wave equation. 
c.) 3-D or so-called oblique modes, associated with the full 3-D wave equation. 

 

The 1-D axial modes of propagation of acoustic standing waves are such that they exist between 
opposing walls of the rectangular box (i.e. opposite side walls in x (or y), and or top & bottom 
walls in z), as shown in the figure below: 
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     The boundary conditions on the longitudinal displacement (over-pressure) for 1-D axial 
modes in the x, y or z directions are such that the longitudinal displacement (over-pressure) in 
that direction vanishes (is maximal), respectively at the two opposing walls of the 3-D 
rectangular box for that mode, i.e.: 

 

Thus, the spatial eigen-mode solutions for the longitudinal displacement (over-pressure) 
amplitudes associated with 1-D axial-type standing waves inside a 3-D rectangular box are 
respectively of the form: 

and: 

 

where l, m and n are integers, i.e. l, m, n = 1, 2, 3, 4, 5, …  
 

     Thus, axial modes are1-D standing waves in a 3-D room. The wavelength of 1-D axial mode 
standing waves is e.g. 00 2n xL n  for the x-direction, etc. The pressure amplitude for the 200 

axial mode, with 200 xL  is shown in the figure below (note the pressure anti-nodes on the 

opposing walls): 
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     The next type of standing waves in a room are collectively known as 2-D tangential modes, 
where two of the three indices are non-zero, e.g. [xyx] = [lm0], [0lm] or [l0m], with integer l,m = 
1,2,3,4… These modes have 2-D type standing waves of frequency  
 

   221
0 2lm x yf v l L m L  ,    2 21

0 2lm y zf v l L m L  or    2 21
0 2l m x zf v l L m L   

 

The wavelengths of 2-D tangential modes are e.g.    22

0 02 / 2lm lm x yk l L m L    , etc.  

For 2-D tangential modes, four of the six surfaces of the room are involved in producing a 
tangential standing wave. 2-D paths that can be taken for {the traveling waves associated with} 
such standing waves are shown in the figure below: 
 

 

     The boundary conditions on the longitudinal displacement (over-pressure) for 2-D tangential 
modes in the x, y or z directions are such that the longitudinal displacement (over-pressure) 
vanishes (is maximal), respectively on the four surfaces of the 3-D rectangular box for that 
mode, i.e.: 
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     The spatial eigen-mode solutions for the longitudinal displacement (over-pressure) amplitudes 
associated with 2-D tangential-type standing waves inside a 3-D rectangular box are respectively 
of the form: 

 

and: 

 

where l, m and n are integers, i.e. l, m, n = 1, 2, 3, 4, 5, …  
 

The pressure amplitude e.g. for the 320 tangential mode is shown in the figure below (dotted 
lines are pressure nodes, the + or  represent pressure anti-nodes): 

 

     The third type of standing waves in a room are collectively known as 3-D oblique modes, 
where all three indices are non-zero, e.g. [xyx] = [lmn], with integer l,m,n = 1,2,3,4,5… The 3-D 
oblique modes have standing waves of frequency 
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     The boundary conditions on longitudinal displacement (over-pressure) amplitudes for the 3-D 
oblique modes in the x, y or z directions are such that the longitudinal displacement (over-
pressure) amplitude vanishes (is maximal), respectively on the six surfaces of the 3-D 
rectangular box for that mode, i.e.: 

and:  

 

The complete eigen-mode solutions for 3-D oblique longitudinal displacement amplitude (over-
pressure) standing waves inside a rectangular box are thus respectively given by: 

and: 

 

where l, m and n are integers, i.e. l, m, n = 1, 2, 3, 4, 5, …  
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     For the special case of a cubical box with all sides Lx = Ly = Lz = L, then the eigen-
frequencies, eigen-wavelengths, eigen-energies, etc. are: 

Here again, as we saw in e.g. the 2-D case for standing waves on a rectangular  square 
membrane, degeneracies will exist. We summarize this for the first few modes of longitudinal 
standing waves in a cubical box in the table below. 
 

[l,m,n] Mode Degeneracy  Mode Type 
[100,010,001] 3  1-D Axial 
[101,011,110] 3  2-D Transverse 

[111] 1  3-D Oblique 
[200,020,002] 3  1-D Axial 

[201,210,021,012,102,120] 6  2-D Transverse 
[211,121,112] 3  3-D Oblique 

 

     Thus, the degeneracies associated with a cubical-shaped room imply that e.g. a cubical room 
will be more problematic in terms of room resonances and acoustic feedback than for a 
rectangular-shaped room, where {Lx  Ly  Lz}. This can be seen from the so-called density of 
states for 3-D standing waves in a cubical vs. rectangular room, as shown in the figure below for 
two equal volume rooms, one cubical, the other rectangular, the latter with L:W:H ratio 3:2:1: 
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     The above discussion has been for the specific case of a 3-D rectangular box with closed sides 
on all six surfaces. Obviously, we could have situations where one or more sides of the box are 
missing – e.g. an “open-open” rectangular, vertical organ pipe with the top and bottom sides 
removed/missing. Then all that is needed to solve this problem is to appropriately modify the 
boundary conditions for the longitudinal displacement amplitude(s) and/or over-pressure 
amplitudes on those surfaces – e.g. ( 0) / ( ) / 0zZ z z Z z L z         (i.e. zero slopes (anti-

nodes) of displacement amplitude at these surfaces) or ( 0) ( ) 0zH z H z L     (i.e. zero over-

pressure amplitudes (nodes) on those surfaces). Here again, depending on the dimensions of the 
rectangular box, if it is a square or cubical box, depending on which surfaces are absent, there 
may or may not exist degeneracies…. 
 
C2. Longitudinal Acoustic Standing Waves inside a 3-D Cylindrical Pipe: 
 

    For a cylindrical pipe of (internal) radius, R and length, L, with axis of the pipe oriented along 
the vertical (z-axis), the wave equation(s) in 3-D cylindrical coordinates for the displacement 
amplitude, ( , , , )r z t  and over-pressure amplitude, ( , , , )p r z t are given by: 

 

where the speed of propagation of waves is v and longitudinal displacement related to the 
overpressure by ( , , , ) ( , , , )airp r z t B r z t      . With x = rcos, y = rsin, and cylindrical 

volume element, d3r = rdr d dz, the Laplacian operator, 2 in 3-D cylindrical coordinates is 
given by: 
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Notice again that the LHS (RHS) contains only spatial-dependent (time-dependent) functions, 
respectively. Thus, we again can use the technique of separation of variables, with 

( , , , ) ( , , ) ( )r z t U r z T t   where ( , , )U r z contains only spatially r-, - and z-dependent terms 
and ( )T t contains only the time-dependent term. 
 

Again, we have the relation v = f  = (/2)(2/k) = /k; thus vk = . We again obtain a 
separation constant of – k2, and, after some simple algebraic manipulations, obtain the following 
two linear, homogeneous differential equations: 

We can again use the separation of variables technique on the above Helmholtz equation, 
however, first we will consciously separate out the z-dependence from the (r,) portion, using a 
product solution of the form ( , , ) ( , ) ( )U r z V r Z z  . Inserting this into the above Helmholtz 
equation and carrying out the (partial) differentiations, dividing by ( , , ) ( , ) ( )U r z V r Z z  and 
carrying out a simple algebraic manipulation, we obtain the following two equations: 
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A.) Closed-Closed Ends (Dirichlet BC’s): 

B.) Open-Open Ends (Neumann BC’s):  

C.) Closed-Open Ends (Cauchy BC’s): 

D.) Open-Closed Ends (Cauchy BC’s): 

 

     Thus, we see that the Z(z)-dependent behavior associated with longitudinal standing waves in 
a 3-D cylindrical pipe of radius, R and length, L is precisely the same as that associated with an 
“idealized” one-dimensional organ pipe of the same length, L. Note that these solutions are also 
relevant e.g. for a 3-D cylindrical “singing rod” of radius, R and length, L made of an elastic 
solid, such as aluminum. 
 

     We now turn our attention to finding the eigen-solutions, etc. associated with solving 
the ( , )V r  equation. We again try a product solution of the form ( , ) ( ) ( )V r R r   . Again, 
after some simple algebraic manipulations, we obtain the following: 

Note again that the LHS (RHS) of this relation depends only on r  (), respectively, thus: 

 

Again, the separation constant, m2 arises because we insist upon physically-sensible, single-
valued solutions of the ( ) -equation, namely that ( 0) ( 2 ) ( 2 );m             with m 

= 0, 1, 2, 3, 4, 5, … Thus, the eigen-solutions, ( )m   of the ( ) -equation: 
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Now for the radial equation, note that 2 2 2
z rk k k  or 2 2 2

r zk k k  . Then the radial equation 

becomes: 

 

Again, this linear, homogeneous, 2nd-order differential equation is the Bessel equation, the 
allowed eigen-solutions for a displacement amplitude node at r = R i.e. R(r = R)=0 we have 
already discussed above for the 2-D circular membrane! They are of the form: 

 

However, again on physical grounds, the Bessel functions of the 2nd kind must be excluded 
because they are singular at the origin, i.e. r = 0. Hence all coefficients, Bm = 0 for all m. Thus 
for the physically-allowed radial eigen-function solutions, we have only: 

 

     The radial boundary condition for longitudinal standing waves in a rigid, 3-D circular pipe at 
r = R is Rm(r=R) = 0, i.e. the zeroes associated with Jm(x=krR), i.e. Jm(x=krR) = 0, precisely as we 
found for the radial eigen-modes in the 2-D circular membrane case! 
 

Since x = krR, then kr = x/R and noting that again, for this 2-dimensional longitudinal standing 
wave eigen-value problem in the r- plane, we need to have two indices, m and j to denote the 
radial eigen-wavenumbers, i.e. , , /m j m jk x R , where the first (second) index, m = 0, 1, 2, 3,… 

(j = 1, 2, 3, 4, …) denotes the order # (zero #) of the ordinary Bessel function of the first 
kind, ,( )m m jJ k R respectively. 
 

     For the eigen-solutions associated with standing waves in a 3-D circular pipe, the 
characteristic equation becomes: 

The eigen-frequencies, eigen-wavelengths, eigen-energies, etc. are given by: 
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The eigen-mode solutions of the associated temporal wave equation for longitudinal standing 
waves inside a 3-D circular pipe are of the following equivalent form(s): 

The complete eigen-mode solutions for longitudinal displacement amplitude standing waves 
inside a 3-D cylindrical pipe are thus given e.g. by: 

 

Thus, we see that the eigen-solutions, etc. for longitudinal standing waves in a 3-D cylindrical 
pipe are intimately related to those associated with the simpler model of a 1-D organ pipe! 
The following figure shows the (over-)pressure and transverse air-flow in a cross-section of a 
cylindrical pipe for the three lowest standing wave modes after the fundamental. 
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The figure shown below shows a side view of the acoustic flow patterns and pressure 
maxima/minima for higher modes in a cylindrical pipe. 

     The so-called critical frequency (also known as the cutoff frequency), , , , ,
Crit
m j n m j nvk  .  

For modal frequencies less than this, , ,m j nk is imaginary, and this particular mode is exponentially 

attenuated – it is known as an evanescent wave. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



UIUC Physics 406 Acoustical Physics of Music 
 

 
Professor Steven Errede, Department of Physics, University of Illinois at Urbana-

Champaign, Illinois 2002-2017. All rights reserved. 
 

16

C3. Longitudinal Acoustic Standing Waves inside a 3-D Sphere: 
 

     Finally, the last system we consider here in this set of lecture notes is longitudinal standing 
waves inside a 3-D sphere of radius, R. The wave equation(s) in 3-D spherical polar coordinates 
for the displacement amplitude, ( , , , )r t   and over-pressure amplitude, ( , , , )p r t  are given 
by: 

where the speed of propagation of waves is v and longitudinal displacement related to the 
overpressure by ( , , , ) ( , , , )airp r t B r t        . With x = rsincos, y = rsinsin, 

z = rcos, 2 2 2r x y z   , cos = z/r, tan = y/x and spherical volume element, 

d3r = r2dr d = r2dr dcos d = r2dr sin d d, the Laplacian operator, 2 in 3-D spherical 
polar coordinates is given by: 

     Thus, the 3-dimensional wave equation describing the behavior of longitudinal waves in a 
cylindrical pipe is given by: 

Again, we can (trivially) rewrite this as: 

Notice again that the LHS (RHS) contains only spatial-dependent (time-dependent) functions, 
respectively. Thus, we again can use the technique of separation of variables, with 

( , , , ) ( , , ) ( )r t U r T t     where ( , , )U r   contains only spatially r-, - and -dependent terms 
and ( )T t contains only the time-dependent term. 
 

Again, we have the relation v = f  = (/2)(2/k) = /k; thus vk = . We again obtain a 
separation constant of – k2, and, after some simple algebraic manipulations, obtain the following 
two linear, homogeneous differential equations: 
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We can again use the separation of variables technique on the above Helmholtz equation, 
however, first we will consciously separate out the angular (,)-dependence from the radial, r-
dependent portion, using a product solution of the form ( , , ) ( ) ( , )U r R r Y    . Inserting this 
into the above Helmholtz equation and carrying out the (partial) differentiations, dividing by 

( , , ) ( ) ( , )U r R r Y    and carrying out a simple algebraic manipulation, we obtain the 
following two equations: 
 

 

where  is the separation constant for this product solution. We can rewrite each of these two 
equations as: 

 

     We can again use the separation of variables technique on the angular equation, writing the 
angular solution, ( , )Y   as a product solution of the form ( , ) ( ) ( )Y       . Inserting this 

into the above equation, multiplying through by sin2, carrying out the partial derivatives and 
some simple algebraic manipulations, we obtain the following two equations: 
 

 

which have a separation constant, m2. Again, these two equations can be rewritten as: 
 

 

     The second equation, involving the azimuthal angle,  is the usual one we have been dealing 
with. The separation constant, m2 arises because we insist upon physically-sensible, single-
valued solutions of the ( ) -equation, i.e. ( 0) ( 2 ) ( 2 );m              

with m = 0, 1, 2, 3, 4, 5, … and with corresponding eigen-solutions of the 
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m e    . 

2

2 2

2 2 2

1 1 ( , ) 1 ( , )
sin

( , ) sin sin

1 ( )
( )

( )

Y Y

Y

d dR r
r k r R r

R r dr dr

    
      



             
        

 

2

2 2

2 2 2

1 ( , ) 1 ( , )
sin ( , ) 0

sin sin

( )
( ) 0

Y Y
Y

d dR r
r k r R r

dr dr

      
    



          
     
 

2 2

2
2

2

1 ( )
sin sin sin ( )

( )

1 ( )

( )

d d
m

d d

d
m

d

    
  


 

           


 


 2 2

2
2

2

( )
sin sin sin ( ) 0

( )
( ) 0

d d
m

d d

d
m

d

    
 

 


      
 


  



UIUC Physics 406 Acoustical Physics of Music 
 

 
Professor Steven Errede, Department of Physics, University of Illinois at Urbana-

Champaign, Illinois 2002-2017. All rights reserved. 
 

18

     The first equation, involving the polar angle, is known as the Associated Legendre equation. 
Skipping some ~ tedious derivational details, the separation constant, 

( 1); 0,1, 2, 3, 4, ....            with the additional constraint that | |m   , with m = 0, 1, 2, 

3, 4, 5, … For  = integers, the most general form of the eigen-solutions for the associated 
Legendre equation are linear combination of associated Legendre polynomials, ( )mP x and 

( )mQ x of the first and second kind, respectively, with cosx  , i.e. 
 

 

If the poles (i.e.   = 0 and   = ) are excluded from the physical problem (corresponding to  
x = 1), then both of the 1st and 2nd kind associated Legendre polynomials must be included. 
However, if the poles are included in the physical problem, then the associated Legendre 
polynomials of the 2nd kind, ( )mQ x must be excluded, because they are singular at x = 1. For our 

problem of standing waves inside a sphere of radius, R, the poles at   = 0 and   =  are 
included and hence the associated Legendre polynomials of the 2nd kind, ( )mQ x must be 

excluded, hence we require all , 1ma  and all , 0mb  .  
 

     For integer values of  , the associated Legendre polynomials of the first kind, ( )mP x are such 

that ( ) ( )m mP x P x  . With cosx   these functions are products of | |sin m  and are polynomials 

of degree ( | |); | |m m     in cosx  . These functions are even if ( | |)m is even, and odd, 
if ( | |)m is odd. 
 

The angular eigen-solutions for the (,) product solution are thus of the form: 
 

 

Note that the ( , )mY   are normalized, orthogonal functions known as spherical harmonics. 

Appropriate linear combinations of the ( , )mY   can precisely describe any arbitrary (but well-

behaved, non-singular) angular function ( , )f   everywhere on the unit sphere (r = R = 1), i.e.  
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The first few spherical harmonics are listed in the table below. 
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     In the following figure, we show the polar plots associated with the modulus squared of the 

3 ( , )mY    spherical harmonic, i.e. 2
3| ( , ) |mY   for m = 0, 1, 2 and 3. These plots thus indicate the 

intensity (~ amplitude squared) associated with these particular angular functions. 

     In the figure below, the polar plots associated with the modulus squared of the ( , )mY  
  

spherical harmonic, i.e. 2| ( , ) |mY  
 for 0,1,2,3,4,5m   . Again, these plots  indicate the 

intensity (~ amplitude squared) associated with these particular angular functions 
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     We now turn our attention to solving and finding the eigen-solutions associated with the 
radial equation: 

 

If we make a change of variables, ( ) ( ) /R r u r r then inserting this into the above equation, 
carrying out the differentiation, after some algebraic manipulations, we obtain: 
 

 

Which again, is Bessel’s equation with x kr and 1
2" "m   . Thus, the most general form of 

the radial eigen-solutions is: 
 

 

By convention, we define the so-called spherical Bessel functions of first and second kind, of 
order  as: 

 

It can be shown that: 
 

 
The analytic form e.g. of the first two  0,1  spherical Bessel functions are thus: 
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Graphs of ( )j x vs. x for the first few orders  0 5  are shown in the figure below. 
 

 

 Graphs of ( )y x vs x for the first few orders  0 5  are shown in the figure below. 

 
 

The first few zeros nx  1 4n   of the first few/low-order  0 4   spherical Bessel functions 

( ) 0nj x   and ( ) 0ny x  are given in the tables below: 

 
( )nj x  1x  2x  3x  4x  

0    2  3  4  
1  4.493 7.725 10.904 14.066 
2  5.763 9.095 12.323 15.515 
3  6.988 10.417 13.698 16.924 
4  8.183 11.705 15.040 18.301 
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The most general form of the radial eigen-solutions is thus: 
 

 

Note that the ( )y x are (negatively) singular/divergent at x = 0. Hence (again) on physical 

grounds these solutions must be excluded, i.e. we must have all coefficients, ' 0B  . Thus for the 

physically-allowed radial eigen-function solutions, we have only: 
 

 

     The radial boundary condition for longitudinal standing waves inside a rigid, 3-D sphere of 
radius, R is that the (radial) displacement amplitude has a node at r = R, i.e. that Rm(r = R) = 0, 
hence again, these are the zeroes (i.e. nodes) associated with ( )j x kR , i.e. ( ) 0j x kR  .  

 
     Since x = kR, then k = x/R and noting that again, we need to have two indices,  and j to 
denote the radial eigen-wavenumbers, i.e. , , /j jk x R  , where the first (second) index,  = 0, 1, 

2, 3,…(j = 1, 2, 3, 4, …) denotes the order # (zero #) of the spherical Bessel function of the first 
kind, , ,( ) 0j jj x k R    , respectively. 
 

The eigen-frequencies, eigen-wavelengths, eigen-energies, etc. are given by: 
 

 

Note that the azimuthal eigen-values, m = 0, 1, 2, 3, 4, … do not enter into any of the above 
formulae! This means again that we have degeneracies. For a given -value, the allowed m-
values are –m, – m +1, – m +2, … –3, –2, –1, 0, +1, +2, +3, … m –2, m –1, m. There are a total 
of 2 1 such distinct states with the same frequencies, wavelengths, energies, etc. Thus, the 
standing wave eigenstates inside a 3-D sphere associated with a particular  -value are 
thus 2 1 -fold degenerate. 
 

     The eigen-values  and m have physical meaning. We have previously discussed the fact that 
waves have potential, kinetic and total energy, V, K and E, respectively, and also (linear) 
momentum, P associated with them. The above three angular differential wave equation(s) with 
corresponding spherical harmonic, ( , )mY   , associated Legendre polynomial, ( )mP  and 

ime  eigen-solutions are related to the vector orbital angular momentum, L r P 
 

associated with 
different/distinct standing waves! The  value is associated with total “orbital” angular 
momentum, L (calculated about the center of the 3-D sphere) and the m value is associated with 
the z-component of the “orbital” angular momentum, Lz, projected onto the vertical axis, the z-
axis.  
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    Glossed over in the details of the derivation of the separation constant, ( 1)    associated 
with the angular differential equation(s) for the spherical harmonics/associated Legendre 
polynomials was the fact that the total angular momentum, L is not in fact an eigen-state, 
however, the square of the total angular momentum, L2 is an eigen-state, as is the z-component 
of the angular momentum, Lz. In other words, both L2 and Lz are each what is known as an 
operator, such that: 
 

2 2
, , 0 , ,( , , , ) ( 1) ( , , , )j m j mL r t L r t          and , , 0 , ,( , , , ) ( , , , )z j m j mL r t mL r t        

 

where L0 is the smallest unit (“quanta”) of angular momentum associated with the physical 
problem (MKS units: kg-m2/sec). 
 

     The eigen-states with 0 have zero total angular momentum and thus have spherically 
symmetric eigen-solutions. Eigen-states with increasingly higher  -values have increasingly 
higher orbital angular momentum associated with them and thus are increasingly non-spherically 
symmetric. 
  

     The eigen-mode solutions of the associated temporal wave equation for longitudinal standing 
waves inside a 3-D sphere of radius, R are of the following equivalent form(s): 

     The complete eigen-mode solutions for longitudinal displacement amplitude standing waves 
inside a 3-D sphere of radius, R are thus given e.g. by: 

 

     Note that the above formalism is also relevant for longitudinal standing waves in a 3-D sphere 
of radius, R e.g. made of an elastic solid, and/or sound waves in e.g. a water drop. However, the 
radial boundary condition for these would instead be ( ) / 0dR r R dr  , i.e. zero slope of the 

radial functions – i.e. the anti-nodes of the spherical Bessel functions of order,  , the ( )j x kR . 
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     Despite the fact that there aren’t many musical instruments that are spherical in shape, the 
eigen-solutions, eigen-frequencies, eigen-energies, etc. associated with standing waves inside a 
3-D sphere do indeed have many interesting applications – e.g. sound waves in the interior of (all 
kinds of) stars, surface waves propagating near the star’s surface (where the origin, r = 0 is 
excluded), e.g. sound waves and radio waves in our earth’s ionosphere (again where the origin, r 
= 0 is excluded), gravitational waves in the early universe, as well as sound waves (propagating 
in the plasma) of the early universe, during ~ the first 350,000 – 400,000 years after the big 
bang! 
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