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Experimental Measurements of Complex Sound Fields: 
 

     As stated previously in P406 Lecture Notes 11 part 2 (p. 10), in order to uniquely determine 

the nature of a complex 3-D sound field  ,S r t
  at the space-time point  ,r t


, one needs to carry 

out two physical measurements – one of the complex scalar over-pressure    ,   p r t Pascals
  and 

the complex 3-D vector particle velocity          ˆ ˆ ˆ, , , ,   x y zu r t u r t x u r t y u r t z m s  
        . 

 

     In order to carry out measurements of these two physical quantities, generally speaking, we 
need to use pressure/particle velocity transducers of some kind, that: a.) intrinsically respond to/ 
are sensitive to over-pressure/particle velocity, respectively and b.) convert (transduce) the over-
pressure/particle velocity to a usable signal – e.g. an electrical voltage (or an electrical current). 
 

Transducers Used for the Measurement of Over-Pressure: 
 

     For the measurement of over-pressure  ,p r t
  at a given listener’s space-time point  ,r t


, 

fortunately human-kind has now spent well over a century in the development of microphones – 
nearly all of which (but not all) are directly sensitive/respond to over-pressure, just as our human 
ears do. It is therefore no accident that the technology for the measurement of over-pressure 

 ,p r t
  is far more advanced today than that for the measurement of particle velocity  ,u r t

  . 

However recent advances e.g. in MEMS (Micro-Electrical Mechanical System) and nano-
fabrication technology have in turn enabled the development of novel, compact transducers that 

produce an electrical signal in direct response to the local particle velocity  ,u r t
  . 

 

    There are many different kinds of microphones, the two most popular types are dynamic 
microphones and condenser microphones. Dynamic microphones consist of a {very} thin 
diaphragm to which a small coil of wire is attached, which in turn is immersed in a strong 
magnetic field, provided by a permanent magnet, as shown in the figure below: 
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     When an over-pressure    , i t
op r t p r e 

    is present at the diaphragm of the microphone, 

located at the listener point r


, if the characteristic size of the microphone – e.g. the radius of the 
microphone diaphragm diaa  , the variation of the over-pressure amplitude  op r

  over the 

surface of the microphone diaphragm is ~ negligible, i.e.  o op r p
   for diaa  . The {net} force 

acting on the diaphragm {+ coil} of mass diam  is      ,
dia

i t
o diaA

F t p r t da p A e N  
      {where 

ˆdia diaA A n


 and n̂  is the outward-pointing normal to the diaphragm} , accelerating it {by Newton’s 

2nd law:    dia diaF t m a t
    if no other forces acting on the diaphragm are present - which, in 

general, there are – see Appendix to these lecture notes...} thereby causing it to vibrate/oscillate, 
which in turn induces a voltage signal in the coil due to the time rate of change of magnetic flux 

   m coilt B t A 
    threading the coil as it vibrates along its axis. The induced EMF in the coil of 

the dynamic microphone is:             coil coil m coil coilt N d t dt N dB t dt A Volts     
   .   

 

     Note that the basic physics of how a dynamic microphone works is simply the time-reversed 
physics of how a dynamic loudspeaker works – arising from the manifest time-reversal invariant 
nature of the EM interaction at the microscopic level!  
 

     Because of the need to attach a coil (usually copper wire) to the diaphragm, the diaphragm + 
coil assembly of a dynamic microphone is considerably heavier than the pressure-sensitive 
elements associated e.g. with condenser microphones. Thus, dynamic microphones often do not 
have as flat a frequency and phase response as condenser microphones for this (and other) 
reason(s) – hence dynamic microphones are not often thought of as “research/lab-grade” 
quality… However, the intrinsic output impedance of dynamic microphones is (relatively 
speaking) quite low (the industry standard is 600 ) which is very appealing e.g. for use in live 
performances of music, from the {important} perspective of noise immunity… 
 

     If the microphone element is completely sealed (as in the above figure), the over-pressure 
sensed by the device is the instantaneous difference between pressure on the front vs. back side 
of the diaphragm. This is an omni-directional microphone – for frequencies  f  with wavelengths 
 = v/f  that are large in comparison the physical size diaa  of the microphone, it responds 

uniformly to sound coming from any/all directions, as shown in the polar plot below: 
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     Because the {large} ambient pressure Pamb varies from day-to-day with the weather, it is 
necessary to have a small hole in the body of the sealed microphone element in order to allow 
equalization of the static pressures on either side of the diaphragm in order to avoid damaging it. 
The existence of the small pressure-equalization hole/port in the microphone body only affects 
extremely low frequency response 20 f Hz , well below the audio band of human hearing. 
 

     Condenser microphones also have a (very low mass) diaphragm – which has an extremely 
thin layer of conductor deposited on its surface. The diaphragm is in proximity to a planar 
electrode, thus forming the plates of a parallel-plate capacitor, as shown in the figure below. 
 

     A constant/DC voltage biasV  is placed across the plates of this capacitor {no DC current flows 

across the air-gap between the plates of this capacitor}. When an over-pressure  ,p r t
  is 

present at the {metalized} diaphragm of the condenser mic, then for diaa  , it exerts a {net} 

force      i t
o diaF t p A e N

    on the diaphragm, accelerating it, thereby causing it to vibrate in 

response to the over-pressure exerted on it. The {very} small gap gapd  between the diaphragm 

and electrode thus varies in time    gap gap diad t d x t  , where  dia gapx t d  is the 

displacement of the diaphragm, and since the capacitance of this parallel plate capacitor is 

        1o dia gap o dia gap dia o dia dia gap gapC t A d t A d x t A x t d d              for 

 dia gapx t d , the capacitance also varies in time, which in turn causes the charge present on the 

planar electrode to vary in time, since     biasQ t C t V  .  
 

Cblock 

Rbias 

Vbias = 
+48 Volts 
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     If the planar electrode is connected to ground (earth) and the diaphragm of the condenser mic 
held at potential biasV  by a very high resistance biasR , then a time-varying AC voltage signal 

   R biasV t I t R   appears across this resistor due to the time-varying AC current 

           2
bias o dia bias gap gapI t dQ t dt V dC t dt A V d t dd t dt       flowing through this 

resistor and the planar capacitor to ground. The capacitor blockC  blocks the DC voltage biasV  

present on the metalized diaphragm, but allows the AC voltage signal  RV t  to pass through it – 

which is then amplified by some kind of voltage amplifier – e.g. a vacuum triode voltage 
amplifier {back in the hey-day of vacuum tubes} or a high-input impedance FET (Field-Effect 
Transistor) amplifier or e.g. a low-noise high-input impedance FET-input op-amp (operational 
amplifier). 
 

     Condenser microphones intrinsically have {very} high output impedance, and require a bias 
voltage {aka “phantom power”} for them to operate, as well as a high input impedance 
preamplifier of some kind. If designed properly, the condenser mic + mic preamp system together 
will have very good, flat frequency and phase response and also have low intrinsic noise. 
 

     Again, condenser microphone elements with omni-directional response are completely sealed 
(except for a small ambient pressure equalization port) as shown in the figure below: 
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     A more modern/high-tech and much more compact version of the condenser microphone uses a 
permanently-polarized electret-film type material to provide the electrostatic E


-field in the small 

gap gapd  between the diaphragm (with metalized surface) and the electret film (also with a 

metalized surface). An electret film consists of a material (e.g. PVDF – polyvinylidene fluoride –  
a piezo-electric material), the molecules of which have a permanent electric dipole moment 
associated with them, analogous to permanent magnetic materials. Due to the permanent electric 

polarization  2  Coulombs m


 associated with the molecules making up the electret material, the 

surface of the electret film has a bound surface electric charge density,  2ˆ  b n Coulombs m  

  

associated with it, which produces a constant/uniform electric field gapE


between the diaphragm 

and the electret material, of magnitude gap b oE  


 with potential difference across the plates of 

this capacitor of   gap gap gap b o gapV E d d  


. When an over-pressure  ,p r t
  is present on the 

diaphragm of this microphone, the voltage across the gap between plates of this capacitor also 

becomes time-dependent            gap gap gap b o gap b o gap diaV t E d t d t d x t            


. If 

this voltage signal is amplified, e.g. with a high input impedance FET, it makes for a wonderfully 
pressure-sensitive microphone, one with excellent frequency/phase response and intrinsically low 
noise characteristics.  A schematic diagram of an electret condenser microphone is shown in the 
figure below. 
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A cross-sectional/cutaway view of a back-electret type condenser microphone is shown in the 
figure below: 

 
     Various types of high-performance sub-miniature electret condenser microphones made by 
Knowles Electronics (of Itasca, Illinois http://www.knowles.com/) are shown in the figure below. 
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The electret condenser mic in the bottom left-hand corner FG-23329 is the world’s smallest – it 
is only 1/10” in diameter, and has a flat frequency and phase response out to  f ~ 10 KHz: 

 

     From the graph of the frequency response of this electret condenser microphone, note that the 
sensitivity of this microphone is given as 53 dB referenced to 1.0 Volt/0.1 Pascal (N/m2).  
 

     This means that for an over-pressure amplitude of 0.1 p Pascals , the voltage amplitude 

p micV   output from the device is    2

10 1053 20log 1.0 10log 1.0p mic p micdB V V     or 
53 20 2.651.0 10 10 2.24 p micV mV 

     .  
 

     For an over-pressure amplitude of 1.0 p Pascals (corresponding to a sound pressure level  

SPL = 94.0 dB), this corresponds to a 10 larger voltage output from this device, of 
22.4 p micV mV  . The sensitivity of this pressure microphone is thus:  

 

2.24 0.1 22.4 1.0 22.4  p mic p micS V p mV Pa mV Pa mV Pa      
 

     Absolute calibration of a pressure microphone/measurement of the sensitivity of the pressure 
microphone p micS   is carried out by placing it e.g. in a monochromatic (e.g. f = 1.0 KHz sine-

wave)  free-air sound field  ,S r t
  at NTP with a SPL = 94.0 dB {set using e.g. a NIST-

calibrated SPL meter (C-weighting) in proximity to the microphone}. This SPL corresponds to 
an over-pressure amplitude of 1.0 p Pascals , since    10 020 logSPL dB p p  where 

5
0 2 10p Pa   is the reference pressure at the (average) threshold of human hearing. The AC 

voltage amplitude p micV  output from the pressure microphone immersed in a SPL = 94.0 dB free-

air sound field can be easily measured e.g. on an oscilloscope or a true RMS digital multi-meter. 
 

     In the UIUC Physics 406 POM lab, we use the Knowles Electronics FG-23329 subminiature 
electret condenser microphone capacitively coupled to a 11 gain low-noise non-inverting op-amp 
preamplifier, the circuit for which is shown in the figure below: 
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     The high-pass filter time constant RC  associated with the pressure mic preamp’s 1 C F  

input coupling capacitor (n.b. which also blocks the ~ +1.5 VDC quiescent DC voltage output from 
the mic’s internal FET)  and 1 MR    is 1.0 RC RC sec   , corresponding to a 3 dB corner 

frequency of    3 1 2 1 2 1 2 0.16 dB RCf RC Hz         . The frequency and phase response 

of this pressure mic’s preamp circuit is shown in the figure below: 
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Transducers Used for the Measurement of Particle Velocity: 
 

     How can one measure particle velocity  ,u r t
  ? There are two ways – one is to build a device 

which is directly sensitive to particle velocity, the other is to exploit what the {linearized} Euler 
equation for inviscid fluid flow tells us: 

 

   , 1
,

o

u r t
p r t

t 


  


     

 

If we focus, for the moment on one spatial component of this equation, e.g. in the ẑ -direction, 
this equation in Cartesian coordinates becomes simply: 

 

     , , ,1 1
     z z

o o

u r t p r t p r t

t z z 
  

   
  

    
 

 

Euler’s equation tells us that if we measure the pressure gradient {an over-pressure difference} 
     2 1, , ,z p r t p z t p z t  
    over a small separation distance 2 1z z z    (n.b. with z   ), 

then Euler’s equation tells us that the pressure gradient is proportional to the time rate of change 
of the z-component of the particle velocity  ,zu r t t 

 ! Thus, if we integrate the pressure 

gradient  ,z p r t z 
  with respect to time, the integral is proportional to the z-component of 

the particle velocity: 
 

         2 1
2 1

1 1
, = , , ,

t t t t

z zt t
o o

u r t p r t dt p z t p z t dt
z z z 

  

  
            

      

 

Likewise, if we then also measure the instantaneous pressure gradients  ,x p r t
    ,y p r t

  

over small distances x   y  in the  ˆ ˆ  x y -directions, respectively, and then integrate these two 

signals, then we also obtain measurements of: 
 

         2 1
2 1

1 1
, = , , ,

t t t t

x xt t
o o

u r t p r t dt p x t p x t dt
x x x 

  

  
            

      

and:               2 1
2 1

1 1
, = , , ,

t t t t

y yt t
o o

u r t p r t dt p y t p y t dt
y y y 

  

  
            

      

 

To measure a pressure gradient      2 1, , ,r p r t p r t p r t  
      between two points one can use e.g. 

two {hopefully} identical/perfectly frequency/phase-matched microphones (with 1 2mic micS S ), 

and then use (or build) a (precision) low-noise differential preamp to take the voltage difference 
     2 2 1 1, ,mic micV t V r t V r t  

     between the two signals, since: 
 

         2 2 1 1
2 1

2 1

, ,
, , , mic mic

r
mic mic

V r t V r t
p r t p r t p r t

S S
    

        
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     The over-pressure difference signal is input to an integrating op-amp, which electronically carries 
out the above integral operation. The voltage signal output from the integrating op-amp is thus 
proportional to the 1-D particle velocity     1

1 22, ,r ru r t u r r t 
    ! Using 3 such microphone pairs  

(in orthogonal x-y-z orientation) thus yields the full 3-D particle velocity  ,u r t
  ! 

 

     The use of matched pairs of omni-directional pressure microphones separated by a small 
distance z    to measure the local pressure gradient  ,z p r t z 

  and thereby infer  

(i.e. compute) the local 1-D particle velocity  ,zu r t t 
  is known as the so-called p-p method. 

 

     If the diaphragm of the pressure microphone is fully-open (i.e. not enclosed), such a microphone 
{of characteristic longitudinal/z-dimension d} measures the local over-pressure difference 

     , , ,front rear
dia dia diap r t p r t p r t  
      for d   i.e. it becomes a differential-pressure microphone. 

Furthermore, it is obvious that differential pressure microphones have a vectorial-type directional 
response, since the voltage signal output from this microphone will reverse its sign if the differential 
microphone is rotated about its symmetry axis by 180o. The angular response of a differential 
pressure microphone is therefore vectorially described by   ˆ,diap r t n

  where n̂   is defined as the 

outward pointing unit vector from the front surface of the microphone diaphragm. For a sound wave 

with vector wavenumber ˆ ˆk k k kk 
 

( k̂   to the propagation direction), the angular response of 

the differential pressure microphone is    ˆˆ, , cosdia diap r t n k p r t   
    where  is the 3-D opening 

angle between n̂  and k̂ . 

 Thus when:      0o  , ˆˆ cos 1n k      and:    ˆˆ, ,dia diap r t n k p r t  
   .  

 When:            90o  , ˆˆ cos    0n k     and:   ˆˆ,       0diap r t n k 
  . 

 When:         180o  , ˆˆ cos 1n k      and:    ˆˆ,  ,dia diap r t n k p r t  
   . 

 

The polar response of a differential pressure microphone is a figure-8 pattern, as shown below: 
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Another type of {early} differential pressure microphone is the so-called ribbon microphone, as 
shown in the figure below: 

     The very thin {corrugated} metal ribbon diaphragm is open to the ambient pressure on both 
sides of it. The thin metal ribbon diaphragm is corrugated to suppress excitation of low-frequency 
mechanical vibrational modes of the ribbon. Since the metal ribbon diaphragm is conducting and 

immersed in a strong, transverse magnetic field  oB Tesla


, a differential over-pressure 

 ,ribbonp r t
  exerts a net force on the ribbon diaphragm of this microphone of magnitude 

     ˆˆ, ,  , cosribbon ribbon ribbon ribbonF r t p r t A n k p r t A    
      , causing the ribbon of mass ribbonm    

to accelerate (again by Newton’s 2nd law – if no other forces act on the microphone diaphragm) 

   , ,ribbon ribbona r t F r t m
    and thus move back-and-forth in response to the differential over-

pressure. Since the thin corrugated metal ribbon diaphragm is immersed in the static transverse 

magnetic field oB


, a magnetic/Lorentz force acts on the free electrons in the metal 

ribbon m e oF ev B eE    
    , where    , ,e ribbonv r t v r t

     is the velocity vector of the free 

electrons associated with the macroscopically vibrating metal ribbon. Since  ,ribbon ov r t B
   then: 

 

      
1

, , sin ,ribbon o ribbon o ribbon ov r t B v r t B v r t B


    
          

 

     A time-varying EMF (i.e. a voltage)    ,ribbon o ribbont v r t B   
     {where  ribbon m  is the 

length of the metal ribbon immersed in the B-field} is induced across the top/bottom of the 
corrugated metal ribbon diaphragm due to the differential over-pressure  ,ribbonp r t

  acting on it. 
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     Due to the intrinsically larger mass {and physical size} associated with the thin corrugated metal 
ribbon, the frequency and phase response of a ribbon-type differential pressure microphone is 
usually not as good as e.g. the modern, compact high-tech electret-type differential microphones;  
ribbon microphones are therefore not often thought of as laboratory / research-grade quality devices. 
Still, ribbon mics have many storied uses in the now ~ century long history of sound recording. 
 

     Note that the frequency response of a differential pressure microphone of characteristic size d 
is not flat. The (complex) response function of the differential microphone as a function of 
(angular) frequency    and wavenumber-differential mic axis opening angle  is given by: 
 

     

   

ˆ ˆ coscos, 1 1 1 1

                        1 cos cos sin cos

ikd k n i c dik d ikd
diff micH e e e e

c d i c d



 

   
         

          

  
 

 

For   1kd c d   (i.e. c d  ) then: 
 

 , 1diff micH    cos0    cos cosi c d i c d       
 

     Thus, for   1kd c d   (i.e. c d  ) the frequency response of a differential pressure 

microphone is such that it increases linearly with frequency (n.b. its response  , 0diff micH      

at 2 0f   ). We also see that for   1kd c d   a differential pressure microphone has a 

frequency-independent phase shift of +90o relative to the incident sound wave (for o0 90   ). 
 

     As discussed above, it is necessary to integrate the signal output from a differential pressure 
microphone in order to obtain a signal that is proportional to the component of the particle 
velocity parallel to the n̂ -axis of the device. This can be achieved electronically using a simple 
integrating op-amp preamplifier circuit, as shown in the figure below: 
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     The (complex) frequency response of the simple op-amp integrator preamplifier circuit is:  
 

        1 1

1 1
    using:    

1 1oai fb fb fb fb
fb fb

H R R R R R C sec
i R C i

 
 

    
 

  

At low frequencies, such that 1 1fb fbR C  :    11oai fb fbH R C R R    is a purely real 

quantity – i.e. the output of the op-amp integrator is in-phase with the input. At high frequencies, 

such that 1 1fb fbR C   then:      1

1

1
1

fb

oai fb fb
fb fb

R R
H R C R R i

i R C R C


 
      and thus 

we see that the high-frequency output response of the op-amp integrator is proportional to 1   

and is 90o out-of-phase with the input signal. The frequency and phase response of the simple 
op-amp integrator circuit (alone) is shown in the figure below. 
  

 

     Note that the phase response of this op-amp integrator circuit is ~ constant in the frequency 
range ~ 50 Hz < f < ~ 4 KHz, which is of primary interest for most musical instruments. 
 

     This simple op-amp integrator circuit is used in conjunction with a modified version of the 
Knowles Electronics EK-23132 subminiature electret condenser microphone (with back plate 
removed and replaced with a very fine-mesh copper screen {electrically connected to mic case 
using conductive epoxy paint for RFI/EMI suppression}) for a 1-D particle velocity microphone. 
Note that well above the 3 dB low-frequency pole of the op-amp integrator circuit (i.e. 

1 fR C  ) but still well below c d  , the combined response of the differential pressure 

microphone + op-amp integrator circuit is constant, independent of (angular) frequency : 
 

      1

1 1
, , cos

f f

fb
u mic diff mic oaiR C c d R C c d

fb

R Rd
H H H

c R C 
   

        
    

   
     
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     Note that because of the integrating op-amp’s high gain  1fbR R  at very low frequencies, 

these types of particle velocity microphones are quite sensitive to wind/drafts/convection 
currents and also low-frequency ventilation/room noise…  
 

     The Microflown is a MEMS device (first developed at the University of Twente, in the 
Netherlands in 1994) that responds directly to particle velocity. The heart of the device consists 
of two parallel, very small-diameter platinum nano-wires separated by ~ 100 m, heated to a 
temperature of  T ~ 200 oC by passing a small electrical current I ~ few mA through them, as 
shown in the scanning electron microscope (SEM) image below: 
 

 

     In a sound field  ,S r t
  the flow of air in the local vicinity of the two wires of the Microflown 

produces a small differential cooling of the two wires (this effect is similar, but not identical to 
the principle of how a so-called hot-wire anemometer works), as shown in the figure below: 
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    The Microflown operates over an eight orders-of-magnitude flow range of particle velocities, 
from ~ 10 nm/s up to ~ 1 m/s. Two forms of heat transport play a major role in the operation of the 
Microflown – heat diffusion and heat convection (EM radiative transport of heat is negligible in 
comparison). Due to convective heat transfer, the upstream platinum nano-wire is cooled more 
than the downstream one, and because of this the Microflown can distinquish between positive and 
negative air flow velocity directions, as shown in the figure below, for a harmonic sound field: 
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     Since the resistance of the platinum nano-wires is proportional to their temperature 
{  w wR T A


  }, the differential cooling of the platinum nano-wires results in a small 

differential change in their resistance,  wR T . The two heated platinum nano-wires of the 

Microflown are connected together as half of a Wheatstone bridge, in which the junction point of 
the two platinum wires is connected to the base of an NPN bipolar junction transistor (BJT) 
operating as an (inverting) voltage amplifier in the so-called common emitter (CE) configuration, 
as shown in the figure below: 

     The voltage on the base of the BJT is:    1
2b wV t E I R t   . The BJT is used in this circuit 

as a voltage amplifier; the AC component of the output voltage on the collector of the BJT is 
     AC

out C E wV t R R I R t   , where the  sign denotes the 180o phase shift of the inverting 

nature of the BJT CE voltage amplifier circuit. 
 

     The frequency and phase response of the Microflown are not flat. At low frequencies 
( 100blf f Hz  ), the sensitivity increases 6 dB/octave due to the effect of the thermal boundary 

layer on each of the platinum nano-wires. Between 100 1 Hz f KHz  , the frequency response 
of the device is ~ relatively flat. The response at higher frequencies decreases due to heat 
diffusion effects (i.e. the time heat takes to travel from one wire to the other), with a corner 
frequency at ~ 1 difnf KHz , and a second high-frequency roll-off at higher frequencies occurs due 

to the heat capacity (i.e. thermal mass) of the platinum nano-wires with a corner frequency on the 
order of ~ 8 20 htcpf KHz (depending on the device). The overall frequency and phase response 

of a Microflown device is shown in the figure below: 
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     The frequency and phase response of a Microflown can represented in terms of an electronic 
model of the device, with the output of an “ideal” Microflown {having flat frequency and phase 
reponse} subsequently altered by three passive RC-type networks to emulate the low frequency 
and high frequency behavior of the device, as shown in the figure below: 

 
 

     Using this electrical model to represent an actual Microflown, the frequency and phase 
response of the device are approximately given by: 
 

   
     2 2 2

1 1 1
250

1 1 1
out out

blay difn htcp

V f V Hz
f f f f f f

  
  

  

and: 

                              1 1 1tan tan tanblay difn htcpf f f f f f f      
 

A signal conditioner is used on the Microflown output signal to correct (i.e. undo/invert) the 
frequency and phase response such that both are flat at the output of the signal conditioner. 
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     The angular/polar response of the Microflown is the same as that associated with a 
differential pressure microphone – i.e. a figure-8 pattern, as shown in the figure below for 

various frequencies: 
     Three orthogonal Microflowns can be used to measure the local 3-D vector particle velocity 

 ,u r t
  . Used in conjunction with a small electret condenser pressure microphone to measure the 

local over-pressure  ,p r t


, the Ultimate Sound Probe (USP) was developed by Microflown, as 
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shown in the figure below: 
     More information about the Microflown devices, their uses and applications as well as many 
interesting and useful educational/technical documents can be found on Microflown’s website: 
http://www.microflown.com. 
 

     Absolute calibration of a particle velocity microphone/measurement of the sensitivity of the 
particle velocity microphone micS  is again carried out by placing it e.g. in a monochromatic  

(e.g. f = 1.0 KHz sine-wave)  free-air sound field  ,S r t
  at NTP with a SPL = 94.0 dB {set using 

e.g. a NIST-calibrated SPL meter (C-weighting) in proximity to the microphone}. As mentioned 
above, this SPL corresponds to an over-pressure amplitude of 1.0 p Pascals , since 

   10 020 logSPL dB p p  where 5
0 2 10p Pa   is the reference pressure at the (average) 

threshold of human hearing. However, for a free-air sound field with purely-real longitudinal 
specific characteristic acoustic impedance 413 o o az c p u   , a SPL = 94.0 dB free-air 

sound field has a purely-real over-pressure amplitude of 1.0 p Pascals and also has a purely-

real particle velocity amplitude of 31.0 413 2.42 10 2.42ou p z m s mm s    . The AC 

voltage amplitude u micV  output from the particle velocity microphone immersed in a SPL = 94.0 

dB free-air sound field can be easily measured e.g. using an oscilloscope or a true RMS digital 
multi-meter. 
 

     If the measured AC voltage amplitude output from a particle velocity microphone immersed in 
a SPL = 94.0 dB free-air sound field is .  u micV xx x mV  , the sensitivity of this particle velocity 

microphone is thus:  .  2.42 . 2.42  u mic u micS V u xx x mV mm s xx x mV mm s     
 

Appendix A: Forces Acting on a Microphone Diaphragm: 
 

     There is almost always more than just the force associated with an over-pressure 

  ˆi t i t
pressure o dia o diaF t p A e p A e n 
     acting on the diaphragm of a microphone. In general, there 

can be (a.) velocity-dependent force(s) associated with dissipative/viscous/frictional processes – 

i.e. force term(s) of the form    dissipate dia dia diaF t m v t 
    that oppose the driving motion, where 

the so-called damping “constant” dia has SI units of sec-1. In addition, there can be (b.) “spring-

like” restoring forces    restore dia diaF t k x t 
    that are linearly proportional to the displacement of 

the diaphragm     ˆdia diax t x t n

   along its axis n̂ , where  diak N m is the spring constant 

associated with the restoring force.  Thus, a somewhat more realistic situation associated with 
forces acting on the diaphragm of a microphone, Newton’s 2nd law becomes: 
 

         tot pressure dissipate restore dia diaF t F t F t F t m a t   
          

 

We can rewrite this as:             dia dia dissipate restore pm a t F t F t F t  
       

 

Then:          dia dia dia dia dia dia dia diam a t m v t k x t p t A  
   
     
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     Since all forces act along/against the same direction (i.e. the n̂ -axis = the outward pointing 
normal to the plane of the microphone diaphragm), then using the relations: 
 

     dia dia diav t x t t x t   
       and:         2 2

dia dia dia diaa t v t t x t t x t      
       , 

 

and dropping the vector arrows, we arrive at the 2nd order inhomogeneous differential equation 
of 1-D motion of the microphone diaphragm: 
 

       dia dia dia dia dia dia dia diam x t m x t k x t p t A        
 

The general solution to this equation for steady-state driven harmonic motion of the diaphragm is 
of the form     i t

dia ox t x e   . For un-damped, non-driven (i.e. 0dia   and   0p t  ) steady-

state motion of the diaphragm, the natural resonant angular frequency is o dia diak m  . For 

damped and driven steady-state harmonic motion (i.e. 0dia   and   0i t
op t p e   ): 

 

 2 i t
dia om x e      i t

dia dia oi m x e       i t
dia ok x e   i t

op e  diaA  

or:           2
dia dia dia dia o o diam i m k x p A           

 

Dividing though by diam :       2
dia dia dia o o dia diai k m x p A m          

 

Using the natural angular resonant frequency relation  2
o dia diak m  : 

 

 2 2
dia o o o dia diai x p A m           

or: 

 
   

 
 

 
 

2 2

2 2 2 2 2 2

2 2

22 2 2 2

1 1 o diao dia o dia
o

dia diao dia o dia o dia

o diao dia

dia o dia

ip A p A
x

m mi i i

ip A

m

  


        

  

   

                              
       

  



 

The real/in-phase component of the complex displacement amplitude  ox   of the microphone 

diaphragm is: 

      
 

2 2

 22 2 2 2
Re

oo dia
o r o

dia o dia

p A
x x

m

 
 

   

 
   

  
  

The imaginary/quadrature component of the complex displacement amplitude  ox  of the 

microphone diaphragm is: 

    
  22 2 2 2

Im o dia dia
o i o

dia o dia

p A
x x

m

 
   

 
   

  
  
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The phase of the complex displacement amplitude  ox  of the microphone diaphragm is:  
 

    
      

1 1 1

2 2 2 2

Im
tan tan tan

Re
o dia dia

x
o o o

x

x

   
    

  
                       




 

 

The magnitude of the complex displacement amplitude  ox  of the microphone diaphragm is: 
 

     
 
   

22 2 2 2

2 2
  2 22 2 2 2 2 2 2 2

1o diao dia o dia
o o r o i

dia diao dia o dia

p A p A
x x x

m m

   
  

       

    
      

      
  

 

     In order for a microphone to be effective as a pressure transducer, the face of the diaphragm 
of the microphone must (a.) be nearly massless – i.e. ~ 0diam  and (b.) have great stiffness, so 

that the diaphragm acts like a piston. On the other hand, the supporting edge of the diaphragm, 
where it is attached to the rigid structural body of the microphone must be reasonably compliant, 
in order to allow the back-and-forth motion of the diaphragm along its n̂ -axis e.g. in response to 
a harmonic over-pressure amplitude. Let us see what is required in terms of damping the motion 
of the diaphragm. 
 

     If we define   ox    and dia oy   then we can rewrite the {normalized} magnitude of 

the complex displacement amplitude  ox   and phase as: 
 

    

 

2

2 22 2 2 2 2 2

1 1
Res

1     
1     

o o

o dia
dia

dia
o o o

x
x

p A x x y
m

 


 
  

  
                    

       


 

 

   
1 1 1

2 22 2
tan tan tan

1
1

dia

o odia
x

o

o

x y

x


  

  


  

   
                                

 

 

     We have the usual three conditions of underdamped, critically damped and overdamped 
motion for 1dia oy    , 1dia oy     and 1dia oy    , respectively. The following two 

color-coded figures show normalized Res(x) vs. x and Phase(x) vs. x for y = 0.05 (pink), 1.0 
(cyan) and 10.0 (violet): 
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     From the above two figures, we see that if we overdamp the diaphragm of the microphone 
( 10dia oy    , violet curves), we achieve a region of flat frequency response, albeit with 

non-constant phase shift over the {fractional} frequency range  0.01 100ox      . These 

response curves are relevant for the design of microphones whose output signal response  micV t  

to an over-pressure  ,p r t
  that is linearly proportional to the displacement of the diaphragm, 

 diax t  - e.g electret condenser-type microphones. 
 

     The output responses of dynamic and ribbon-type microphones to an over-pressure  p t   

are linearly proportional to the velocity of the diaphragm of the microphone,    dia diav t x t t    , 

since e.g. a time-varying EMF (i.e. voltage)    mic dia o ribbont v t B   
 

    {where  ribbon m  is the 

length of the metal ribbon} is produced across the top/bottom of the corrugated metal ribbon 
diaphragm due to the instantaneous differential over-pressure  ribbonp t  acting on it. 
  

     We have already seen that a harmonically-varying overpressure amplitude at the diaphragm 
of the microphone   i t

op t p e  results in a harmonically-varying displacement of the 

microphone     i t
dia ox t x e   . Thus        i t

dia dia o diav t x t t i x e i x t          , i.e. the 

velocity of the diaphragm  diav t  is +90o ahead in phase relative to the displacement of the 

diaphragm,  diax t  and is also linearly proportional to the (angular) frequency 2 f  .  

We also see that          i t i t
dia dia o dia ov t x t t i x e i x t v e              and hence that 

   o ov i x    . Thus the complex velocity amplitude of the diaphragm of a microphone is: 

   
 
 

 
 

2 2 2 2

2 22 2 2 2 2 2 2 2

o dia dia oo dia o dia
o o

dia diao dia o dia

i ip A p A
v i x i

m m

     
    

       

                 
      

   

The real/in-phase component of the velocity amplitude  ov   of the microphone diaphragm is: 

    
  22 2 2 2

Im o dia dia
o r o

dia o dia

p A
v v

m

  
   

 
   

  
  

The imaginary/quadrature component of the velocity amplitude  ov   of the microphone 

diaphragm is: 

      
 

2 2

 22 2 2 2
Re

oo dia
o i o

dia o dia

p A
v v

m

 
  

   

 
   

  
  

The phase of the velocity amplitude  ov   of the microphone diaphragm is:  
 

    
  

 2 2

1 1
Im

tan tan
Re

oo
v

diao

v

v

 
 


 

   
         



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The magnitude of the complex velocity amplitude  ov  of the microphone diaphragm is: 

     
 

2 2
  22 2 2 2

1o dia
o o r o i

dia
o dia

p A
v v v

m
   

   

 
    

   
  

     If we again define   ox    and dia oy    then we can rewrite the {normalized} 

magnitude of the complex velocity amplitude  ov   and v-phase as: 

    

 2 22 2 2 2 2 2

-Res
1     

1     

o o o

o dia
dia

dia
o o o

v x
v x

p A x x y
m


  


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  

 
 
   

                            


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2 2 2
1 1 1
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x y
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 
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  
                             

 

 

     We again have the usual three conditions of underdamped, critically damped and overdamped 
motion for 1dia oy    , 1dia oy     and 1dia oy    , respectively. The following two 

color-coded figures show normalized v-Res(x) vs. x and v-Phase(x) vs. x for y = 0.05 (pink), 1.0 
(cyan) and 10.0 (violet): 
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     We see from the above two figures that for dynamic and/or ribbon microphones, whose 
output signal response  t  to an over-pressure  p t  is linearly proportional to the velocity of 

the diaphragm,  diav t  if the diaphragm of these types of microphone (a.) has a sub-sonic 

resonance (i.e. 2 20 o of Hz   and (b.) is critically-damped ( 1.0dia oy    , cyan curve), 

then we are able to achieve a region of flat frequency response, albeit again with non-constant 
phase shift over the {fractional} frequency range  0.01 100ox      .  
 

    The above discussion(s) of damped simple harmonic oscillator-type descriptions of the 
frequency-dependent behavior of various types of microphone diaphragms are in fact quite 
simplistic – real microphones are considerably more complex than that given in the above 
discussion(s). Equivalent electronic circuit models are often used to analytically (and/or 
numerically) compute the frequency and phase response of such microphones. The figure below 
shows the equivalent electronic circuit used for modeling the behavior of a ribbon-type 
microphone: 
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     Much information on how microphones work, equivalent circuit modeling of microphones, 
etc. is discussed in The Microphone Handbook, 2nd Ed. by John Eargle, Elsevier, 2004. 
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