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Examples of Complex Sound Fields: 
 

Example # 0: “Generic”3-D Monochromatic Traveling Wave: 
 

     Before we launch into discussing several specific examples of complex sound fields/sound 
propagation, it is useful/illuminating to first consider the more general case of a “generic” 
complex sound field associated with a 3-D monochromatic traveling wave. Again, we assume 
that we are working in the linear regime of “everyday” sound pressure levels 

 134   100 SPL dB p Pa   and also can safely ignore/neglect any/all dissipative effects, such 

that the Euler equation for inviscid fluid flow is a valid/accurate description of the acoustical 
physics situation. Then: 
 

    The complex time-domain over-pressure amplitude  ,p r t
  associated with a “generic”  

3-D monochromatic traveling wave at the listener space-time point  ,r t


 can be written as: 
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where:      ,, , pi r

op r p r e    
    is the corresponding complex frequency-domain over-

pressure amplitude associated with the “generic” 3-D monochromatic traveling wave at the 
listener space-time point  ,r t


. Note that in general, both the magnitude of the complex over-

pressure amplitude  ,op r   and the phase  ,p r   are {listener} position-dependent and 

{angular} frequency-dependent quantities for a “generic” 3-D monochromatic traveling wave. 
 
     The {linearized} Euler equation for inviscid fluid flow (i.e. no dissipation) relates the 

complex time-domain 3-D particle velocity  ,u r t
   to the complex time-domain over-pressure 

amplitude  ,p r t
 : 
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     In general, for “generic” 3-D monochromatic traveling wave, the complex time-domain  

3-D particle velocity  ,u r t
   will be of the form:    , , i tu r t u r e  

      where  ,u r    is the 

corresponding complex frequency-domain 3-D particle velocity. 
 

     On the LHS of the Euler equation, for a harmonic (i.e. monochromatic) complex sound field, 

since  , i tu r t e 
  , it is easy to show that    , ,u r t t i u r t  

     . Then on the RHS of the Euler 

equation: 

       ,, , , pi ri t i t
op r t p r e p r e e            

        

 

Using the chain rule of differentiation, this relation becomes: 
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The Euler equation for this “generic” 3-D monochromatic traveling wave is: 
 

   
     

,1
, , ,

   ,
o

p
o o

p r
i u r t i r p r t

p r


  

 

 
     

  

      
 

or: 
 

   
       

     

 
         

, ,1
, , , , ,

   ,    ,

, ,1 1
           , , ,

   ,    ,

o o
p p

o oo o

o o
p p

o oo o

p r p ri
u r t i r p r t i r p r t

i p r p r

p r p r
i r p r t r i

p r p r

 
   

    

 
   

   

    
          

      
  

       
  

             
            ,p r t



 
 
  



 

 

     Thus, for a “generic” 3-D monochromatic traveling wave, the complex time-domain  

3-D particle velocity  ,u r t
   is related to the complex time-domain over-pressure amplitude 

 ,p r t
 via the {linearized} Euler equation relation: 
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There are two different kinds of terms/contributions on the RHS of this equation. The first term, 

 ,p r 
 

 is the {negative of the} spatial gradient of the phase of the complex over-pressure 

amplitude – note that for this contribution,  ,u r t
   is in-phase with  ,p r t

 . The second term,   

   , ,o oi p r p r  
     is the {normalized/fractional} spatial gradient of the complex over-

pressure amplitude – note that for this contribution,  ,u r t
   is 90o-out-of-phase with  ,p r t

 . 

Then e.g. for the specific case of a monochromatic 3-D traveling plane wave,  ,p r k r   
   

and    , ,o op r p fcn r  
  , thus:    ,p r k r k     

     and:  , 0op r  
  , hence 

{here}  ,u r t
   is in-phase with  ,p r t

  and using ck   we also see that:      ˆ, , ou r t p r t c k
    . 
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Since    , , i tp r t p r e  
   and    , , i tu r t u r e  

     , the complex 3-D vector specific acoustic 

impedance {here} is: 
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     The purely real quantity      31.204 343 413  -o o az c kg m m s Pascal sec m Rayls       

@ NTP is known as the characteristic longitudinal specific acoustic impedance of free air.  
 

Its inverse is the purely real characteristic longitudinal specific acoustic admittance of free air: 

 3 11 1 1 413 2.42 10   o o o ay z c       .  
 

     Note that c, o, oz  and oy  are not constants, they are dependent e.g. on the air temperature, T 

as shown in the table below, for an ambient pressure of Patm = 1.0 atmosphere: 
 

Temperature (oC) c (m/s) o (kg/m3) zo (a) yo (a
-1) 

10 325.2 1.342 436.1 2.293103 
  5 328.3 1.317 432.0 2.315103 
    0 331.3 1.292 428.4 2.334103 
  +5 334.3 1.269 424.3 2.357103 
+10 337.3 1.247 420.6 2.378103 
+15 340.3 1.225 416.8 2.399103 
+20 343.2 1.204 413.2 2.420103 
+25 346.1 1.184 409.8 2.440103 
+30 349.0 1.165 406.3 2.461103 

 

For the specific case of a monochromatic 3-D traveling plane wave propagating e.g. in “free air”,  

using k c , where  2 2 2 1  x y zk k k k k m   


 and using the relation o oz c , we can 

rewrite the above expression for the complex 3-D vector specific acoustic impedance for the 
specific case of a monochromatic 3-D traveling plane wave propagating e.g. in “free air” as: 
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We can also write this as a dimensionless relation, and since    , ,a o az r t c r t    , we have: 
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Example # 1: 1-D Plane Monochromatic Traveling Wave Propagating in “Free Air”: 
 

     In “free air”, the instantaneous time-domain pressure at a space-time point  ,x t  associated 

with a 1-D plane monochromatic traveling wave propagating e.g. in the +x-direction is a purely 
real quantity:    , cosop x t p t kx  .  
 

     The 1-D instantaneous time-domain longitudinal particle velocity (i.e. in the +x-/propagation 
direction) at the space-time point  ,x t  associated with a 1-D plane monochromatic traveling 

wave is obtained via the {linearized} 1-D Euler equation for inviscid fluid flow: 
 

       , , cos1
sino o

o o o

u x t p x t t kxp kp
t kx

t x x




  
   

      
  



 

Then: 

         , sin cos cos coso o o
o

o o o

kp kp p
u x t t kx dt t kx t kx u t kx

c
   

  
            

 

where we have used the relation 343c k m s  = speed of sound in {bone-dry} air @ NTP 

(obtained from the 1-D wave equation(s) for p or u ). Note also that: o o o o ou p c p z  . 
 

     Since    , cosop x t p t kx    and         , cos coso o ou x t p c t kx u t kx       ,  

we see that the instantaneous time-domain pressure and longitudinal particle velocity are in-
phase with each other for a 1-D monochromatic plane wave propagating in “free air”. This in 
turn implies that for harmonic (i.e. single-frequency) {aka monochromatic} plane waves, the 
longitudinal specific acoustic impedance, specific admittance and intensity will thus also be 
purely real quantities for a 1-D monochromatic plane wave propagating in “free air” 
 

     We then “complexify” the above instantaneous time-domain pressure and longitudinal 
particle velocity expressions to obtain their complex time-domain representations: 

   , i t kx
op x t p e    and    , i t kx

ou x t u e    . The longitudinal specific acoustic impedance 

associated with a 1-D monochromatic plane wave propagating e.g. in the +x-direction in “free 
air” is then easily seen to {also} be a purely real quantity: 
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Since {here}    a o az x c x  , we see that the longitudinal velocity of energy flow  ac x c  

for a 1-D monochromatic plane wave propagating e.g. in the +x-direction in “free air”. 
 

     Note that this acoustic sound field example is the electrical analog of a simple AC circuit,  e.g. 
driven at constant voltage by a sine-wave generator with a purely real instantaneous AC voltage 
  cosoV t V t  imposed across an ideal resistor of resistance    R   (hence purely real 

impedance  0 eZ R i   ) resulting in a purely real instantaneous AC current   cosoI t I t  

flowing through it. 
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     Note also that the purely real longitudinal specific acoustic impedance      a o o az x c z    

and/or the longitudinal specific acoustic admittance      11 1 1   a a o o o ay x z x c y z          and 

also the longitudinal velocity of energy flow,  ac x c  associated with a 1-D monochromatic 

plane wave propagating e.g. in the +x-direction in “free air” have no spatial (i.e. x-) and/or 
frequency (i.e. f -) dependence. 
 

     The instantaneous time-domain longitudinal acoustic intensity associated with a 1-D 
monochromatic plane traveling wave propagating in the +x-direction in “free air” is also a purely 
real quantity – i.e. plane wave acoustic energy is entirely in the form of pure sound radiation – no 
acoustic energy is {temporarily} stored “locally” at the point x. The instantaneous time-domain 
complex longitudinal acoustic intensity is: 
 

       2, , , cosa o oI x t p x t u x t p u t kx       
 

For an observer’s/listener’s position e.g. at x = 0:  
 

      20, 0, 0, cosa o oI x t p x t u x t p u t        
 

     Noting that the time-averaged 2 2 1
20

1
cos cos  

t

t t
t t dt


 





  , the time-averaged  

instantaneous time-domain complex longitudinal sound intensity at the listener’s position x = 0 
associated with a 1-D monochromatic plane traveling wave propagating in the +x-direction in 
“free air” is: 

  2 1
20, cosa o o o ot t

I x t p u t p u      
 

     We can also define RMS amplitudes of over-pressure and particle velocity in terms of their 
respective peak amplitudes: 1

2

rms
o op p  and  1

2

rms
o ou u  . Thus, we see that the RMS value of 

the instantaneous time-domain longitudinal sound intensity at the listener’s position x = 0 
associated with a 1-D monochromatic plane traveling wave propagating in the +x-direction in 
“free air” is equal to the time-averaged longitudinal sound intensity at that point, i.e.: 

 

     1
20 0rms rms rms

a a o o o ot
I x I x p u p u         

 

     The reader can also easily verify for this example that the frequency domain active (i.e. real) 
and reactive (i.e. imaginary/quadrature) components of the complex longitudinal acoustic 
intensity associated with a 1-D monochromatic traveling plane wave propagating in the +x-
direction in “free air” are given by:  

 

       *1 1
2 2, , , i t kx

a oI x p x u x p e          i t kx
ou e    1 1

2 2 0 ,o o o o a t
p u p u i I x t       

 

Here in this problem, note that:       r  i, , , 0a a a o o o ot t t
I x t I x t i I x t p u i p u             

has no position (i.e. x-) dependence! 
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     The instantaneous potential, kinetic and total energy densities associated with a 1-D 
monochromatic traveling plane wave propagating in the +x-direction in “free air” at x = 0 are: 
 

   2 2 2 2 2
2 2 2
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2 2
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o o o
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For this situation with a 1-D monochromatic traveling plane wave, we obtained the relation 

   
   ,
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o
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o

p x t p
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Thus we see again here that: o o o o op cu z u   . Using the square of this relation in the above 

instantaneous total energy density expression, we also see that {here}:  

      2 2 2 2
2

1
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c

  


         

     The time-averages of the instantaneous potential, kinetic and total energy densities 
associated with a 1-D monochromatic traveling plane wave propagating in the +x-direction in 
“free air” at x = 0 are: 

   2 2 2 2 3
2 2 2

 1 2

1 1 1 1 1 1
0, cos   

2 4 2
inst rms
potl o o ot t

o o o

w x t p t p p Joules m
c c c


  



   


 

    2 2 2 2 3

 1 2

1 1 1
0, cos          

2 4 2
inst rms
kin o o o o o ot t

w x t u t u u Joules m   


     


 

       
2 2

2 2 3
2 2

1 1 1 1
0, 0, 0,   

4 4 2 2

rms
inst inst inst rmso o
tot potl kin o o o ot t t

o o

p p
w x t w x t w x t u u Joules m

c c
 

 
           

 

Again, using the square of the relation o o o o op cu z u    in the above expression, we see that: 
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 2 3
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     Note that the ratio of the time-averaged potential energy density to the time-averaged kinetic 
energy density e.g. at x = 0 is equal to unity for a 1-D monochromatic traveling wave: 
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Note further that:  

   
2

 2  2 21 1 1 1
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c



         

and again using the relation o o o o op cu z u   , that:  
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Example # 2: Two Counter-Propagating 1-D Plane Monochromatic Traveling Waves in “Free Air”: 
 

     In this example, we imagine two un-equal strength harmonic (i.e. single-frequency) sound 
sources located at x   , with an observer/listener located near/at the origin x = 0. At the 
observer’s location there will therefore be two 1-D monochromatic plane traveling waves 
propagating in opposite directions in “free air” (i.e. the Great Wide-Open).  
 

     The physical, instantaneous time-domain over-pressure amplitudes associated with the right- 
and left-going 1-D monochromatic plane waves are individually purely real quantities: 
 

   , cos o
A Ap x t A t kx      and     , cos o

B Bp x t B t kx     with A B {necessarily} 
 

Note here that the frequency and position-independent phases o
A  and o

B  are explicitly included 

here to generalize the {relative} phase relation between the two counter-propagating 1-D 
monochromatic traveling waves, e.g. consider their phase relation at x = 0 and t = 0: 

 0, 0 cos o
A Ap x t A     and  0, 0 cos o

B Bp x t B    . 
 

     The corresponding complex time-domain over-pressure amplitudes are: 
 

   , i t kx
Ap x t Ae     and    , i t kx

Bp x t Be     with A B  {necessarily} 
 

where 
o o
A Ai iA A e Ae     and 

o o
B Bi iB B e Be    . 

 

Each individual complex time-domain over-pressure amplitude satisfies its own Euler’s equation: 
 

   , ,, ,1A B A B

o

u x t p x t

t x
 

 
 



 

 

The corresponding right- and left-going complex time-domain longitudinal particle velocities are:  
 

     ,
o

i t kx i t kx
A A

o

A
u x t e u e

c
 


   


   and:      ,

o

i t kx i t kx
B B

o

B
u x t e u e

c
 


     


   (using c k ) 

 

     Note the ve sign in the left-going complex longitudinal particle velocity amplitude, which 
simple reflects the fact that it is propagating in the ve x-direction.  
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     For “everyday” sound pressure levels  1020 log 134 p atm oSPL L p p dB   , corresponding 

to sound over-pressure amplitudes in “free air” at NTP of  , 100  p r t RMS Pascals
  , the 

principle of linear superposition holds, such that the total/resultant complex over-pressure and 
longitudinal particle velocity amplitudes respectively are: 

 

              , , ,              i t kx i t kx
tot A Bp x t p x t p x t Ae Be Pascals          

and: 

                    ,   , ,         
o o

i t kx i t kx i t kx i t kx
tot A B A B

o o

A B
u x t u x t u x t u e u e e e m s

c c
   

 
            

 
      

 

We can recast the above equations in terms of the dimensionless complex variable: 
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     We first calculate the magnitudes of the complex total/resultant over-pressure  ,totp x t  and 

longitudinal particle velocity  ,totu x t : 
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and: 
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     Thus, e.g. for an observer/listener’s position x = 0, .and. for equal-strength over-pressure 

amplitudes A B    1R B A    (i.e. a pure standing wave!) these formulae simplify to: 

 0, 2 1 cos o
tot BAp x t A      and:  

2
0, 1 cos o

tot BA
o

A
u x t

c



   


  

Thus, we see that when: 0, 2 , 4 ,...o
BA evenn          that: cos 1o

BA    and thus: 
 

 0, 2totp x t A    and:  0, 0totu x t   
 

i.e. we have complete constructive (destructive) interference associated with the two individual 
complex over-pressure (longitudinal particle velocity) amplitudes, respectively. 
 

We also see that when: 1 , 3 , 5 ,...o
BA oddn            that: cos 1o

BA    and thus: 

 0, 0totp x t   and:  0, 2tot ou x t A c    

i.e. we have complete destructive (constructive) interference associated with the two individual 
complex over-pressure (longitudinal particle velocity) amplitudes, respectively. 
 

     Hence, we can also now see that when 1R B A   ,  it is not possible to ever achieve 

complete constructive/destructive interference effects between the two individual right- and left-
moving complex over-pressure and/or longitudinal particle velocity amplitudes. 
 

     Since:      2
, 1    

o
BAi kx i t kx

totp x t A R e e
      

   and:       2
, 1

o
BAi kx i t kx

tot
o

A
u x t R e e

c

 


     


  , 

the phases of the complex total/resultant pressure and longitudinal particle velocity associated 
with the two counter-propagating 1-D monochromatic plane waves are given by: 
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     The complex longitudinal specific acoustic impedance associated with the two counter-
propagating 1-D monochromatic plane waves is: 
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Since the characteristic longitudinal specific acoustic impedance of “free air” is o oz c , then: 
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Using the Euler relations:  1
2cos i ie e     and:  1

2sin i i
i e e    : 
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We can also write this as a dimensionless quantity: 
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Note that  totz x  and   a totc x  have no explicit time dependence, but both have spatial/position 

(x-) and frequency (f-) dependence (via the wavenumber 2 2k f c c      )! 
 

     The magnitude of the complex longitudinal specific acoustic impedance associated with the 
two counter-propagating 1-D monochromatic plane waves is: 
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Again, we can write this as a dimensionless quantity: 
 

     

   
 

22 2 2

  

2

1 4 sin 2

1 2 cos 2

o
BA

a tot a tot

oo
BA

R R kxz x c x

z cR R kx





   
 

      

   

 
 

 
 



UIUC Physics 406 Acoustical Physics of Music 

 
Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 

2002 - 2017. All rights reserved. 
 

-12-

     The phase of the complex longitudinal specific acoustic impedance and longitudinal energy 
flow velocity associated with the two counter-propagating 1-D monochromatic plane waves is: 
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     Thus, e.g. for an observer/listener’s position x = 0, .and. for equal-strength pressure amplitudes 

A B    1R B A    (i.e. a “pure” standing wave) these two formulae simplify to: 
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i.e. for an observer/listener’s position x = 0, .and. for equal-strength pressure amplitudes A B   

 1R B A    the complex longitudinal specific acoustic impedance  0totz x   is purely 

imaginary;  its phase  0z x   is an odd integer multiple of o2 90    – which in turn also 

tells us that in this situation, the complex pressure  0,totp x t  and longitudinal particle velocity 

 0,totu x t  differ in phase by an odd integer multiple of o2 90   .  
 

     Note that in general, for arbitrary values of x, maxima of the complex longitudinal specific 

acoustic impedance  totz x  occur whenever  2 0, 2 , 4 , 6 ...o
BA evenkx n            , i.e. 
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The phase(s) associated with the complex longitudinal specific acoustic impedance and complex 
longitudinal energy flow velocity maxima occur when: 
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Thus, for longitudinal specific acoustic impedance and longitudinal energy flow velocity maxima 
associated with this situation, we see that the total/resultant complex pressure  ,totp x t  and 

longitudinal particle velocity  ,totu x t  are precisely in-phase with each other, or at least by  even 

integer multiples of  .  
 

     Since      
maxima maxima

, ,tot tot totz x p x t u x t    this also tells us that whenever 

 2 0, 2 , 4 , 6 ...o
BA evenkx n            , the magnitude of the total/resultant complex pressure 

 ,totp x t will also be a maxima, whereas the magnitude of the total/resultant complex longitudinal 

particle velocity  ,totu x t  will simultaneously be a minima: 
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         for 1R  :  ,   0totu x t   

 

     In general, for arbitrary values of x, minima of the complex longitudinal specific acoustic 
impedance  

totaz x  and the complex longitudinal energy flow velocity  
totac x will occur whenever 

 2 1 , 3 , 5 ...o
BA oddkx n            , i.e. whenever  cos 2 1o

BAkx     , and 

 sin 2 0o
BAkx    , then: 

 

“Pure” 
standing 
wave!!! 
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The phase(s) associated with the complex longitudinal specific acoustic impedance and complex 
energy flow velocity minima are: 
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     Thus, for longitudinal specific acoustic impedance and longitudinal energy flow velocity 
minima associated with this situation, we see that the total/resultant complex pressure  ,totp x t  

and longitudinal particle velocity  ,totu x t  are precisely out-of-phase with each other, or at least 

by  odd integer multiples of  . Since      
minima minima

, ,tot tot totz x p x t u x t    this also tells us 

that whenever  2 1 , 3 , 5 ...BA oddkx n            , the magnitude of the total/resultant 

complex pressure  ,totp x t will also be a minima, whereas the magnitude of the total/resultant 

complex longitudinal particle velocity  ,totu x t will simultaneously be a maxima: 
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     A perhaps somewhat more general situation associated with two counter-propagating 

monochromatic plane waves in “free air”, is e.g. the case when 0.5R B A    and 

0.5o
BA  ; the {normalized} magnitude of the complex longitudinal specific acoustic 

impedance    tot o tot oz x z z x c    and its phase         
tottot tot tot

z pp u u
x x x x   


      vs. 

kx  are shown in the figure(s) below.  

     The complex frequency-domain total/resultant complex longitudinal sound intensity associated 
with two counter-propagating monochromatic plane waves in “free air” , with k c  is: 
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The phase associated with the complex frequency-domain  ,
totaI x   is: 
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Compare the above frequency-domain total/resultant complex longitudinal acoustic intensity 
expressions to those associated with the complex longitudinal specific acoustic impedance and 
complex longitudinal energy flow velocity: 
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and we see that: 
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Hence, we also see that: 
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When 1R B A    (i.e. a pure standing wave!), then: 
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For an observer/listener’s position at x = 0 .and. 1R  , this reduces to: 
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    (n.b. purely imaginary quantity!) 

We see again that when additionally: 0, 1 , 2 , 3 ,...o
BA n            that:  0, 0  !!!

totaI x t     

Similarly, we see that  0,
totaI x   has a purely imaginary extremum amplitude of 

2 2

o oA c A z     when 2, 3 2, 5 2,... 2AB oddm           . 
 

     Physically, the real part of the complex frequency-domain longitudinal acoustic intensity 

 ,
totaI x   represents the frequency-domain “amplitude” of the net flux/flow of acoustic energy 

crossing unit area per unit time (SI units Watts/m2) – i.e. the real part of the complex acoustic 
intensity is physically associated with propagating sound/sound radiation. The imaginary part 
of the complex frequency-domain longitudinal acoustic intensity is physically associated with 
non-propagating acoustic energy, i.e. energy sloshing back and forth each cycle of oscillation. 
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     The instantaneous potential, kinetic and total energy densities (n.b. always purely real, additive 
quantities!) associated with two counter-propagating 1-D monochromatic traveling plane waves are: 
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Again, for an observer/listener’s position at x = 0 .and. 1R   (i.e. a “pure” standing wave), 

these quantities reduce to: 
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We see that when: 0, 2 , 4 , 6 ,...o
BA evenn             

since:    cos cos cos sin sineven even evenn n n           cos , the total energy density is 

all in the form of  potential energy density: 
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We also see that when: 1 , 3 , 5 ,...BA oddn             

since:    cos cos cos sin sinodd odd oddn n n           cos  , the total energy density is 

all in the form of  kinetic energy density: 
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     The time-averaged potential, kinetic and total energy densities associated with two counter-
propagating 1-D monochromatic traveling plane waves are: 
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     Note here, that the ratio of the time-averaged potential energy density to the time-averaged 
kinetic energy density is not equal to unity for counter-propagating monochromatic plane waves: 
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Again, for an observer’s position at x = 0 .and. 1R B A    (i.e. a “pure” standing wave), 

these quantities reduce to: 
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When: 0, 2 , 4 , 6 ,...BA evenn            the energy density is all potential energy density: 
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When: 1 , 3 , 5 ,...AB oddn            the energy density is all kinetic energy density: 
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     We coded up the above acoustic expressions in Matlab to obtain plots of them vs. 

dimensionless position, kx   for various values of 0 1R   for two counter-propagating 1-D 

monochromatic traveling plane waves and posted a write-up along with the Matlab *.m script on 
the Physics 406 Software web-page: http://courses.physics.illinois.edu/phys406/406pom_sw.html 
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Acoustic Reflectance/Transmittance/Absorbance and 
Acoustic Reflection/Transmission/Absorption Coefficients: 

 

     The physical meaning of the complex quantity 
o
BAiR B A R e      used in (all of) the above 

formulae for this two counter-propagating monochromatic plane waves problem can also be used to 
describe various other types of acoustical physics situations, e.g. by interpreting R  as the complex 
acoustic reflectance associated with a sound wave reflecting off of a surface. The {purely real} 

reflection coefficient associated with the surface is then defined as: 
2 *0 1R R R      R .  

 

     If a sound wave is only partially reflected from a surface, then it is either partially transmitted 
(with complex acoustic transmittance T and corresponding {purely real}transmission 

coefficient 
2 *0 1T T T      T ) and/or is absorbed by the surface (with complex acoustic 

absorbance A  and corresponding {purely real} absorption coefficient 
2 *0 1A A A      A ), 

since we must have (by conservation of energy at the surface/interface): 1  R T A . 
 

Limiting/Special Cases of Interest: 
 

1.) A single monochromatic traveling plane wave (emitted from a sound source e.g. located at x   ) 
propagating in the +ve x-direction and reflects, at normal incidence, off of a rigid, perfectly reflecting 
infinite plane (e.g. located at 0ox x  ), thereby producing a reflected wave (of equal amplitude) that 

propagates in the ve x-direction. This situation corresponds to 0 1R R e     at 0ox x  , which 

has the associated boundary condition    , ,refl o inc op x x t p x x t    , i.e. no phase change occurs 

upon reflection, such that an over-pressure anti-node exists at 0ox x  : 
 

       , , , 2 ,tot o inc o refl o inc op x x t p x x t p x x t p x x t          . 
 

2.) A single monochromatic traveling plane wave (emitted from a sound source e.g. located at 
x   ) propagating in the +ve x-direction and reflects, at normal incidence, off of an infinite 
pressure-release plane consisting of an air-water interface (located at 0ox x  ), thereby 

producing a reflected wave (of equal amplitude) that propagates in the ve x-direction. 
  

     This situation corresponds to 1iR R e     . An air-water interface (n.b. “viewed” from the 

water side) closely approximates an ideal pressure-release surface, for which the boundary 
condition at the pressure-release surface is    , ,refl o inc op x x t p x x t      (i.e. a phase change 

of 180o occurs upon reflection), such that an over-pressure node exists at 0ox x  :  
 

     , , , 0tot o inc o refl op x x t p x x t p x x t        . 
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3.) The most general case: A single monochromatic traveling plane wave (emitted from a sound 
source e.g. located at x   ) propagating in the +ve x-direction and reflects, at normal 
incidence off of an infinite plane (located at 0ox x  ) of arbitrary characteristics – e.g.  

it could be a “passive” surface that is only partially reflecting/partially absorbing (hence 1R  ) 

and in principle could have associated with it e.g. a frequency-dependent phase shift upon 
reflection  ,o

BA ox x         , thereby producing a reflected wave that propagates in the 

ve x-direction. This situation physically corresponds to the most general
o
BAiR R e   . If the 

reflecting surface were “active”, it is also possible that 1R   (!), and depending on the details of 

the response of the “active” reflecting surface, the phase shift could be  ,o
BA ox x        . 
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