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Measurement of Complex Sound Fields – Part 2: 
 

The Use of Lock-In Amplifiers for Phase-Sensitive Measurements of Complex Harmonic Sound Fields 
 

     What do Lock-In Amplifiers (LIAs) do, and how do they work? 
 
     Consider a “generic” experimental situation where a harmonic (i.e. periodic/pure-tone/single-
frequency) signal of {angular} frequency 2 f   is used as a “stimulus” to excite a system (i.e. 
input a known signal into an unknown “black-box”). We are interested in measuring the linear, 
but possibly complex response of the “black-box” system to the input stimulus signal – i.e. its 
“output” signal strength (amplitude) and phase of the output signal relative to the input “stimulus” 
signal (aka the input reference signal). This “generic” situation is shown in the figure below: 

 
     A dual-channel LIA is a narrow-bandwidth electronic device that measures/determines the 
in-phase and 90o-out-of-phase/quadrature amplitude components of the response signal output 
from a generic “black-box” system relative to a harmonic/pure-tone/single-frequency reference 
signal input to that system. The generic “black-box” system’s output response signal is: 
 

       , cosSig Sig
o SV t V t       of {angular} frequency 2 f  . 

 

     Note that in general, both the system’s output signal amplitude   Sig
oV   and phase  S   

are frequency-dependent quantities. Whether they in fact are (or are not) depends on the detailed 
physics associated with how the system’s output signal is actually produced, i.e. what the output 
response signal  ,SigV t  physically represents. 
 

     Note that the in-phase and 90o-out-of-phase/quadrature components of the harmonic output 
response signal amplitude  ,SigV t  are defined relative to a reference/input sine-wave of the 

same frequency f: 
 

   , cosRef Ref
o RV t V t     of {angular} frequency 2 f   

 

Note further that {here} the reference/input signal’s amplitude Ref
oV  and {absolute} phase R  

are both constants, i.e. time-independent. 
 
 
 
 
 
 
 
 

Generic 
“Black-Box”  

System 

Input Stimulus: 
 

   , cosRef Ref
o RV t V t     

Output Response: 
 

      , cosSig Sig
o SV t V t     
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     A dual-channel LIA uses two so-called Phase-Sensitive Detectors (PSD s) to: 
  

(a.) Carry out the mathematical operation of multiplication of the output signal with the  
       reference/input sine-wave signal, and also with a +90o phase-shifted copy of the  
       reference/input sine-wave signal, and then: 
 

(c.) The two PSD product signals are then either time-averaged or low-pass filtered to obtain  
      quasi-DC voltages that are representative of the in-phase and 90o-out-of-phase/quadrature    
      amplitude components of the harmonic (i.e. periodic) output response signal, respectively. 
 

The LIAs reference sine-wave signal is: 
 

    , cosRef Ref
o RV t V t     

 

The +90o phase-shifted copy of the reference sine-wave signal is: 
 

   
   

2 ,   cos 2

                cos cos 2

Ref Ref
o R

Ref
o R

V t V t

V t

    

  

  

     
 

sin sin 2

                sin

R

Ref
o R

t

V t

  

 

   
  

 

 

The generic “black-box” system’s output response signal (input to the dual-channel LIA) is: 
 

        , cosSig Sig
o SV t V t       

 

The signal multiplication operation carried out by the 1st Phase-Sensitive Detector (= PSDX) is: 
 

             , , , cos cosXPSD Sig Ref Sig Ref
o S o RV t V t V t V t V t               

 

The signal multiplication operation carried out by the 2nd Phase-Sensitive Detector (= PSDY) is: 
 

             
2, , , cos sinYPSD Sig Ref Sig Ref

o S o RV t V t V t V t V t                

 

We define:  Sx t     and: Ry t   . Then using Euler’s formulas:  1
2cos ix ixx e e   

and:  1
2sin ix ix

ix e e  , the two PSD product terms can be rewritten as: 

 

           
         

1 1
4 4

1 1
4 2

cos cos

                 2cos 2cos cos cos

i x y i x y i x y i x yix ix iy iyx y e e e e e e e e

x y x y x y x y

            

       
 

 

           
         

1 1
4 4

1 1
4 2

cos sin

                 2sin 2sin sin sin

i x y i x y i x y i x yix ix iy iy
i ix y e e e e e e e e

x y x y x y x y
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Thus: 

     
          1

2

, , ,

                   cos 2 cos

XPSD Sig Ref

Sig Ref
o o S R S R

V t V t V t

V V t

  

       

 

       
 

and: 
 

     
         

2

 1
2

, , ,

                   sin 2 sin

YPSD Sig Ref

Sig Ref
o o S R S R

V t V t V t

V V t

  

       

 

       
 

 

Next, we (deliberately) choose to set the reference amplitude to:       2    1.4142  Ref
oV Volts   

             {i.e. set the RMS reference amplitude to: 
 

1
2

1.0000  
RMS

Ref Ref
o oV V Volts  }.  

 

Then, the two PSD product signals become: 
 

      
     

          1
2

, , ,

                   cos 2 cos

XPSD Sig Ref

Sig
o S R S R

V t V t V t

V t

  

       

 

       
 

and: 

             
     

         
2

 1
2

, , ,

                   sin 2   sin

YPSD Sig Ref

Sig
o S R S R

V t V t V t

V t

  

       

 

       
 

 

Thus, note that the RMS output signal amplitude is:    
 

  1
2RMS

Sig Sig
o oV V   

 

Thus, the two PSD product signals can be expressed in terms of their RMS amplitudes as: 
 

     
         

 

 

, , ,

                  cos 2 cos

X

RMS

PSD Sig Ref

Sig
o S R S R

V t V t V t

V t

  

       

 

      
 

and: 
     

         
 

2

 

, , ,

                  sin 2 sin

Y

RMS

PSD Sig Ref

Sig
o S R S R

V t V t V t

V t
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     Next, we can either time-average the two PSD product signals, or e.g. send them through a 
{very} low-pass filter (with 3 dB corner frequency 3 2dB   ). By doing either of these,  

we eliminate (i.e. reject) the time-dependent/oscillatory  2  frequency components of the two 

PSD product signals; hence only the time-independent (i.e. the zero-frequency) components of 
the two PSD product signals remain: 
 

        
 

 , cosX X

RMS

PSD PSD S
LPF o S Rt

V t V V         
 

and:           
 

 , sinY Y

RMS

PSD PSD S
LPF o S Rt

V t V V         
 

     If we now set the {absolute} reference signal’s phase 0R  , since it is the reference phase  

{n.b. we can also eliminate R  simply by re-defining the zero of time}, then the two time-

averaged/LPF d  time-independent PSD product signals simplify further to: 
 

       
 

 , cosX X

RMS

PSD PSD S
LPF o St

V t V V       
 

and:           
 

 , sinY Y

RMS

PSD PSD S
LPF o St

V t V V       

 

     Thus, we see that a dual-channel LIA enables us to measure the RMS values of the real/in-
phase and imaginary/90o-out-of-phase/quadrature components of a periodic complex signal 
amplitude, relative to a reference sine-wave signal – i.e. obtain the frequency-domain 
representation of the RMS complex harmonic amplitude of a generic “black-box” output 
response signal, phase-referenced to the input reference signal: 
 

           
  

   cos sin S

RMS RMS

iSig Sig Sig
RMS o S S oV V i V e               

 

     The time-domain representation of the RMS complex harmonic amplitude associated with the 
generic “black-box” output response signalm phase-referenced to the input reference signal is: 
 

            
  

    , SS

RMS RMS

i tiSig Sig i t Sig i t Sig
RMS RMS o oV t V e V e e V e                 
    

 

     The dual-channel LIA is an extremely useful, versatile, sensitive and powerful device. It is 
routinely used in all sorts of applications involving the measurement and analysis of periodic/pure-
tone/single-frequency complex signals. 
 

     An important aspect of a LIA is that it is inherently a narrow-band frequency device. One sets 
the bandwidth sensitivity of the LIA by specifying its settling time constant  (sec), which, from 
the uncertainty relation 1f t f       , sets the LIA’s bandwidth: 1BW f    . When the 

reference signal’s frequency changes abruptly f  f , the system’s output response signal (input 
to the LIA) also changes abruptly. It is therefore good experimental practice to wait at least  
t ~ 5 time constants in order to allow the X, Y (real/in-phase and imaginary/90-degree-out-of-
phase) outputs of the LIA to settle to within 51 1 1 0.007 0.993te e       of their final 
values at the new reference frequency f  before recording/reading out the new X, Y values. 
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    The use of a dual-channel LIA for phase-sensitive measurements of periodic complex pressure 

 ,p r t
  and/or particle velocity  ,u r t

   signals associated with a complex sound field  , ;S r t   

has associated with it one other detail which is not immediately apparent in the above formulae.  
 

     Consider the use of a dual-channel LIA in a typical phase-sensitive acoustical physics 
experiment, such as the typical one shown in the figure below, in which a sound source is excited 
by a pure-tone/single-frequency sine-wave signal output from a function generator, whose 
instantaneous output voltage is of the form    , cosFG FG

oV t V t  . The sine-wave signal is 

also used as the reference for the dual-channel LIA.  
 

     For simplicity’s sake, let us imagine that we have an ideal sound source, in that it does not 
introduce a phase shift of any kind in the process of generating a monochromatic traveling plane 
wave, which propagates as a free-field. The time-domain representation of the complex over-
pressure amplitude associated with the free-field monochromatic traveling plane wave propagating 

in the +ve x̂ -direction is of the form      , ; ,i t kx ikx i t i t
o op x t p e p e e p x e          , where 

 ,p x  is the frequency-domain representation of the complex over-pressure amplitude 

associated with the monochromatic traveling plane wave. 
 

 

     If the pressure mic is located at x = 0,  then:  0, i t
op x t p e    . The real/in-phase and 

imaginary/90o-out-of-phase/quadrature RMS voltage amplitude components output from the 
LIA will be 

 

 

RMS

Sig
oV    and 0 , respectively – i.e. the phase 

0
0S x



 .  

 

     If the p-mic sensitivity is  -p micS mV Pascal , then the frequency-domain real/in-phase and 

imaginary/90o-out-of-phase/quadrature RMS components of the complex pressure amplitude 
 0,p x   at x = 0 are:  

 

 
-   

RMS

Sig
o o p micp V S RMS Pascals  and:  0  RMS Pascals , respectively. 

 

     If the pressure mic is instead moved to x = d, the complex over-pressure amplitude associated 
with the a free-field monochromatic traveling plane wave at  x = d  is: 
 

       , ; cos sin ,i t kd ikd i t i t i t
o o op x d t p e p e e p kd i kd e p x d e                 

 

 

Sine-Wave 
Function 
Generator 

Lock-In 
Amplifier Reference 

p-mic 

d

Sound 
Source Free-Field 

k̂  

Input 
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     Thus, the frequency-domain real/in-phase and imaginary/90o-out-of-phase/quadrature RMS 
voltage amplitude components output from the LIA for the pressure mic located at x = d will be: 
 

 
 

 cos
RMS

Sig
o SV   and:  

 

 sin
RMS

Sig
o SV  , respectively.  

 

     Thus, the frequency-domain real/in-phase and imaginary/90o-out-of-phase/quadrature RMS 
components of the complex pressure amplitude  ,p x d   at x = d are:  
 

 
 

 
-cos cos   

RMS

Sig
o S o S p micp V S RMS Pascals   and: 

 
 

 
-sin sin   

RMS

Sig
o S o S p micp V S RMS Pascals  , respectively, since: 

 

 
-RMS

Sig
o o p micp V S . 

 

     Thus, we see that at x = d, a propagation delay time-induced phase shift of S x d
kd


   

results from the fact that it takes a finite time propt d c   for the a free-field plane wave to 

propagate in free air from x = 0 to x = d. Since 2k c     in free-air, we see that the 

apparent phase shift at x = d  is:      S prop propx d
kd c d c c t t   


            . 

 

    Thus {here}, we see that the phase shift S x d



 at x = d  is in fact frequency dependent, 

linearly proportional to the (angular) frequency:      S propx d
k d t    


     , 

becoming more negative with increasing (angular) frequency 2 f  . See figure below. 
 

     While the propagation delay time-induced phase shift effect may initially be perceived as an 
experimental annoyance, it is actually a physics blessing in disguise!  
 

    If the p-mic distance d from the sound source is known, then a measurement of the phase 
speed of sound (the speed at which the phase {i.e. the crests/troughs of sound waves} advances) 

     c k f         vs. frequency f can be obtained using: 
 

           2   S Sx d x d
c k d f f d m s        

 
        

 

     The group speed of propagation of sound waves ((the speed at which energy/information 

propagates) is defined as:     1

gc dk d  


    , which is the {inverse of the} local slope of 

the graph of  k   vs.   (at fixed p-mic position, d). Thus, since    S x d
k d  


  , then: 

    S x d
d d dk d d    


    , hence the group speed of propagation of sound waves  

 

       
11
 g S x d

c dk d d d d m s     



         

 

For propagation of free-field monochromatic traveling plane waves, the local slope 
   dk d k    , hence      gc c k      in the free-field. In general, this is not 

the case for an arbitrary sound field, e.g. the near vs. far zone associated with a point/monopole 
sound source, or e.g. a plane circular piston of radius a (an approximation to a loudspeaker). 
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     In the UIUC Physics 406 POM lab, we use Stanford Research System’s SR-830 Dual-
Channel DSP Lock-In Amplifiers (one is shown in figure below) to carry out phase-sensitive 

measurements of the complex pressure  ,p r t
  and particle velocity  ,u r t

   associated with a 

harmonic/periodic/pure-tone/single-frequency complex sound field  , ;S r t  .  

      

 

Free-field propagation 
of a monochromatic 

traveling plane wave. 
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A functional block diagram of how the SR-830 DSP LIA works is shown in the figure below: 

 
 

     The dual-channel SR-830 DSP LIA is a digital lock-in amplifier – this means that the voltage 
waveform of the analog input signal is sampled at a 256 KHz digitization rate using a 16-bit 
analog-to-digital converter. A Phase-Locked Loop (PLL) circuit is used to lock the phase of the 
reference sine-wave (or in the form of a TTL digital signal) to an internal 20-bit digital oscillator. 
{Or, the internal 20-bit digital oscillator of the SR-830 DSP LIA can be used as the reference 
sine-wave, programming its amplitude and frequency settings via the GPIB (General Purpose 
Instrumentation Bus) interface to a PC. The LIA’s Digital Signal Processor (DSP) then carries 
out all of the necessary mathematical operations (multiplication, 90o phase shift, low-pass digital 
filtering) discussed above, in the digital domain. This approach is vastly superior in terms of 
improved stability, reduced noise, overall performance & flexibility/versatility in comparison to 
the performance of the analog lock-in amplifiers of yesteryear… it is truly a powerful device, 
one which has been used in countless laboratory settings, and in countless physics, engineering, 
biology, … applications! 
 

     Note that the SR-830 DSP LIA can also be used to analyze the higher harmonics associated 
with polyphonic complex sound fields, consisting of a hierarchy of {precisely} integer-related 
overtones (up to n = 99!). 
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SR-830 DSP Lock-In Amplifier Specifications 
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Phase-Sensitive Measurements of the Complex Specific Acoustic Input/Output Impedance 
of Brass/Wind Musical Instruments 

 

     The complex longitudinal specific acoustic input and output impedance of brass/wind musical 
instruments can be measured as a function of frequency via a PC-based data-acquisition (DAQ) 
system using a (computer-controlled) sine-wave function generator to excite a piezo-electric disk 
transducer attached to the mouthpiece e.g. of a trumpet, saxophone, clarinet, oboe… in 
conjunction with the use of pairs of the tiny Knowles Electronics p- and u-mics that we have 
developed in the UIUC Physics 406 POM lab to measure complex pressure  ,p z t and 

longitudinal particle velocity  ,u z t  at the input (i.e. mouthpiece) and output (i.e. bell-end) of 

brass/wind musical instruments. The signal output from each mic is input to a SR-830 DSP LIA, 
the real and imaginary components of the complex RMS pressure and particle velocity 
amplitudes, output as quasi-DC RMS voltages from the four LIA’s used in this experiment are 
digitized using eight 12-bit analog-to-digital converters (ADC’s). A block diagram of the PC-
based DAQ setup for these types of measurements is shown in the figure below: 
 

 
     Since we don’t have access e.g. to an anechoic room, carrying out these measurements in our 
classroom/lab room is problematic due to 1/f-type noise fluctuations from the ventilation system, 
this unwanted noise can be suppressed by placing the musical instrument to-be-measured in a 
fairly large, fully-enclosed wooden box lined with acoustic foam on all sides, as shown in the 
following figure: 
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A close-up overhead view of the wooden box with a Bach Bb trumpet in it (before the lid is closed): 
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     The sensitivities of the p- and u-mics Sp-mic and Su-mic are measured/absolutely calibrated in an 
SPL = 94 dB free-field sound field, frequency-dependent p- and u-mic phase corrections are also 
applied to the raw complex p- and u-mic data taken for such musical instrument measurements. 
The complex zin and zout are computed, along with complex Iin and Iout, resulting in more than 40 
individual plots of the real, imaginary, magnitude, phase, cosine of the phase, complex plane 
associated with complex input/output pressure, complex particle velocity, complex longitudinal 
specific acoustic impedance and complex longitudinal acoustic intensity. 
 

     In the figures below, we show a few of these plots – absolutely calibrated, fully-corrected 

input (pink) output (blue)  p f ,  u f  and  z f data for the Bach Bb trumpet: 

 

The (pink) input impedance peaks enable a player to play those notes on the trumpet. The lowest 
playable note is actually the 2nd peak – the output impedance on the 1st peak is a dead short! 
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    Much more information on the details of these types of measurements and results for various 
brass/wind musical instruments are posted on the UIUC Physics 406POM website, at: 
 

http://courses.physics.illinois.edu/phys406/406pom_reu.html 
 

    The Music Acoustics Group in the Physics Department at The University of New South 
Wales, in Sydney, Australia has an excellent website http://www.phys.unsw.edu.au/music/ of 
their very active/on-going musical acoustics physics research program, which also has much 
interesting information on brass/wind instruments, amongst many other musical instruments. 
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Spectral Analysis Approach to Measurements of Complex Sound Fields 
 

     A complex polyphonic sound field may consist of many individual sound fields, each one 
with its own characteristic frequency {and/or frequencies}, which may {or may not} necessarily 
be related in phase to other polyphonic components of the overall sound field. The individual 
components of the overall complex polyphonic sound field may also emanate from their own 
sound source(s) at different spatial locations.  In such situations, measurements of the so-called 

frequency domain power spectral densities  , ;S r t  associated with complex overpressure 

 ,p r t
 and particle velocity  ,u r t

   are carried out in order to determine the nature of the overall 

sound field at the listener’s position r


.  
 

     We use Fourier transforms to obtain the frequency domain complex overpressure  ,p r   

and particle velocity  ,u r    associated with their time domain complex overpressure  ,p r t
  

and particle velocity  ,u r t
   counterparts.   

 

     For any continuous, mathematically well-behaved complex time domain function  g t , the 

Fourier transform of time domain  g t  to the frequency domain f  (and/or angular frequency 

domain 2 f  ) is:        
 

           2  i t i f tg f g g t g t e dt g t e dt 
  

 
        F  

 

The inverse Fourier transform(s) of  frequency domain    g f g    to the time domain is:  
 

        1 2  1
2  i t i f tg t g g e d g f e df 
  

   

 
      F   since:  2d df    

 

     Note that the choice of the   signs in the complex exponential factors in the above Fourier 
transform expressions is not arbitrary – long ago, we specified the i te  convention for use in our 

physically-measureable quantities, e.g.     i t
op t p e Pascals ,    1o i tu t u e m sec   , etc. 

 

A Simple Example of the Use of Fourier Transforms: 
 

     Suppose we have a pure-tone/single frequency  2o of     complex time domain signal 

    oi t
og t p e Pascals , where, for simplicity’s sake {here}, the overpressure amplitude 

   op Pascals   is a purely real number (i.e. a constant). Depending on the physical quantity that 

the time domain signal  g t  actually represents, the time domain signal  g t  has dimensionful 

physical units associated with it – e.g. RMS Volts, Pascals, meters/second, etc. 
 
     Hence, note that the physical units associated with the frequency domain Fourier transform 

of  g t ,        2  i f tg f g t g t e dt 


    F  will correspondingly be RMS Volt-sec, Pascal-
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sec, meters, etc. However, since frequencies ( f ) are usually expressed in Hz (= cycles per 
second = sec1), the dimensionful physical units of frequency domain  g f  are more 

commonly expressed as RMS Volts/Hz, Pascals/Hz, (meters/sec)/Hz, etc., respectively. 
 

     The angular frequency Fourier transform of  g t ,         i tg g t g t e dt
 


    F  have 

dimensionful physical units of RMS Volt-sec/rad, Pascal-sec/rad, meters/rad, etc., respectively. 
 
     If we now explicitly insert   oi t

og t p e   into the expression for the Fourier transform of the 

time domain  g t  to the frequency domain: 
 

        

 

 
2

2oo

o

i ti ti t i t
o o o og g t g t e dt p e e dt p e dt p  

  

   
     

  

 

          


F  

where the delta function    1
2

oi t
o e dt 

  
 


    , has the dimensionful physical units of the 

inverse of its argument, i.e. 1 1 2 f   (= seconds/radian, or equivalently, 1/radian-Hz). 
 

     We insert the frequency domain    2o og p       into the expression for the inverse 

Fourier transform to obtain the time domain representation  g t : 
 

      1 1 1
2 2

  i tg t g g e d
 

  
 


    F 2op    oi ti t

o oe d p e    
 


   

 

where we have used the relations:   1ox x dx



   and:      o og x x x dx g x




   . 

 

     Thus, we see that an infinitely long/continuous complex exponential time domain signal 
  oi t

og t p e   corresponds to an infinitely sharp/narrow “spike” in the frequency domain 

   2o og p      , as shown graphically in the two figures below: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

o   
t  

         2o og p       

  

    
  

1

1        2

        o

o o

i t
o

g t g

p

p e 



  









  



 F

F  

    1g t g  F      g g t  F  

op  

Time Domain Frequency Domain 

op  
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Conversely, an infinitely sharp/narrow time domain sound “spike”      1   og t p t Pascals sec  

produces a flat frequency spectrum (a continuum of frequencies with equal amplitudes) 
          og f g g t p Pascals    F , as shown graphically in the two figures below: 

 
 
 
 
 
 
 
 
 
     
 
 
 
 
 
      There are many useful relations associated with Fourier transforms, which we summarize 
below, for the most commonly used ones: 
 

   Time-Domain:  Frequency Domain: 
 

  Linearity:      h t af t bg t             h af bg       

 Translation:    oh t f t t           oi th f e     

 Modulation:     oi th t f t e        oh f      

 Scaling:    h t f at         1
h f

a a

    
 

   

 Conjugation:    *h t f t          *h f     
 

 
 
 
 
 
 
 
 
 
 
 
 
 

0t   
t  

          og t p t  

  

    
           o o

g g t

p t p







 

 F

F
 

    1g t g  F      g g t  F  

op  

Time Domain Frequency Domain 

op  
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Discrete Fourier Transforms: 
 
    In an experimental/laboratory situation e.g. using modern data acquisition hardware such as a 
digital oscilloscope/digital recorder, or a dedicated waveform acquisition system, where time 

domain signals  f t  are digitized at a constant sampling rate of  fs (samples/second) 

{corresponding to a sampling time interval ts  = 1/ fs} their frequency domain counterparts 
 g   can be obtained using so-called discretized Fast-Fourier Transform {FFT} techniques.  

 

     For discretized complex time domain functions consisting of a uniformly time-sampled 
sequence of N complex numbers  n ng t , the discrete Fourier transform of complex time domain 

 n ng t  to the frequency domain is:      
1

2

0

N
i N kn

k k n n
n

g g t e 






  , with k = 0, 1, 2, …N1.  

The inverse of the discrete Fourier transform of complex frequency domain  k kg   to the time 

domain is:      
1

21

0

N
i N kn

n n k kN
k

g t g e 






   . The  2 i Ne   are known as the  primitive N th roots of 

unity.  
 
     For the remainder of the discussion(s) here, we will work with continuous complex functions 
 g t and. We leave it to the interested reader to transcribe the following results to the discretized 

versions, if needed, or, one can simply consult a good text book on digital signal processing… 
 
Convolution: 
 

     We can convolute a complex time domain function  f t  with another  g t  by carrying out 

the mathematical operation of convolution:   
 

         f gh t f t g t f g t d  


 
         

 

The   symbol denotes the convolution operation. n.b.  h t  has units of    f t g t sec   . 
 

    The Fourier transform the above relation is:        i t
f g f g f gh h t h t e dt

 
  

   = F , the 

frequency domain representation of complex time domain convolution. It can be shown that: 
 

                   f g f gh h t f t g t f t g t f g              = F = F F F  
 

The   symbol denotes simple multiplication. n.b.  f gh 
  has physical units of    f g   . 

 

     We see that convolution of two complex time domain functions    f t g t   is equivalent to 

simple multiplication of their frequency domain counterparts,    f g   ! 
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Cross-Correlation: 
 

     The cross-correlation of a complex time domain function  f t  with another  g t  is a 

specialized type of convolution, involving complex conjugation: 
 

                 * * *
f gh t f t g t f t g t f g t d f g t d     

 

 
                     

 

The  symbol denotes the cross-correlation operation. n.b.  f gh t
  has units of    f t g t sec   . 

 

The Fourier transform of the cross-correlation relation is:        i t
f g f g f gh h t h t e dt

 


    F   , 

the frequency domain representation of complex time domain cross-correlation. It can be shown that:  
 

                   * * *
f g f gh h t f t g t f t g t f g             = F = F = F F  . 

The   symbol denotes simple multiplication. n.b.  f gh 
  has physical units of    *f g   . 

 

Auto-Correlation (aka Self-Correlation): 
 

     Note that the auto-correlation of a complex time-domain function  f t  with itself is simply 

a specialized type of cross-correlation, also involving complex conjugation: 
 

                 
 

* * *
f fh t f t f t f t f t f f t d f f t d     

 

 
                   

   
 

The Fourier transform of the auto-correlation relation is:        i t
f f f f f fh h t h t e dt

 


    F   , 

the frequency domain representation of complex time domain auto-correlation. It can be shown that: 
 

                        
 

* * *
f f f fh h t f t f t f t f t f t f t f f                    F F F F F    
 

Note that  
 f fh t
  has physical units of    f t f t sec   ;  

 f fh 
  has physical units of    *f f   . 

 

The Weiner-Khintchine Theorem: 
 

     The Weiner-Khintchine Theorem relates the time domain auto-correlation function  f fh t
  

to the frequency domain power spectral density function  f fS 
  (and vice versa) via the 

following Fourier transforms: 
 

    i t
f f f fS h t e dt

 


  

    and:    1
2

i t
f f f fh t S e d

  
 


  

  . 

 
These results can be generalized to:  
 

    i t
f g f gS h t e dt

 


  

    and:    1
2

i t
f g f gh t S e d

  
 


  

  . 
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Power Spectral Density Functions: 
 

     The power spectral density functions  p pS 
  and  u uS 

 (n.b. complex scalar quantities) 

associated with complex scalar pressure  ,p r t
 and vector particle velocity  ,u r t

   are respectively: 
 

                    2* *i t i t
p p p pS h t e dt p p t d e dt p p p       

   

  

                   

 

and:               
2

* *   i t i t
u u u uS h t e dt u u t d e dt u u u       

   

  

         
             

 

Explicitly writing out the latter relation in terms of its x, y, and z-components: 
 

   
2

u uS u 
               

2 2 2

x x y y z zu u u u u u x y zS S S u u u         
           

 

The dimensionful physical units of  p pS f
  and  u uS f

  are Pa2/Hz     and (m/s)2/Hz,     respectively. 

The dimensionful physical units of  p pS 
  and  u uS 

  are Pa2-s/rad and (m/s)2-s/rad, respectively. 

We also see that the 3-D vector power spectral density functions  p uS 


  and  u pS 



   

related to the frequency-domain complex 3-D vector acoustic intensity      *1
2aI p u   

    

are: 
 

                  * *i t i t
p u p uS h t e dt p u t d e dt p u      

   

  

          
         

 

and:                     * *i t i t
u p u pS h t e dt u p t d e dt u p      

   

  

          
         

 

Note that:                     *
* * * *

u p p u p uS u p S p u S p u               
              . 

 

Note also that for x,y = u,p:      Re Rex y x yS S   
   whereas:      Im Imx y x yS S   


 
  . 

 

The dimensionful physical units of  p uS f
  and  u pS f

  are Watts/m2/Hz. 

The dimensionful physical units of  p uS 
  and  u pS 

  are Watt-s/m2/rad. 
 

     Generically, the power spectral density functions  x yS 
  are defined for all positive and 

negative frequencies, and as such, each  x yS 
  can be represented by pairs of counter-rotating 

phasors in the complex plane.  
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     For practical purposes, it is useful/convenient to redefine the complex power spectral density 
functions as single-sided functions of frequency: 
 

    2x y x yG S  
   for 0   

    0      0x y x yG S 
    for 0   

          0x yG  
          for 0   

 

Thus for 0  :       2
2 2p p p pG S p        {n.b. a purely real quantity!} 

 

           

     

2 22 2
  2 2 2

                   { . . a purely  quantity!}
x x y y z z

u u u u x y z

u u u u u u

G S u u u u

G G G n b real

     

  

       
  

     

  
 

  

 

 

    
       

     

*2 2   { . . in general, complex}

ˆ ˆ ˆ               
x y z

p u p u

p u p u p u

G S p u n b

G x G y G z

   

  

  

  

     
  

 

  

 

 

    

         
     
     

* *

* * *

2 2

ˆ ˆ ˆ               

ˆ ˆ ˆ               

x y z

x y z

u p u p p u

u p u p u p

p u p u p u

G S u p G

G x G y G z

G x G y G z

    

  

  

   

  

  

     
  

  

  

  

  

 

 

And for 0  :         2
0 0 0p p p pG S p      {n.b. a purely real quantity!} 

 

     
           

     

2 22 2
0   0 0 2 0 0 0

              0 0 0   { . . in general, complex}
x x y y z z

u u u u x y z

u u u u u u

G S u u u u

G G G n b

       
  

     

  
 

  

 

 

     
       

     

*0 0 0 0   { . . in general, complex}

ˆ ˆ ˆ              0 0 0
x y z

p u p u

p u p u p u

G S p u n b

G x G y G z

  

  

     
  

 

  

 

 

     

         
     
     

* *

* * *

0    0 0 0 0   { . . in general, complex}

ˆ ˆ ˆ               0 0 0

ˆ ˆ ˆ               0 0 0

x y z

x y z

u p u p p u

u p u p u p

p u p u p u

G S u p G n b

G x G y G z

G x G y G z

   

  

  

     
  

  

  

  

  

 

 

And for 0  :        All    0x yG  
  for 0  , for x, y = u, p. 
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The frequency-domain complex 3-D vector acoustic intensity “amplitude” is: 
 

     *1
2, , ,aI r p r u r   

       
 

Which, broken down into its 3 individual space components is: 
 

     
     
     

*1
2

*1
2

*1
2

ˆ ˆ, , ,

ˆ ˆ, , ,

ˆ ˆ, , ,

x

y

z

a x

a y

a z

I r x p r u r x

I r y p r u r y

I r z p r u r z

  

  

  

 

 

 

    
    
    

 

 

Hence, at the space-point r


: 
 

     *1 1
2 2a u p p uI S S   
 
 
         *

a u p p uI G G   
 
 
   for 0  . 

where:  

         

       * * * *

ˆ ˆ ˆ 

ˆ ˆ ˆ          

x y z

x y z

a u p u p u p u p

p u p u p u p u

I G G x G y G z

G G x G y G z

    

   

   

   


   

   
   

   

 

 

     Note that the complex 3-D vector specific acoustic impedance  ,az r 
   and admittance 

   , 1 ,a ay r z r 
    are time-independent quantities. {They are in fact manifestly/intrinsically 

frequency domain quantities!}  
 

Expressed in terms of their frequency domain definitions: 
 

   
 

 
 

 
 

 
 

     

, , , ,
ˆ ˆ ˆ,

, , ,,

ˆ ˆ ˆ                               , , ,
x x x

a
x y z

a a a

p r p r p r p r
z r x y z

u r u r u ru r

z r x z r y z r z

   


  

  

   

  

              
    

 

and: 

   
   

 
 
 

 
 

 
 

     

,, , ,
ˆ ˆ ˆ,

, , , ,

ˆ ˆ ˆ                               , , ,
x y z

yx z
a

a a a

u ru r u r u r
y r x y z

p r p r p r p r

y r x y r y y r z

  


   

  

   

  

             
    

 

Note also that: 
 

   
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

** *

* * *

2 2 2

,, , , , ,
ˆ ˆ ˆ,

, , , , , ,

2 ,2 , 2 ,
ˆ ˆ ˆ              

, ,,

yx z

yx z
a

x x y y z z

aa a

x zy

u rp r u r p r p r u r
z r x y z

u r u r u r u r u r u r

I rI r I r
x y z

u r u ru r
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The k = x, y, z components of the frequency domain complex 3-D vector specific immittances at 
the listener’s position r


are: 

 

   
 

   
   

   
 

 
 

 
 

 
 

 
 

** *

2 2*

2
k k k k

k

k k k k k k

a u p u p p uk k
a

k k k u u u u u uk k

I S G Gp u p u p
z

u u u S G Gu u

       


      

 
      



      
       

  

  

 

 

and:       
 
 

   
   

 
 

 
 

 
 

 
 

**

2*

21
k k k k

k

k

a p u p u u pk k
a

a p p p p p p

I S G Gu u p
y

z p p p S G Gp

     


      


      



    
      

  

  

 

 

Since    , 1 ,
k ka ay r z r 
   , we also see that: 

 

   
 

 
   

 
 

 
 

*

*

1
        k k

k

kk k k k k k

u p p u p p p p
a

au u u u p u u p

G G G G
z

yG G G G

   


   
    
   

    
   

   

 

 

Thus, we also see that:  
 

             
2* *

k k k k k k kp p u u p u u p u p p u aG G G G G G I                 
       

 

     We can also define corresponding k = x, y, z vector components of the frequency-domain 

complex 3-D vector sound field coherence function  
kp u 


   {n.b. essentially the normalized 

(& dimensionless) complex 3-D vector acoustic intensity} as:  
 

   
   

 
   

k k

k

k k k k

u p u p
u p

p p u u p p u u

S G

S S G G

 
 

   
 

 

 
 


   

 


   

 

 

where:          ˆ ˆ ˆ 
x y zu p u p u p u px y z         


        

 

     Note that the magnitudes of the individual k = x, y, z components of the frequency-domain 
complex 3-D vector sound field coherence function are constrained to lie within the range: 

 0  1
ku p    , i.e. the individual k = x, y, z vector components are constrained to lie on, or 

within the unit circle in the complex plane, centered at (0,0). 
 

     When   1
ku p   , the kth component of a polyphonic complex sound field  , ;S r t   is 

fully-coherent (e.g. at a listener’s position r some distance away from a point sound source), 

whereas when   0
ku p   , the kth component of a polyphonic complex sound field is 

completely incoherent (e.g. at a listener’s position deep inside the reverberant portion of a 

polyphonic complex sound field  , ;S r t   associated with a large listening room and/or 

auditorium, concert hall, etc.).  
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     Note further that when the {absolute value} of   Re  1
ku p   , the kth component of a 

polyphonic complex sound field  , ;S r t   is fully-coherent, .and. is one that is associated with 

propagating sound radiation, e.g. when a listener’s position is far from a point sound source, in 
the so-called far-field region of a sound source, r  .  
 

     However, when the {absolute value} of   Im  1
ku p    the kth component of a polyphonic 

complex sound field  , ;S r t   is {also} fully-coherent, but is instead associated with non-

propagating sound radiation – i.e. acoustic energy that is simply sloshing back and forth locally 
at the listener’s point r during each cycle of oscillation, e.g. in the so-called near-field region of 
a sound source, r  . 
 

    Thus, e.g. simultaneously exciting the 3 acoustic standing waves associated with the 
[1,0,0]/[0,1,0]/[0,0,1] axial modes of a cubical 3-D enclosure of side 2d  , with 3-fold 

degenerate modal frequency 100 010 001 2resf f f f c d    , we see that   Re  0
ku p res    and 

  Im  1
ku p res    for each of the k = x, y, z components of this complex sound field. 

 

    We can additionally define the corresponding k = x, y, z vector components of the magnitude-

squared version of the frequency-domain sound field coherence function  
2

 u p 

   {n.b. a 

purely real quantity}, as:  
 

     
 

   
 

   

2 2

2
*  

k k k k

u p u p

u p u p u p
p p u u p p u u

S G

S S G G

 
     

   
   

 

 
   

      
 

  
   

 

 

where:          
2 22 2

    
x y yu p u p u p u p         


        

 

     The individual k = x, y, z components of the frequency-domain the magnitude-squared 

coherence function  
2

 u p 

   can range from  

2
0  1

ku p    . When  
2

 1
ku p   , a 

polyphonic complex sound field  , ;S r t   is fully-coherent (e.g. at a listener’s position some 

distance away from a single sound source), whereas when  
2

 0
ku p   , the polyphonic 

complex sound field is completely incoherent (e.g. at a listener’s position deep inside the 

reverberant portion of a polyphonic complex sound field  , ;S r t   associated with a large 

listening room and/or auditorium, concert hall, etc.). 
 
     It can also be seen from the above discussion(s) that the complex 3-D vector coherence 

function  
ku p 

   contains more information (real and imaginary components) and is thus more 

useful than its purely-real, magnitude-squared version  
2

 u p 

  . 
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