UIUC Physics 406 Acoustical Physics of Music

Examples of Complex Sound Fields:

Example # 0: “Generic”’3-D Monochromatic Traveling Wave:

Before we launch into discussing several specific examples of complex sound fields/sound
propagation, it is useful/illuminating to first consider the more general case of a “generic”
complex sound field associated with a 3-D monochromatic traveling wave. Again, we assume
that we are working in the linear regime of “everyday” sound pressure levels

SPL «134dB (| f)| <100 Pa) and also can safely ignore/neglect any/all dissipative effects, such
that the Euler equation for inviscid fluid flow is a valid/accurate description of the acoustical
physics situation. Then:

The complex time-domain over-pressure amplitude r)(F,t) associated with a “generic”
3-D monochromatic traveling wave at the listener space-time point (f,t) can be written as:

po (f_., a))‘ ei(a)t+(ﬂp(F,(1)))

p(F.t)=

where: p(F,0)=

P, (F, w)‘-ei“"’(f‘“’) is the corresponding complex frequency-domain over-

pressure amplitude associated with the “generic” 3-D monochromatic traveling wave at the
listener space-time point (F,t). Note that in general, both the magnitude of the complex over-

pressure amplitude

P, (Fa))‘ and the phase ¢, (F,) are {listener} position-dependent and
{angular} frequency-dependent quantities for a “generic” 3-D monochromatic traveling wave.

The {linearized} Euler equation for inviscid fluid flow (i.e. no dissipation) relates the
complex time-domain 3-D particle velocity ﬁ(r,t) to the complex time-domain over-pressure

amplitude p(F,t):

In general, for “generic” 3-D monochromatic traveling wave, the complex time-domain
3-D particle velocity G (F,t) will be of the form: G (F,t)=0(F,»)-e where G (F,®) is the
corresponding complex frequency-domain 3-D particle velocity.

On the LHS of the Euler equation, for a harmonic (i.e. monochromatic) complex sound field,
since U (F,t)oc e, it is easy to show that od (F,t)/ot = i@l (F,t). Then on the RHS of the Euler
equation:

VB(r.t)=Vp(F,@)-e" = V|

B, (T, 0)|- g7 ] e
Using the chain rule of differentiation, this relation becomes:
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Vp(T,t)= {ﬁ ﬁo(F,a))‘}-ei‘”"(m)+ ﬁo(F,a))‘ﬁe""“(r'”)}-e""t
V5, (7.0 ioo(r0) _ c igo(F.0) | g
= ——— P, (F,0)-”" +i|p, (F, o)V, (F,0)e”" |-
] po(r,a))‘ ( )‘ ( )‘ { p( )}
VIR (ro) o e e
= v 1 1 : Y e
o (o) +iVe, (F.) || B (7 a))‘e e
o - =p(F.t)
—6 ﬁo(r'w) 1y, 7 _~ r
= \Y% , 't
_ 0. (1) +iVe, (F a))_ p(F.t)
The Euler equation for this “generic” 3-D monochromatic traveling wave is:
jaguges 1 ﬁ po(r’a))‘ o = -
lo-u(r,t)=—— —— +IVe, (T, o) |p(T,t
( ) po{ po(r,a))‘ p( ) ( )
or:
. 1 | V|p,(F,0) - e i | V|p (o) .
JA)=— \% , )= \% , 1t
u(r.t) ipoa){ f)O(F,a))H o, (T a))}p(r ) +poa){ f)O(F,a))‘H o, (F.0) |[p(F.1)
1| VR(Fe)| - | 1o o VR (Fe)ll| .
=+ l—— —Vo (F,o)|p(rt)=— Vo, (I o)-1—————|p(I,t
poa)|: po(r,a)) p( ):l ( ) Poa){ p( ) po(r,w)‘ ( )

Thus, for a “generic” 3-D monochromatic traveling wave, the complex time-domain
3-D particle velocity ﬁ(r,t) is related to the complex time-domain over-pressure amplitude

p(F,t) via the {linearized} Euler equation relation:

<!

G t)=——2 {?gop(f,a))—i

Po

There are two different kinds of terms/contributions on the RHS of this equation. The first term,
~Vo, (. o) is the {negative of the} spatial gradient of the phase of the complex over-pressure

amplitude — note that for this contribution, ﬁ(F,t) is in-phase with f(F,t). The second term,
+ V|, (7, o)/
pressure amplitude — note that for this contribution, G (F,t) is 90°-out-of-phase with p(T,t).

P, (T, a))‘ is the {normalized/fractional} spatial gradient of the complex over-

Then e.g. for the specific case of a monochromatic 3-D traveling plane wave, ¢, (f,o)= —koF

and p, (F,®)=p, = fen(F, @), thus: ?gop(F,a)):—ﬁ(IZ-F):—IZ and: V

B, (F,®)|=0, hence
{here} G(T,t) is in-phase with {(F,t) and using @ =ck we also see that: ﬁ(F,t):(ﬁ(F,t)/poc)lz.
-
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Since p(F,t)=p(F,w)-e"and G(F,t)=0(F,w) e, the complex 3-D vector specific acoustic

impedance {here} is:

- B(F 1

7 (o) =20 P _- P
VB, (F,

i(fo) 1. ;Hm_ {qup(r o)

B, (T, @

w/c
%

n

)
pr\
E)F

The purely real quantity z, = p,¢ =1.204(kg/m*)-343(m/s) = 413 (Pascal-sec/m = Rayls =Q, )
@ NTP is known as the characteristic longitudinal specific acoustic impedance of free air.

n

Its inverse is the purely real characteristic longitudinal specific acoustic admittance of free air:
=1/2,=1/p,c =1/413=2.42x10" (Q,!).

Note that ¢, po, z, and y, are not constants, they are dependent e.g. on the air temperature, T
as shown in the table below, for an ambient pressure of Pam = 1.0 atmosphere:

Temperature (°C) ¢ (m/s) o (kg/m®) Zo (Qa) Yo (Qal)

-10 325.2 1.342 436.1 2.293x103

-5 328.3 1.317 432.0 2.315x107°

0 331.3 1.292 428.4 2.334x1073

+5 334.3 1.269 424.3 2.357x103

+10 337.3 1.247 420.6 2.378x107°

+15 340.3 1.225 416.8 2.399x103

+20 343.2 1.204 413.2 2.420x1073

+25 346.1 1.184 409.8 2.440x107°

+30 349.0 1.165 406.3 2.461x1073

For the specific case of a monochromatic 3-D traveling plane wave propagating e.g. in “free air”,

using k = w/c, where k = ‘IZ‘ = JkZ +k; +k? (m™) and using the relation z, = p,c, we can

rewrite the above expression for the complex 3-D vector specific acoustic impedance for the
specific case of a monochromatic 3-D traveling plane wave propagating e.g. in “free air” as:

(ro)=20e)__ k

u(r, o)

'

N

VP,
P

[?gop(r?,a)) |7

We can also write this as a dimensionless relation, and since Z, (F,t) = p,C, (T,t), we have:

ﬂ

)

Z,(f,0) GC,(F,0) ~ k
° |:§(pp(?,a))—i
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Example # 1: 1-D Plane Monochromatic Traveling Wave Propagating in “Free Air’:

In “free air”, the instantaneous time-domain pressure at a space-time point (x,t) associated

with a 1-D plane monochromatic traveling wave propagating e.g. in the +x-direction is a purely
real quantity: p(x,t)= p,cos(wt—kx).

The 1-D instantaneous time-domain longitudinal particle velocity (i.e. in the +x-/propagation
direction) at the space-time point (x,t) associated with a 1-D plane monochromatic traveling

wave is obtained via the {linearized} 1-D Euler equation for inviscid fluid flow:

ou'(xt) 1 0p(xt)  p,ocos(wt—kx)  kp,
ot P, OX - 2o OX - £

sin (ot —kx)
Then:

po po Po I
X,t) sin (ot —kx)dt = cos (ot —kx) =—cos(at —kx) = u, cos(at —kx
u'( 2, _[ ) 60,00 ( ) 0. ( ) ( )

where we have used the relation ¢ = w/k =343m/s = speed of sound in {bone-dry} air @ NTP
(obtained from the 1-D wave equation(s) for p or u"). Note also that: u! = p,/p,c=p,/z, -

Since p(x,t)=p,cos(wt—kx) and u'(x,t)=(p,/p,C)cos(wt—kx)=u}cos(mt—kx),
we see that the instantaneous time-domain pressure and longitudinal particle velocity are in-
phase with each other for a 1-D monochromatic plane wave propagating in “free air”. This in
turn implies that for harmonic (i.e. single-frequency) {aka monochromatic} plane waves, the
longitudinal specific acoustic impedance, specific admittance and intensity will thus also be
purely real quantities for a 1-D monochromatic plane wave propagating in “free air”

We then “complexify” the above instantaneous time-domain pressure and longitudinal
particle velocity expressions to obtain their complex time-domain representations:
p(x.t)=p,e (%) and G”(x,t):uﬂe'(‘“t’kx) . The longitudinal specific acoustic impedance

associated with a 1-D monochromatic plane wave propagating e.g. in the +x-direction in “free
air” is then easily seen to {also} be a purely real quantity:

71 (x) = Gr?(())(('i)) SIT i(o 30 B MEZO =7, (Q,)

Since {here} Z.(x)= p,Cl (x), we see that the longitudinal velocity of energy flow ¢! (x)=c
for a 1-D monochromatic plane wave propagating e.g. in the +x-direction in “free air”.

Note that this acoustic sound field example is the electrical analog of a simple AC circuit, e.g.
driven at constant voltage by a sine-wave generator with a purely real instantaneous AC voltage

V (t)=V, coswt imposed across an ideal resistor of resistance R (Q) (hence purely real
impedance Z = R+i0(Q,)) resulting in a purely real instantaneous AC current 1 (t)= 1, cos et

flowing through it.
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Note also that the purely real longitudinal specific acoustic impedance z! (x) =p,C=17, (Q,)
and/or the longitudinal specific acoustic admittance y} (x) =1/z} (x) =1/ p,c = y} =1/2} (') and

also the longitudinal velocity of energy flow, ¢} (x)=c assomated with a 1-D monochromatic
plane wave propagating e.g. in the +x-direction in “free air” have no spatial (i.e. x-) and/or
frequency (i.e. f -) dependence.

The instantaneous time-domain longitudinal acoustic intensity associated with a 1-D
monochromatic plane traveling wave propagating in the +x-direction in “free air” is also a purely
real quantity — i.e. plane wave acoustic energy is entirely in the form of pure sound radiation — no
acoustic energy is {temporarily} stored “locally” at the point x. The instantaneous time-domain
complex longitudinal acoustic intensity is:

11 (x,t)= p(x,t)-u"(x,t) = p,ul cos’ (wt —kx)
For an observer’s/listener’s position e.g. at x = 0:

I1(x=0,t)=p(x=0,t)u" (x=0,t) = p,ul cos’ wt

. . 1 (= .
Noting that the time-averaged <cos2 cot>t == L . cos’ wt dt =1, the time-averaged
7=

instantaneous_time-domain complex longitudinal sound intensity at the listener’s position x = 0
associated with a 1-D monochromatic plane traveling wave propagating in the +x-direction in
“free air” is:

(11(x=0,t)) = p,ul (cos’ @t) =3 p,ul

We can also define RMS amplitudes of over-pressure and particle velocity in terms of their

respective peak amplitudes: p;™ = —+ P, and ulms = * u!'. Thus, we see that the RMS value of

the instantaneous_time-domain longitudinal sound intensity at the listener’s position x =0
associated with a 1-D monochromatic plane traveling wave propagating in the +x-direction in
“free air” is equal to the time-averaged longitudinal sound intensity at that point, i.e.:

11™ (x=0) :<I2 (x= O)>t =1pul = pmylm

The reader can also easily verify for this example that the frequency domain active (i.e. real)
and reactive (i.e. imaginary/quadrature) components of the complex longitudinal acoustic
intensity associated with a 1-D monochromatic traveling plane wave propagating in the +x-
direction in “free air” are given by:

(%, 0) =3 p(x o) 0" (x,0) =+ p, &2 Tul 2T =1 pul =1 p,ul +0i = (I (x,)).

Here in this problem, note that: <I~é'1' (x,t)>t :<f£r (x,t)>t +i<f£i (x,t)>t = p,u! +0i = p,u!
has no position (i.e. x-) dependence!
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The instantaneous potential, kinetic and total energy densities associated with a 1-D
monochromatic traveling plane wave propagating in the +x-direction in “free air” at x = 0 are:

1

i 1
w™ (x=0,t)== (x=0,t)== ™2 cos’ wt
potl ( ) 2 p0C2 P ( ) 2 £,C 2 Mo
1 1
Win (x=0,t) = E,OOU” (x=0,t)sl, (x=0,t) = Epouﬂz cos® wt = p,ul"™? cos® wt
Wt (x=0,t) = wi (X =0,t)+ W' (x=0,t)
1
Y as 5 u? cos® at = P pgmsz cos’ at + p,ul™? cos® wt
0

For this situation with a 1-D monochromatic traveling plane wave, we obtained the relation

40—t -2 pe=n (@)

Thus we see again here that: p, = p,cu!l =z,u!l. Using the square of this relation in the above
instantaneous total energy density expression, we also see that {here}:

Wt (X=0,t) =Wy (X=0,t)+ Wi (x=0,t) = 102 pZ cos” ot = p,ul’ cos’® wt
P

tot potl
0

The time-averages of the instantaneous potential, kinetic and total energy densities
associated with a 1-D monochromatic traveling plane wave propagating in the +x-direction in
“free air” at x = 0 are:

ins 11
<wp0§| (x= O,t)>t =3 Y p: <cos a)t>t 40

=12

1 pﬁzéplz o (Joules/m*)

(Wi (x=0,1)) = %pougz (cos’ at) = lpougz 1 = pul™ (Joules/m*)
AN

4 2
:]/2
IS ms II’]S 1 0 1 1 rme2 rms
(Wi (x=0,t)) =(wjm (x=0,t)) +({wi' (x=0,1)) = pr +Zpou(‘)‘2_ 22 +2,oouH > (Joules/m*)
Again, using the square of the relation p, = p,cu!l =z u! in the above expression, we see that:
inst inst |nst 1 pj 1 ||2 Il 3
<wmt (x=0,t)>t z<wpoﬂ(x Ot)> < mt(x =0, t)>t 250 =Py’ = pou (Joules/m?)

Note that the ratio of the time-averaged potential energy density to the time-averaged Kinetic
energy density e.g. at x = 0 is equal to unity for a 1-D monochromatic traveling wave:

. 1 p;
(Win ((=0)), _apc® o2 p2 7,
<Wll<ri]r?t (X _ 0,'[)> j.lpougz POZCZUL‘Z 22ull2 Zg
-6-
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Note further that:
" 1p 1 1
<Ié'1' (x =O,t)> 2 Pol Uy = 20 =Epocul,‘2 :Euﬂzzo (Watts/m?)
and again using the relation p, = p,cu!l =z,ul, that:
I(x=0 a))=<f"(x=0 t)> =c(w (x=0,t)) = 1, ul = ip_ lp cu!? = lu”2 , (Watts/m?)
a 4 a ' t tot ' t 2 (0] 2 poc 2 2

Example # 2: Two Counter-Propagating 1-D Plane Monochromatic Traveling Waves in “Free Air”:

In this example, we imagine two un-equal strength harmonic (i.e. single-frequency) sound
sources located at x = +oo, with an observer/listener located near/at the origin x = 0. At the
observer’s location there will therefore be two 1-D monochromatic plane traveling waves
propagating in opposite directions in “free air” (i.e. the Great Wide-Open).

The physical, instantaneous time-domain over-pressure amplitudes associated with the right-
and left-going 1-D monochromatic plane waves are individually purely real quantities:

P (x.t)=Acos(at—kx+@}) and pg(x,t)=Bcos(mt+kx+gp;) with Az B {necessarily}

Note here that the frequency and position-independent phases ¢, and ¢z are explicitly included

here to generalize the {relative} phase relation between the two counter-propagating 1-D
monochromatic traveling waves, e.g. consider their phase relationatx=0andt=0

PA(x=0,t=0)=Acosg;, and p,(x=0,t=0)=Bcosg;.
The corresponding complex time-domain over-pressure amplitudes are:
Pa(xt) =A™ and p,(x,t)=Be""* with A= B {necessarily}
where A:‘A‘ei‘”oA = Ae'* and B :‘E‘e“”g =Be'* .
Each individual complex time-domain over-pressure amplitude satisfies its own Euler’s equation:

oy (X,1) _ 1 0py (x.t)
ot Lo OX

The corresponding right- and left-going complex time-domain longitudinal particle velocities are:

A B
al (x,1) = — e @™ = gll e@*) and: gl (x,t —e'("’”kx)z—a (@) (ysing ¢ = w/k
a(xt)= o A g (xt)= Y ) (using /K )

Note the —ve sign in the left-going complex longitudinal particle velocity amplitude, which
simple reflects the fact that it is propagating in the —ve x-direction.
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For “everyday” sound pressure levels SPL =L, = 2010, ( P,/ P, ) <134 dB, corresponding

to sound over-pressure amplitudes in “free air” at NTP of | p(T,t)| <100 RMS Pascals,, the

principle of linear superposition holds, such that the total/resultant complex over-pressure and
longitudinal particle velocity amplitudes respectively are:

Poc (X, 1) = Pa(X,0)+ P (x,t) =A™ 4+ Be*) (Pascals)
and:

wt—kx)

~Il t)= ~Il t ~l 1) = ~I Al ~| Ai(ot+kx) :i i(wt—kx)_i i(wt+kx)
O (X, 1) = Op (X,1)+ 03 (x,t) = T,e + 0 € poce poce (m/s)

We can recast the above equations in terms of the dimensionless complex variable:

R= E/; ) }BA} z: ) %EI((/)M) = [R]e" ) = [R|e"t where: AgE, = g2~}
Thus:
Pt (X,1) = A[emka) N ‘g‘ pilot+k) 'eiAngj| _ A[l N ‘ﬁ‘ei(ka+A¢gA)}ei(wth)
and:

U~1|Lt (X,t) _ p_/&(:[ei(mth) _‘F"é‘ei(mwkx) 'eiA(pgA:| _ p_i[l_‘ﬁ‘ei(zkwr&ﬂg;\)}ei(wtkx)

We first calculate the magnitudes of the complex total/resultant over-pressure ‘ Prot (x,t)‘ and

al, (x.t)|:

[P (% 1)| = 4/ P (X 1) - Pl (x,1)

o )
_|A \/(1 R (14 e )
=|A \/1 +‘F§‘ ol(2ecraoka) +‘§‘e—i(zm+A¢§A) +‘§‘z

—|A \/1+ ‘ Ii‘ {ei(2kx+A¢7§A) N e—i(ka+A¢ng) } N ‘Ii‘z

longitudinal particle velocity

Il
o

_ A\/1+2‘§‘cos(2kX+A(ﬂ§A)+‘§‘2
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and:

Tl Tl
utot ‘ \/utot X’t utot t)

_ A \/(l ~ ‘ﬁ‘e(zkx+A¢gA)) (1 B ‘R‘ 2kX+A¢BA))*
P,C
\/(l 3 ‘R‘ 2kx+A(pBA)) (1 3 ‘R‘ 2kx+A(pBA))

\/1_ ‘ Ii‘ ei(2kx+A¢;gA) 3 ‘ Ii‘ e—i(ka+A(p§A) N ‘ ﬁr

_ \/ ‘R‘{ (2kocragss) +ei(2kx+A¢gA)}+‘§‘2

JeXe

A
£.C
A
02,C
A

A - ;A 2
-1 J1-2|R|cos(2koc+ Agt, )[R

Thus, e.g. for an observer/listener’s position x = 0, .and. for equal-strength over-pressure
amplitudes ‘A‘ = ‘B‘ = ‘Ii‘ = ‘BMA‘ =1 (i.e. a pure standing wave!) these formulae simplify to:

| B (x=0,1)| x/_‘A‘1/1+cosAgoBA and: \/_‘A‘«/l COS AL,

Thus, we see that when: Agg, =0,+27,%4rx,...=£n,, 7 that: cosA(pBA =+1 and thus:

Tl
utot

x Ot‘

‘ﬁtot(sz,t)‘= Z‘A‘ and: |0

Uiy (x =0, t)‘ 0

i.e. we have complete constructive (destructive) interference associated with the two individual
complex over-pressure (longitudinal particle velocity) amplitudes, respectively.
We also see that when: Agg, = +1r,+37,457,...=+n 7 that: cosAgg, =—1 and thus:

| B (x=0,1)| =0 and: |a, (x=0,t)|= Z‘A‘/poc

i.e. we have complete destructive (constructive) interference associated with the two individual
complex over-pressure (longitudinal particle velocity) amplitudes, respectively.

Hence, we can also now see that when ‘F?‘ = ‘BMA‘ =1, itis not possible to ever achieve

complete constructive/destructive interference effects between the two individual right- and left-
moving complex over-pressure and/or longitudinal particle velocity amplitudes.

: +APeA i(wt—kx) A +APeA i(wt—
Since: P (x.t)= [1 + ‘R‘ i(2keragg )}e( ) and: @, (x,t)= [ ‘R‘ i(2locAgf )}e'( (ko).
PoC
the phases of the complex total/resultant pressure and longitudinal particle velocity associated
with the two counter-propagating 1-D monochromatic plane waves are given by:

-0-
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. lm{?wt(x,t)}] - Im{[ +‘R‘ 2kX+A¢BA)M

o

. sin kx(l+‘R‘cos 2k + Al )+‘R‘coskx-5|n(2kx+A(p§A)]
= tan

cos kx(1+‘F~%‘cos(2kx+A¢§A))—‘F~2‘sin kx-sin (2kx + Ay, )

and:

2kx+AgoBA
Im{a" (x,t Im{
@, (x)=tan™ [—{ — ( )}} —tan’!

]
]
(

. sinkx(l—‘lﬁ‘cos(ka+A¢BA ) ‘R‘coskx sin(2kx+Agy, )
o coskx(l—‘li‘cos(ka+AgoBA) ‘R‘smkx sin(2kx+ Agy, )

The complex longitudinal specific acoustic impedance associated with the two counter-
propagating 1-D monochromatic plane waves is:

I L i el e o el

a, (xt) y\[ ‘R‘ Zw%ﬂ M—poc[ ‘R‘ i(2kcr g, )}

foXe

Zaiat (X)

Since the characteristic longitudinal specific acoustic impedance of “free air” is z, = p,c, then:

[+‘R‘ 2kx+A(pBA):| [ ‘R‘ 2kx+A(pBA:||: ‘R‘ szM%A)}*
2w (X)=1 =2

atot -

o[ ‘R‘ (200t A )il 0[ 2kx+Atp :l [1 ‘ ‘ i(2kc+Apgn }

[ ‘R‘ 2kx+A¢BA):| [1 ~ 2kx+A¢pBA:|
ZO[ ‘R‘ i(2kc+Apga jl |: ‘R‘ i(2kc+Apga

1+ ‘R‘ (2kx+Apgy)

i(2kocrAgga) ‘

L 2 ﬁ (2loceaogs) _ -i(2hceaks)
Al \ |

=z

| i
:l [ R‘ (2kx+Apga ‘R‘ i(2kc+Apgs )+
|:1+‘R‘{ (2Kx+gR, ~i( 2kt AgpS, ‘ ‘2}

0
2k><+A(pBA 2kx+A¢BA 2
(e R

{[ m%ﬁ%-«mwa)}}
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Using the Euler relations: cos@ =4 (e +e™) and: sind =4 (e’ —e™):
=2\ ol
[{1—‘R‘ }+2|‘R‘sm(2kx+A(pgA)}

LR} 2fRfcos(20c ags,) |

z.’!tot (X) =

We can also write this as a dimensionless quantity:

A (x) [{1—\@\2} +2i \ﬁ@m(mw@} e

atot

Zy [{1+‘F§‘2}—2‘|§‘cos(2kx+Agp§A)} ¢

Note that 7, (x) and ¢

atot

(x-) and frequency (f-) dependence (via the wavenumber k =27z/4 =2z f /c = w/c)!

(x) have no explicit time dependence, but both have spatial/position

The magnitude of the complex longitudinal specific acoustic impedance associated with the
two counter-propagating 1-D monochromatic plane waves is:

T (9] =20 (0)- 20 ()
Z 7 2iRlsin o g, ) | [ 21 fsin 2 i) |
° {14]R["}-2[RJoos (260 203,

- RF |+ 2iRsin (2o agt,) - f1-[R]| -2 Rlsin (2 203, |

{18} - 2Rleos (2kc ag,) |

=7

0

JRF) ol sin (2cs g

o [{1+‘F§‘2} —2‘I§‘cos(2kx+A¢§A)}

Again, we can write this as a dimensionless quantity:

(X)‘ ) \/{l—‘ﬁ‘z}z +4‘I§‘2 sin? (2kX+A(p§A) ) ‘C!mt (x)‘

zII

atot

Do feefRf - 2lRleos(2icrags,)| €
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The phase of the complex longitudinal specific acoustic impedance and longitudinal energy
flow velocity associated with the two counter-propagating 1-D monochromatic plane waves is:

g, e ]
| | o187} [ ptomaes )|
| 2|R]sin(2kx+Agpg,)

=tan" :A¢ I (X):wpxm (X)_¢U1Hot (X):(ocarot (X)

L]

Thus, e.g. for an observer/listener’s position x = 0, .and. for equal-strength pressure amplitudes
‘A‘ = ‘é‘ = ‘Ii‘ = ‘LS’MA‘ =1 (i.e. a “pure” standing wave) these two formulae simplify to:

isin Agg,
[l—cos A(pgA]

isin Agg,

_ Al
B °[1—cosAgo§A]’ or ¢

atot

(x=0)=c

and:

¢, (x=0)=9, (x=0)=tan™ (%] =tan ™ ()

- A¢pmtfutot (X = 0) = ¢ptot (X - 0)_¢utot (X = 0)
=+7/2,+37/2,+57/2,.... =+n_, /2

i.e. for an observer/listener’s position x = 0, .and. for equal-strength pressure amplitudes ‘A‘ = ‘B‘
= ‘Iﬁ‘ E‘B‘/‘A‘ =1 the complex longitudinal specific acoustic impedance Z,, (x =0) is purely
imaginary; its phase ¢, (x = O) is an odd integer multiple of +7/2=+90° — which in turn also
tells us that in this situation, the complex pressure f,, (x =0,t) and longitudinal particle velocity

il
Utor

(x=0,t) differ in phase by an odd integer multiple of +7/2=%90°.

Note that in general, for arbitrary values of x, maxima of the complex longitudinal specific
acoustic impedance Z), (x) occur whenever (2kx+Agg, ) = 0,27, +47,+67... = 4,7, i.€.

whenever cos(2kx+Apg, ) =+1, and thus sin(2kx+Agg, ) =0, then:

JARF) v sint (2ocenon) R

maxima __

Zaat (X)

2 {1+[RT}-2[Rleos(2ocr ags) | [f1+[R[|-2R]

[ 1—Jﬁ\ﬂzJ i | Rl
-2ffR ) \a-fR) ) el -
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The phase(s) associated with the complex longitudinal specific acoustic impedance and complex
longitudinal energy flow velocity maxima occur when:

- 2‘@‘3in(2kx:A¢§A)
maxima {1—‘@‘ }
=Ap (X) = (¢ptrJt (X)_(pul‘m (X)) =&, (X)

Ptot —Utot
Thus, for longitudinal specific acoustic impedance and longitudinal energy flow velocity maxima
associated with this situation, we see that the total/resultant complex pressure p,, (x,t) and

?,, (%)

=tan™(0)=0

maxima maxima maxima

longitudinal particle velocity G (x,t) are precisely in-phase with each other, or at least by + even
integer multiples of 7.

tOt( ‘maxnma _‘ptot Xt ‘/ ‘maxima
(2kx+Agg, ) = 0,227, +47,+67...= £, 7, the magnitude of the total/resultant complex pressure

Since |Z this also tells us that whenever

tOt

‘ﬁtot X, t ‘Wi” also be a maxima, whereas the magnitude of the total/resultant complex longitudinal

particle velocity (U

o (Xt ‘ will simultaneously be a minima:
Bt (X,1) = [ +|R|e 2“*“"5“)} el = A[l +|Rle

= A[l + ‘F?Hcos(inevenyz)+isi\n(\rnm@ﬂ,ei(mkx) [1 N ‘RH i(otoko)

Uth(X,t) |: —‘R‘ 2kX+A¢BA>} e(cot—kx) _ A |:1 _ ‘R

iineven”j| . ei(a)t—kx)

and:

+l”even”:| . ei((ut—kx)

PoC P,C
=£C[1— ‘Fi‘{cos(inevenﬂ)+im}} gl pAC 1 - [R|]-e
= B (1) =y B (%) P (x1) :‘A‘[l + ‘IQH for ‘Ii‘:l: ‘f)wt(x,t)‘=2‘,&‘ “pyre”
‘A‘ ) ) standing
= |an (X ‘ \/umt t)- Gy, (x,t) :p—oc[l —~ ‘RH for ‘R‘: tot(Xt)‘ 0 wave!!!

In general, for arbitrary values of x, minima of the complex longitudinal specific acoustic
impedance Z, (x) and the complex longitudinal energy flow velocity €] (x)will occur whenever

(2kx+A(p§A) +177,437,457... = +n 7 , i.e. whenever cos(2kx+A¢>BA) -1, and
sin(2kx+Agg, ) =0, then:
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~12)2 ~12 . 2
Z!tOt(X)minima _\/{1—‘R‘ } +4‘R‘ sin 2kx+A¢)BA 1/
2, [{1+‘I§‘2}—2‘R cos(2kx+A(pBA)} [{1 FE }
(/) (2] (-IR) NRQ (R Jetun(
) ) R R

The phase(s) associated with the complex longitudinal specific acoustic impedance and complex
energy flow velocity minima are:

:Uz

minima

et Z‘Fi‘sin (2kx+A¢;A) —tn(0)=0

minima ~|2
{1— ] }
- A¢pmt_“10t (X) minima - (¢ptm (X) B ¢”tot (X))minima - @ca (X)

Thus, for longitudinal specific acoustic impedance and longitudinal energy flow velocity
minima associated with this situation, we see that the total/resultant complex pressure f, (xt)

minima

and longitudinal particle velocity G (x, t) are precisely out-of-phase with each other, or at least

tot (X) minima ptOt X t ‘/
that whenever (2kx + Agg, ) = +1z,+37,457...= +n 4, 7 , the magnitude of the total/resultant

this also tells us

m inima

by + odd integer multiples of 7. Since |Z ot (

complex pressure

Pt (X 1 ‘Will also be a minima, whereas the magnitude of the total/resultant

complex longitudinal particle velocity |

e (Xt ‘WI” simultaneously be a maxima:

B () = A1+ [R5 gt 2 R[4 Rl gt

Il
T
/1
[N
_I_
_
—_——
O
o
7]
-+
>
S
o
B
N—
+
2.
=)
|
B
|
(-D_
B
3
Il
p>1
|
'_\
|
_D
[
(-D_
B
z

and: i
UtlLt(X,t): pAC[ ‘R‘ 2|<X+A¢BA):| @itk _ pAC [1 _ ‘R +.n0dd,[] . giletk0)
= péc [l— ‘ﬁ‘{cos(inoddﬁ)ﬂW}},ei(wtka) _ pAC[ +‘RH i( ot —k)
= P Xt \/ptot X, 1) P (X, 1) ‘A‘[l— ‘RH for‘li‘:l: ﬁtot(x,t)‘zo “pyre”
‘A‘ 3 3 Z‘A‘ standing
= [ (8] =0 (0t)-05 () = [1+ [R]] | for [R[=1: g (xt)] =— 7 | wavett
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A perhaps somewhat more general situation associated with two counter-propagating
monochromatic plane waves in “free air”, is e.g. the case when ‘Ii‘ = ‘E?MA‘ =0.5 and

Apg, =0.5; the {normalized} magnitude of the complex longitudinal specific acoustic

impedance |2}, (X)|/z, =2k (x)| /. and its phase ¢, (x)=Ag_ . (x )=0,, (X)=0, (x) vs.
kx are shown in the figure(s) below.

1-R?
(1-R)?
3
. 1-R2
21 2 —
PoC (1+R)
4] -
Cos 2kx+8) =1 kx
Cos (2kx+8) = -1
60

40 —
20 — /\ [\
Qpu 0
(deg) 20 kx
0N N

-60 -

Y

The complex frequency-domain total/resultant complex longitudinal sound intensity associated
with two counter-propagating monochromatic plane waves in “free air” , with k = w/c is:

Lo, (@)=

Pt (X, @) - Ui (X, )

A|:l+‘R e(2kX+A(pgA)j| o k) A l: ‘R‘ 2kx+A(pBA)j| e,' t—kx)
PoC

I\)II—‘ N |-

2

A _

Pl

1+

N |-

e(2kx+A(pBA :| |: —‘R‘ 2k><+A(pBA
PoCL

o

1+|R[{e

and using: z, = p,C

N |~

pcL

~{ i(2kx+A¢7§A) e 2k><+AqoBA }

1 [A [{Hr&f}+2i\§\sin(2kX+A¢§A)}

N |~

1421 R|sin(2kx+Apg, ) \R\ }
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The phase associated with the complex frequency-domain I} (x,) is:

1 " .
Im{fatot(x’a))}\]_tan 77 [Z‘R‘s'”(2kX+A(oBA)} [z‘ﬁ‘sin(2kx+Ago§A)]

2 =tan

el (x0)] W )| [T}

Compare the above frequency-domain total/resultant complex longitudinal acoustic intensity
expressions to those associated with the complex longitudinal specific acoustic impedance and
complex longitudinal energy flow velocity:

0 (o) [}l (2ec a0 @ (o

z, [{1+‘F§‘2}—2‘ﬁ‘cos(2kx+A(pgA)} ¢
Since: I:a =1 f)ﬁ* and fa EUE:UE:E:: :%—TJ:% , or: Ii(x,m):%‘ﬁ(x,a))r fa(x,a)),

For the situation here with counter-propagating 1-D monochromatic traveling plane waves,
and using k = w/c:

~12
Oioe (X, a))‘ U [1 Z‘R‘cos (2kx+Agyg,) ‘R” ‘A‘ [{1+‘R‘} 2‘F§‘cos(2kx+A(pBA)}

0

Thus we see that, indeed:

W s (AR 2Rl a0k )| [fa- a7} afin(aecs i |

20 (X,a)2 _ . =7 (x0)
al (xa))‘ W i i [{1+‘|§‘2}—2‘§‘cos(2kx+A(p§A)} "
o | L4/ |- 2lRlcos(2ice a0t )|
ZO
i.e. that:
2y (xo) |} 2R 26 5 x0) el (o)
0l (X, a))2 z, [{1+|F§|2}—2|Ii|cos(2kx+A(p§A)} Zo ¢
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and we see that:

Im{za“"(x’w)}]—tanl Z‘Fi‘sin(ZkXJrAgogA)
Re{zl, (@)} {1—‘I§r}
=Ap ( 'w):(ppwt(X’w)_(/)Ul‘m(X'w):

Ptot ~Utot

{.m{cam(x,w)}J

Re{cl, (@)}

0. (% @)=tan™

atot

Hence, we also see that:

0., (X0)=0, (xo)=¢, (xo)=Ap  (x0)=¢, (x0)-9, (X0)

tot ~Utot

| 2|R|sin(2kx+Apg,)
-}

When ‘Ii‘ = ‘é‘/w =1 (i.e. a pure standing wave!), then:

=tan”

Il (%@)=1 Py (X 0)-05 (X o) %Z—‘[{l—‘ﬁr}+2i‘F~%‘sin(2kx+A(p§A)}: (% 0)+il] (x0)

For an observer/listener’s position at x = 0 .and. ‘F?‘ =1, this reduces to:

~12
- A
I;‘m (x=0,0)=% Py (x=0,0)- ar (x=0,0)= i_‘z‘ sinAgg, (n.b. purely imaginary quantity!)

0

We see again that when additionally: A, = 0,+1r,+27,+37,...= nz that: I:!m (x=0,t)=0 1

Similarly, we see that I:[Lm (x =0, a)) has a purely imaginary extremum amplitude of

£|A [p,c=|A[ [z, when Ap,, =+7/2,+37/2,£57/2,...= £m,, /2.

Physically, the real part of the complex frequency-domain longitudinal acoustic intensity
I ;‘m (x, a)) represents the frequency-domain “amplitude” of the net flux/flow of acoustic energy

crossing unit area per unit time (SI units Watts/m?) — i.e. the real part of the complex acoustic

intensity is physically associated with propagating sound/sound radiation. The imaginary part
of the complex frequency-domain longitudinal acoustic intensity is physically associated with
non-propagating acoustic energy, i.e. energy sloshing back and forth each cycle of oscillation.
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The instantaneous potential, kinetic and total energy densities (n.b. always purely real, additive
quantities!) associated with two counter-propagating 1-D monochromatic traveling plane waves are:

winst (X’t)E%plcz ptzot(x’t) ‘ ‘ [COS a)t kx+¢A ‘Iﬁ‘cos(a)t+kX+(pg)}z

potl

~2
:%%[Cosz(a)t—kX+¢)Z)+2‘I§‘COS(a)t—kx+go2)cos(a)t+kx+¢)§)+‘|§‘2 cosz(a)t+kx+go§)}
P

~12
! t)eij! t =1‘A‘
Polir (X 1)l (X,1) = =5

inst ,t =
W (X,1) 2 o

kin

[cos(a)t — kx+gof\)—‘F~2‘cos(a)t + kX+(/)§)T

N |~

A
_ZpC

[cos (@t —kx+ @) —2|R|cos (et — kx+ g3 ) cos (ot + kx+ ) ‘Ii‘zcosz(a)t+kx+(p§)}

Wt (%, 1) = Wit (%,t) +wit (x,t) = ﬂ[cosz(a)t—kx+ °)+‘I§‘Zcosz(a)t+kx+ °)}
tot (A L) = Wooy kin \ A 2, 2 (2 (128

Again, for an observer/listener’s position at x = 0 .and. ‘F?‘ =1 (i.e. a “pure” standing wave),
these quantities reduce to:

wis (x=0,t) = ZLA(‘: [cosa)t+cos(a)t+AgoBA)]2
Wi (x=0,t) = ZLA(‘: [cosa)t COS(a)t+A¢BA):|2
Wt (X,1) = Wiy (X, 1)+ Wi (X, ‘ ‘ [cos a)t+‘R‘ cos’ a)t+AgoBA)}

We see that when: Agg, =0,+27,+47,467,...=£N,, 7
since: cos(@+n,,,7)=(cos@-cosn,, z)7F (sine- Si
all in the form of potential energy density:

Nl 1A A LA
wis (x=0,t) = 20 -] cosat+cos(at£n,, )] Y cos’ wt Y cos® ot =——-cos” ot
Wen (x=0,t)= Z,LA‘C | cosat - COS(a)t—l—A(/)BA)T:

(o] » »

- - - 20, 2Al

Wer (Xx=0,t)=wry (x=0,t)+wg (x=0,t)= Py cos” ot e cos’ wt
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We also see that when: Ag,, = +17,£37,£57,...=£n 7
since: cos(@+n,,7)=(c0sO-cosn ,7)F (sin 0 SiMRy,, 77 ) =—c0sd, the total energy density is
all in the form of Kkinetic energy density:

~12
whe (x=0,t) :%,LA(‘:Z [ coswt +cos (et + noddﬂ)]z =0
~12 ~|2
Wi (x=0,t) = 5 LA(‘: [coswt COS((O’H—A(/)BA)T _Eﬂfc\‘z cos’ ot = Z‘ﬁz cos’ wt
inst inst inst Z‘Ar 2 Z‘Ar 2
W (X=0,t)=wr (x=0,t)+wg (x:O,t):Wcos ot = 008 wt

The time-averaged potential, kinetic and total energy densities associated with two counter-
propagating 1-D monochromatic traveling plane waves are:

1 (P (xt), 1 |A]

W () =5 a0

[1+‘R‘ + Z‘R‘cos 2kx+A¢BA)J

<Wkin(x,t)>t:%p0<ut'of(xt)> 4LA(‘: [1+‘R‘ —Z‘R‘cos 2kx+A¢BA)J
ot (00, = (0, 1), -2 L T

Note here, that the ratio of the time-averaged potential energy density to the time-averaged
kinetic energy density is not equal to unity for counter-propagating monochromatic plane waves:

1{Pe (x1) ) i
<wp0ﬂ(x,t)>t: 2<t'toocz>t [1+‘R‘2+2‘R‘COS(2kX+A¢§A)}
(Wiio (x,1)), * p{ul (), [m&f - 2|Roos(2kc+ A, ) |

Again, for an observer’s position at x = 0 .and. ‘Ii‘ = ‘EMA‘ =1 (i.e. a “pure” standing wave),
these quantities reduce to:

1(Pa(x=01) 1A

<wpOtl (x=0,t)>t =5 pr t ZEF[1+COSA¢SA]
~12
A
<ka (x :O,t)>t :%po <ut”0f (x= 0,t)>t =%L (‘:2 [1—COSA¢§A]
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<Wtot (X O’t)> = <Wpotl (X = O)>t +<Wk|n (X 0)>t
~12 ~12
1 |A . A 1 A A
_Epocz |:1+M:|+EE|:1_M:|_? 2¢
When: Ag,, =0,£27,+47,t67 N..,77 the energy density is all potential energy density:
pZ (x=0,t A Al
<Wp0tl (x= 0,t)>t = %< “ (,OOCZ )>t ; Lo‘ [1+ cos(* nevenzr)] = %
(W, (x=0,t)) = %po (Ul (x=0,1)) = ; /‘00‘ [1-cos(+n,,,7)|=0
A

~12 ~12

A L, A
Wy (= 0,0)), =Wy (x=0.0)) + (W (x=0.1)), =7 +0 =7 =
When: Ag,, =*lr,£37,457,...=£n 7 the energy density is all kinetic energy density:

2 (x=0,t A

TR Ll e L‘ [1+cos(n,m)] =0
~p2

A A
<Wkin(X:0’t)>t:%po<utof(x 0t)>t ;,‘00(‘3 [1 COS(+nodd7r)] /‘OO(L
2 2~
A A A
<Wtot(x Ot)> E< pOtI(X:0)>t+<Wkin(X:O)>t:O+‘ ‘2:‘ ‘2: ‘

IOOC IOOC ZOC
We coded up the above acoustic expressions in Matlab to obtain plots of them vs.
dimensionless position, @ = kx for various values of 0 < ‘Ii‘ <1 for two counter-propagating 1-D

monochromatic traveling plane waves and posted a write-up along with the Matlab *.m script on
the Physics 406 Software web-page: http://courses.physics.illinois.edu/phys406/406pom_sw.html
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Acoustic Reflectance/Transmittance/Absorbance and
Acoustic Reflection/Transmission/Absorption Coefficients:

The physical meaning of the complex quantity R=B/A= ‘F?‘em“’g*\ used in (all of) the above
formulae for this two counter-propagating monochromatic plane waves problem can also be used to

describe various other types of acoustical physics situations, e.g. by interpreting R as the complex
acoustic reflectance associated with a sound wave reflecting off of a surface. The {purely real}

reflection coefficient associated with the surface is then defined as: 0<R = ‘FE‘Z =R-R"<1.

If a sound wave is only partially reflected from a surface, then it is either partially transmitted
(with complex acoustic transmittance T and corresponding {purely real}transmission

coefficient 0< T = ‘ﬂ2 =T .T" <1) and/or is absorbed by the surface (with complex acoustic

absorbance A and corresponding {purely real} absorption coefficient 0 < A EWZ =A-A"<1),

since we must have (by conservation of energy at the surface/interface): R+ T+ A =1.

Limiting/Special Cases of Interest:

1.) A single monochromatic traveling plane wave (emitted from a sound source e.g. located at x = —0)
propagating in the +ve x-direction and reflects, at normal incidence, off of a rigid, perfectly reflecting
infinite plane (e.g. located at x = x, > 0), thereby producing a reflected wave (of equal amplitude) that

propagates in the —ve x-direction. This situation corresponds to R = ‘Ii‘eo =+1 at x=X, >0, which

has the associated boundary condition p,, (X =X,,t)= p,,. (X=X,,t), i.e. no phase change occurs
upon reflection, such that an over-pressure anti-node exists at x=x, >0:

ptot(X: Xo’t): pinc(X: Xo’t)+ prefl (X: Xo’t)zzr)inc(xz Xo’t)'

2.) A single monochromatic traveling plane wave (emitted from a sound source e.g. located at
X = —o0) propagating in the +ve x-direction and reflects, at normal incidence, off of an infinite
pressure-release plane consisting of an air-water interface (located at x = x, > 0), thereby

producing a reflected wave (of equal amplitude) that propagates in the —ve x-direction.

This situation corresponds to R = ‘Ii e =—1. An air-water interface (n.b. “viewed” from the

water side) closely approximates an ideal pressure-release surface, for which the boundary
condition at the pressure-release surface is P, (X =X,,t)=—p, (Xx=X,,t) (i.e. a phase change

of 180° occurs upon reflection), such that an over-pressure node exists at X =x, >0:
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3.) The most general case: A single monochromatic traveling plane wave (emitted from a sound
source e.g. located at x = —co) propagating in the +ve x-direction and reflects, at normal
incidence off of an infinite plane (located at x = x, > 0) of arbitrary characteristics — e.g.

it could be a “passive” surface that is only partially reflecting/partially absorbing (hence ‘Iﬁ‘ <1)

and in principle could have associated with it e.g. a frequency-dependent phase shift upon
reflection—z < Agg, (x = xo,a)) < ,thereby producing a reflected wave that propagates in the

—ve x-direction. This situation physically corresponds to the most general R = ‘Ii‘emgf* . If the
reflecting surface were “active”, it is also possible that ‘F?‘ >1 (1), and depending on the details of

the response of the “active” reflecting surface, the phase shift could be —z < Agg, (x =X, a)) <.
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Legal Disclaimer:

The author specifically disclaims legal responsibility for any loss of profit, or any
consequential, incidental, and/or other damages resulting from the mis-use of information
contained in this document. The author has made every effort possible to ensure that the
information contained in this document is factually and technically accurate and correct.

Copyright Notice:

The contents of this document are protected under both United States of America and
International Copyright Laws. No portion of this document may be reproduced in any manner

for commercial use without prior written permission from the author of this document.
The author grants permission for the use of information contained in this document for private,

non-commercial purposes only.
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