UIUC Physics 406 Acoustical Physics of Music

Measurement of Complex Sound Fields — Part 2:

The Use of Lock-In Amplifiers for Phase-Sensitive Measurements of Complex Harmonic Sound Fields

What do Lock-In Amplifiers (LIA's) do, and how do they work?

Consider a “generic” experimental situation where a harmonic (i.e. periodic/pure-tone/single-
frequency) signal of {angular} frequency w =2z f is used as a “stimulus” to excite a system (i.e.

input a known signal into an unknown “black-box’). We are interested in measuring the linear,
but possibly complex response of the “black-box system to the input stimulus signal — i.e. its
“output” signal strength (amplitude) and phase of the output signal relative to the input *“stimulus”
signal (aka the input reference signal). This “generic” situation is shown in the figure below:

Input Stimulus: Generic Output Response:
> “Black-Box” >
VE (@,t) =V, cos(at+ ;) System V9 (,t) =V, (@) cos(at + g ()

A dual-channel LIA is a narrow-bandwidth electronic device that measures/determines the
in-phase and 90°-out-of-phase/quadrature amplitude components of the response signal output
from a generic “black-box” system relative to a harmonic/pure-tone/single-frequency reference
signal input to that system. The generic “black-box” system’s output response signal is:

V9 (@,t) =V, ()cos(at+ g (w)) of {angular} frequency w=2xf .

Note that in general, both the system’s output signal amplitude V™ (») and phase ¢ (@)

are frequency-dependent quantities. Whether they in fact are (or are not) depends on the detailed
physics associated with how the system’s output signal is actually produced, i.e. what the output

response signal V (a)t) physically represents.

Note that the in-phase and 90°-out-of-phase/quadrature components of the harmonic output
response signal amplitude V *° (a)t) are defined relative to a reference/input sine-wave of the

same frequency f:

V' (,t) =V cos(awt+gy) of {angular} frequency o =27 f

Note further that {here} the reference/input signal’s amplitude V' and {absolute} phase ¢,
are both constants, i.e. time-independent.
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A dual-channel LIA uses two so-called Phase-Sensitive Detectors (PSD 's) to:

(a.) Carry out the mathematical operation of multiplication of the output signal with the
reference/input sine-wave signal, and also with a +90° phase-shifted copy of the
reference/input sine-wave signal, and then:

(c.) The two PSD product signals are then either time-averaged or low-pass filtered to obtain
quasi-DC voltages that are representative of the in-phase and 90°-out-of-phase/quadrature
amplitude components of the harmonic (i.e. periodic) output response signal, respectively.

The LIA's reference sine-wave signal is:
\ Ref (a), t) =VOREf Cos(a)t + ¢ )

The +90° phase-shifted copy of the reference sine-wave signal is:

V3 (0,t) =V, cos(at+eg, +7/2)

=V [cos(wt +¢)R)M—sin (ot + g )sin (7[/2)]

=V, sin(wt +g¢y)
The generic “black-box” system’s output response signal (input to the dual-channel LIA) is:
V9 (o,t) =V, (@)cos(at+ g (v))

The signal multiplication operation carried out by the 1% Phase-Sensitive Detector (= PSDx) is:
VP (,t) =V sig (o,t)®V Ref (o,t) A (a))cos(a)t + @ (a))) QVF cos (ot + g )

The signal multiplication operation carried out by the 2" Phase-Sensitive Detector (= PSDy) is:
VP (0,t) =V (0,) OV (o0,8) =V, (@) cos(wt + g (@)) OV, sin(at + gy )

We define: x = wt+ ¢ (@) and: y = wt+ ¢, . Then using Euler’s formulas: cosx = %(e‘X + e“x)

and: sin x =%(eiX "X) the two PSD product terms can be rewritten as:

cosxcosy=3(e"+e™)(e¥ +e")=1 (ei(”y) +e7 ) 4 gl e’i(x’y))

(
=1(2cos(x+y)+2cos(x—y))=1(cos(x+y)+cos(x—y))

Js|r—\

cosxsiny = %(e'X +e7™ )( e—iY) — %(ei(xw) _e—i(x+y) —ei(x’y) n e,i(x,y))

=4(2sin(x+y)—-2sin(x—y))=%(sin(x+y)—sin(x—y))
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Thus:
VEP (0,t)=V™ (0,t) VT (0,t)

_ %VOSig (0)) -VORef [COS{Za)t +((/)S (a))+(0R )} +COS{((DS (a))—(ﬂR )}]
and:

VEP (@,t) =V (co,t)@VﬁF;;f (o,t)
= _%VoSig (a))VOREf [sin {2a)t +((ps (a)) + @y )} —sin {((05 (a)) — @y )}]

Next, we (deliberately) choose to set the reference amplitude to: V** = V2 =1.4142 Volts
{i.e. set the RMS reference amplitude to: V,*" V' =1.0000 Volts }.

4
Then, the two PSD product signals become:
v PoPx (o,1) =V (0,t)®V™ (1)
=+5V (a))[cos{Za)t +( o5 (@) + 5 )} + COS{((DS (@) - )}}
\/ PSPy (a),t) =V 59 (co,t)@Vﬁ?if (a),t)
=—%V0Sig (a))[sin{Za)t+(gos (0)+ g )} —Sin{((ﬂs (@)-oq )H

Thus, note that the RMS output signal amplitude is: V™ (o) =14V, % (o)

and:

Thus, the two PSD product signals can be expressed in terms of their RMS amplitudes as:
\/ PoPx (a),t) =V %9 (a),t) RV e (a),t)

:VOS:?AS (a))[COS{Za)t +(gz)S (0)+ g )} +COS{(¢)S (0)— 5 )ﬂ
and:
VP (g,t) =V (a),t)(@V;‘;f (o,1)

=V (a))[sin {Za)t +( o5 (@) + 5 )} —sin {(Cﬂs (@) - )}J
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Next, we can either time-average the two PSD product signals, or e.g. send them through a
{very} low-pass filter (with —3 dB corner frequency @ ,, < 2@ ). By doing either of these,

we eliminate (i.e. reject) the time-dependent/oscillatory (2(0) frequency components of the two

PSD product signals; hence only the time-independent (i.e. the zero-frequency) components of
the two PSD product signals remain:

<V o (a),t)>t :VLF;SFDx (a)) :VOSRMS (a))COS((DS (a))_(DR)
and: <V Pebr (60,'[)>t =Vor (@) =V, (@)sin(pg(@)- ;)

If we now set the {absolute} reference signal’s phase ¢, =0, since it is the reference phase
{n.b. we can also eliminate ¢, simply by re-defining the zero of time}, then the two time-
averaged/LPF 'd time-independent PSD product signals simplify further to:

<V PSDx (co,t)>t =Vt (0)=V, (@)coseps(w)

ORrms

and: <V Py (a),t)>t =V (@) =V, (@)sing; (o)

Thus, we see that a dual-channel LIA enables us to measure the RMS values of the real/in-
phase and imaginary/90°-out-of-phase/quadrature components of a periodic complex signal
amplitude, relative to a reference sine-wave signal — i.e. obtain the frequency-domain
representation of the RMS complex harmonic amplitude of a generic “black-box” output
response signal, phase-referenced to the input reference signal:

Voo (@) =V (a))[cos @5 (@)+isin g (a))] =V (o) gls()
The time-domain representation of the RMS complex harmonic amplitude associated with the
generic “black-box” output response signalm phase-referenced to the input reference signal is:
Vi (0.t) =Vl (@) € <[V, ()€ |- =2 (@) ")
The dual-channel LIA is an extremely useful, versatile, sensitive and powerful device. It is

routinely used in all sorts of applications involving the measurement and analysis of periodic/pure-
tone/single-frequency complex signals.

An important aspect of a LIA is that it is inherently a narrow-band frequency device. One sets
the bandwidth sensitivity of the LIA by specifying its settling time constant z (sec), which, from
the uncertainty relation Af At = Af -7 =1, sets the LIA’s bandwidth: BW = Af =1/z. When the
reference signal’s frequency changes abruptly f — f’, the system’s output response signal (input
to the L1A) also changes abruptly. It is therefore good experimental practice to wait at least
At ~ 5 time constants in order to allow the X, Y (real/in-phase and imaginary/90-degree-out-of-
phase) outputs of the LIA to settle to within 1-e ™" =1—e™® =1-0.007 = 0.993 of their final
values at the new reference frequency f ' before recording/reading out the new X, Y values.
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The use of a dual-channel LIA for phase-sensitive measurements of periodic complex pressure
p(F,t) and/or particle velocity G(F,t) signals associated with a complex sound field S(7,t; o)
has associated with it one other detail which is not immediately apparent in the above formulae.

Consider the use of a dual-channel LIA in a typical phase-sensitive acoustical physics
experiment, such as the typical one shown in the figure below, in which a sound source is excited
by a pure-tone/single-frequency sine-wave signal output from a function generator, whose

instantaneous output voltage is of the form V™ (w,t) =V, cos(at). The sine-wave signal is
also used as the reference for the dual-channel LIA.

For simplicity’s sake, let us imagine that we have an ideal sound source, in that it does not
introduce a phase shift of any kind in the process of generating a monochromatic traveling plane
wave, which propagates as a free-field. The time-domain representation of the complex over-
pressure amplitude associated with the free-field monochromatic traveling plane wave propagating

in the +ve X -direction is of the form p(x,t; @)= p,e"* ™ = p,e ™™ e = p(x,w)-e*, where

f)(x, a)) is the frequency-domain representation of the complex over-pressure amplitude
associated with the monochromatic traveling plane wave.

Sound
Sine-Wave Source Free-Field p-mic
Function K I
Generator
< d >| \

Lock-In
Reference Amplifier Input

Y

If the pressure mic is located at x = 0, then: p(x=0,t)=p,-e"*. The real/in-phase and

imaginary/90°-out-of-phase/quadrature RMS voltage amplitude components output from the
LIA will be VOSR‘SS and 0, respectively —i.e. the phase ¢;| =0.

|x:0

If the p-mic sensitivity is S__ . (mV/Pascal ), then the frequency-domain real/in-phase and

imaginary/90°-out-of-phase/quadrature RMS components of the complex pressure amplitude
p(x=0,0) atx=0are: p,=V,* /S . (RMS Pascals) and: 0(RMS Pascals), respectively.

If the pressure mic is instead moved to x = d, the complex over-pressure amplitude associated
with the a free-field monochromatic traveling plane wave at x =d is:

i(ot—kd)

p(x=d,t;®)=p,e = p,e e = p,[coskd —isinkd]-e* = p(x=d,w)-e"*
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Thus, the frequency-domain real/in-phase and imaginary/90°-out-of-phase/quadrature RMS
voltage amplitude components output from the LIA for the pressure mic located at x = d will be:

VS8 coseps and: Vo sing, respectively.

Thus, the frequency-domain real/in-phase and imaginary/90°-out-of-phase/quadrature RMS
components of the complex pressure amplitude p(x = d,a)) atx =d are:

p, COS @, = VS'g COS @ /S (RMS Pascals) and:

P, Sin @, Vs'g sin goS/Spm,C RMS Pascals), respectively, since: p, =V, /Sp_mic.

0 Rrms

p-mic

Thus, we see that at x = d, a propagation delay time-induced phase shift of ¢, |X:d =—kd

results from the fact that it takes a finite time At =d/c for the a free-field plane wave to

propagate in free air from x = 0 to x = d. Since k = w/c =27/ 4 in free-air, we see that the
—kd =—(w/c)-d :—(a)/C)-(CAt ):—a)At

apparent phase shiftat x =d is: ¢

| d prop prop *

Thus {here}, we see that the phase shift ¢, at x =d is in fact frequency dependent,

|x:d
linearly proportional to the (angular) frequency: ¢, (a))‘xzd =—k(w)d =-w-At (@),
becoming more negative with increasing (angular) frequency o =2z f . See figure below.

While the propagation delay time-induced phase shift effect may initially be perceived as an
experimental annoyance, it is actually a physics blessing in disguise!

If the p-mic distance d from the sound source is known, then a measurement of the phase
speed of sound (the speed at which the phase {i.e. the crests/troughs of sound waves} advances)

c,(w)=w/k(w)=f-1(w) vs. frequency f can be obtained using:

C¢(a))sa)/k(a)):—(a)/gos(a)) X:d)-d :—(Zﬂf /(ps(f)‘x:d)-d (m/s)

The group speed of propagation of sound waves ((the speed at which energy/information

propagates) is defined as: ¢, [dk )/d a)]_l, which is the {inverse of the} local slope of
the graph of k(@) vs. @ (at fixed p-mic position, d). Thus, since ¢, (a))‘m =—k(w)d , then:
d(pS ‘ /da) =— dk )/d a)).d , hence the group speed of propagation of sound waves

=[dk(w)/deo] —d[dgos )| /dw] (m/s)

For propagation of free-field monochromatic traveling plane waves, the local slope
w)/do=k(w)/e, hence ¢, (®)=c,(®)=w/k(w) in the free-field. In general, this is not

the case for an arbitrary sound field, e.g. the near vs. far zone associated with a point/monopole

sound source, or e.g. a plane circular piston of radius a (an approximation to a loudspeaker).
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Propagation Delay Time Phase Shift
Phi(f) = kd = 2pi*f*d/c vs. f
c=343m/s,d=5cm
0.0

Free-field propagation
-10.0 of a monochromatic

\ traveling plane wave.
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In the UIUC Physics 406 POM lab, we use Stanford Research System’s SR-830 Dual-
Channel DSP Lock-In Amplifiers (one is shown in figure below) to carry out phase-sensitive

measurements of the complex pressure {(T,t) and particle velocity d(F,t) associated with a

harmonic/periodic/pure-tone/single-frequency complex sound field §(F,t; ).

SR830 DSP Lock-In Amplifier
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A functional block diagram of how the SR-830 DSP LIA works is shown in the figure below:

-
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Differential Notch Notch
Amp Filter Filter Gain
A
‘Voltage
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C t
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Offset
Expand
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Shift Filter
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The dual-channel SR-830 DSP LIA is a digital lock-in amplifier — this means that the voltage
waveform of the analog input signal is sampled at a 256 KHz digitization rate using a 16-bit
analog-to-digital converter. A Phase-Locked Loop (PLL) circuit is used to lock the phase of the
reference sine-wave (or in the form of a TTL digital signal) to an internal 20-bit digital oscillator.
{Or, the internal 20-bit digital oscillator of the SR-830 DSP LIA can be used as the reference
sine-wave, programming its amplitude and frequency settings via the GPIB (General Purpose
Instrumentation Bus) interface to a PC. The LIA’s Digital Signal Processor (DSP) then carries
out all of the necessary mathematical operations (multiplication, 90° phase shift, low-pass digital
filtering) discussed above, in the digital domain. This approach is vastly superior in terms of
improved stability, reduced noise, overall performance & flexibility/versatility in comparison to
the performance of the analog lock-in amplifiers of yesteryear... it is truly a powerful device,
one which has been used in countless laboratory settings, and in countless physics, engineering,
biology, ... applications!

Note that the SR-830 DSP LIA can also be used to analyze the higher harmonics associated
with polyphonic complex sound fields, consisting of a hierarchy of {precisely} integer-related
overtones (up to n =99!).
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SR-830 DSP Lock-In Amplifier Specifications

SR810 and SR830 Specifications

Signal Channel

Voltage inputs
Sensitivity
Current input
Imput impedance
Vaoltage
Current
Gain accuracy
Moisz (typ.)

Line filters
CMRR

Drynamic reserve
Stability

Reference Channel
Frequency range
Reference input

Imput impedance
Phasz resolution

Abzolute phase emror
Relative phase error
Orthogonality
Phase noise

Internal ref.

Extemnal ref.
Fhase drift
Harmonic detection
Acquisition time
Demodulator
Stability

Harmonic rejection
Time constants

Internal Oscillator
Range

Frequency accuracy
Frequency resclution
Dristortion
Ammplitude

Armplitude accuracy
Amplitude stability

Single-ended or differential
InVio LV
10f or 10° Via

10 ML2 + 25 pF, AC or DC coupled
1 kL2 to virtual ground

+l % (0.2 % typ.)

6 nVidHz at | kHz

0.1% pAAHe at | KHz 0 10° Vi)
0013 pAMHz at 100 Hz (10° Via)
50760 He and 10120 Hz Q) =4 )
100 dB to 10 kHz. decreasing by

t dBfoct above 10 kHz

=100 dB {without prefilbers)

=5 ppm/°C

0,001 He o 1024 kHz

TTL or sine (400 mVpp min. )

1 Mg2, 25 pF

0.01° front panel. 00087 through
computer interfaces

(011 ® rms at | kHz
0L005° rms at | kHz ¢ 100 ms time
constant, 12 dBfoct)

0 below 10 kKHz,

<0.1°°C above 10 kHz

2F, 3F, ... nF to 102 kHz in < 19.99%)
(2 cycles + 5 ms) or 40 ms,
whichever is larger

Diigital cutputs and display: no drift
Analog outputs: <35 ppm/™C for all
dynarnic reserve settings

—20 dB

10 ps to 30 ks (6, 12, 18, 24 dBdoct
rolloffi. Synchronous filters
available below 200 Hz.

1 mHz to 102 kHz

25 ppm + 30 uHz

4z digits or 0.1 mHz, whichever

is greater

—%0 dBe (f =10 kHz). -70 dBc

(f =10 kHz) @ 1 Vrms amplitude
0004 to 5 %rems into 10 K2 (2 mVY
resalution), 50 0 cutput impedance,
50 mA maximum current into 50 G
1%

50 ppmi~C

Outpuis

Displays

Channel 1

Channel 2 { SR&M)

Offset
Expand
Reference
Inputs and Outputs
CH1 output
CH2 output (SRE30)
K.Y outputs

(rear pancl)
Aux. AMD inputs
Aux, DV A outputs
Sine out

TTL out
Data buffer

Triggerin (TTL)
Remote preamp
General

Interfaces

Power

Dimensions
Wi ght
Warranty

Sinz, TTL (When using an external
reference, both outputs are phase
locked to the extermnal reference.)

Ae-digit LED display with
A0-segment LED bar graph. X, R.
X-noise, Aux | or Aux 2. The
dizplay can also be any of these
quantities divided by Aux | or Aux 2.
Ae-digit LED display with
40-segment LED bar graph. ¥, 8,
Tenoise, Aux 3 or Aux 4. The display
can also be ary of these quantities
divided by Aux 3 or Aux 4.

XY, R can be offset up to 105 %
of full scale.

X Y. R can be expanded by 10

or [0

Ae-digit LED display

X R, X-noise, Aux | oor Aux 2,
(10 V), updated at 512 Hz

T8, Yenoise, Aux 3 or Aux 4,

(10 V), updated at 512 Hz
In-phase and quadrature components
(10, updated at 256 KHz.
4 BMC inputs. 16-bit, £10 W,

1 mV resolution, sampled at 512 Hz
4 BMNC outputs, 16-hit, 10,

1 mV resolution

Internal oscillator analog output
Internal oscillator TTL output

The SRA&10 hazs an 8k point buffer.
The SRAM has two 16k point
buffers. Data is recorded at rates to
512 Hz and read through the
computer interfaces,

Trigger synchronizes data recording
Provides power to the optional
SR550, SR552 and SRS 54 preamps

IEEE-488.2 and RS-232 interfaces
standard. All instrument functions
can be contralled and read through
IEEE-488.2 or RS-232 interfaces.
40W, 10012002 200240 VAC,
SO060 He

17" 5 5.25" » 19.5" (WHD)

23 Ibs.

Ome year parts and labor on defects
in materials and workmanship

145’{5 stanford Research Systems
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Phase-Sensitive Measurements of the Complex Specific Acoustic Input/Output Impedance
of Brass/Wind Musical Instruments

The complex longitudinal specific acoustic input and output impedance of brass/wind musical
instruments can be measured as a function of frequency via a PC-based data-acquisition (DAQ)
system using a (computer-controlled) sine-wave function generator to excite a piezo-electric disk
transducer attached to the mouthpiece e.g. of a trumpet, saxophone, clarinet, oboe... in
conjunction with the use of pairs of the tiny Knowles Electronics p- and u-mics that we have

developed in the UIUC Physics 406 POM lab to measure complex pressure r)(z,t)and

longitudinal particle velocity G, (z,t) at the input (i.e. mouthpiece) and output (i.e. bell-end) of

brass/wind musical instruments. The signal output from each mic is input to a SR-830 DSP LIA,
the real and imaginary components of the complex RMS pressure and particle velocity
amplitudes, output as quasi-DC RMS voltages from the four LIA’s used in this experiment are
digitized using eight 12-bit analog-to-digital converters (ADC’s). A block diagram of the PC-
based DAQ setup for these types of measurements is shown in the figure below:

Lack-In Amplifier Reference Signal

—

Sine-Wave
Function
Generator

=

1(#)

Piezo-driver

SRS-830 DSP
Vmic-Lock-In
Amplifier

vsign SRS-830DSP
I V.t f V,-Lock-In
Amplifier
vsigin

Nat’l Inst LabPC+DAQ
Card

aoc7|6|5[4]a|z|1 |0 ,r
o

PC

H
g
=
g
[T 5 E

aoaldynopy
e

§<

P
'r.l_osua_s:h-l LI I

1]

Josuas-n I

b

SRS-830 DSP

Trumpet

V,i-Lock-In
Amplifier

I

SRS5-830 DSP
Vic-Lock-In
Amplifier

=

Since we don’t have access e.g. to an anechoic room, carrying out these measurements in our
classroom/lab room is problematic due to 1/f-type noise fluctuations from the ventilation system,
this unwanted noise can be suppressed by placing the musical instrument to-be-measured in a
fairly large, fully-enclosed wooden box lined with acoustic foam on all sides, as shown in the
following figure:
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The sensitivities of the p- and u-mics Sp-mic and Su-mic are measured/absolutely calibrated in an
SPL =94 dB free-field sound field, frequency-dependent p- and u-mic phase corrections are also
applied to the raw complex p- and u-mic data taken for such musical instrument measurements.
The complex zin and zout are computed, along with complex lin and lout, resulting in more than 40
individual plots of the real, imaginary, magnitude, phase, cosine of the phase, complex plane
associated with complex input/output pressure, complex particle velocity, complex longitudinal
specific acoustic impedance and complex longitudinal acoustic intensity.

In the figures below, we show a few of these plots — absolutely calibrated, fully-corrected
input (pink) output (blue) |3( )|, [d, ()| and |z, ( f)|data for the Bach B trumpet:

Bach Bb Trumpet All Valves Up 4L1 Data: [Pin| & [Pout] vs. f Bach Bb Trumpet All Valves Up 4LI Data: [Uin] & [Uout] vs. |
UIUC Physics 199POM/498POM 10725/07 UIUC Physics 199POM/4BEPOM 10/25/07

Bach Bb Trumpet All Valves Up 4LI Data: |Zin| & |[Zout| vs. f
UIUC Physics 199POM/498POM 10/25/07
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The (pink) input impedance peaks enable a player to play those notes on the trumpet. The lowest
playable note is actually the 2" peak — the output impedance on the 1% peak is a dead short!
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Much more information on the details of these types of measurements and results for various
brass/wind musical instruments are posted on the UIUC Physics 406POM website, at:

http://courses.physics.illinois.edu/phys406/406pom reu.html

The Music Acoustics Group in the Physics Department at The University of New South
Wales, in Sydney, Australia has an excellent website http://www.phys.unsw.edu.au/music/ of
their very active/on-going musical acoustics physics research program, which also has much
interesting information on brass/wind instruments, amongst many other musical instruments.
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Spectral Analysis Approach to Measurements of Complex Sound Fields

A complex polyphonic sound field may consist of many individual sound fields, each one
with its own characteristic frequency {and/or frequencies}, which may {or may not} necessarily
be related in phase to other polyphonic components of the overall sound field. The individual
components of the overall complex polyphonic sound field may also emanate from their own
sound source(s) at different spatial locations. In such situations, measurements of the so-called

frequency domain power spectral densities S (f,t; a)) associated with complex overpressure

p(F,t)and particle velocity G(7,t) are carried out in order to determine the nature of the overall
sound field at the listener’s position r .

We use Fourier transforms to obtain the frequency domain complex overpressure f(F,)
and particle velocity ﬁ(F,a)) associated with their time domain complex overpressure r)(f,t

)

and particle velocity ﬁ(f,t) counterparts.

For any continuous, mathematically well-behaved complex time domain function § (t) , the
Fourier transform of time domain § (t) to the frequency domain f (and/or angular frequency

domain w=2xf)is:

+00 +o0

6(f)=6(w)=F{G(t)} =] a(t)e™dt=|

—00

g-' (t)e—iZHftdt

00

The inverse Fourier transform(s) of frequency domain §(f)=g§(®) to the time domain is:

g(t):f’l{g(w)}sﬁf:g(a))e*""tda):f:g(f)e”z”“df since:

Note that the choice of the + signs in the complex exponential factors in the above Fourier
transform expressions is not arbitrary — long ago, we specified the e convention for use in our
physically-measureable quantities, e.g. p(t) = p,e"* (Pascals), G, (t)=u’e"" (m/sec’l), etc.

A Simple Example of the Use of Fourier Transforms:

Suppose we have a pure-tone/single frequency (a) =@, =27 fo) complex time domain signal
g (t)=p,e"" (Pascals), where, for simplicity’s sake {here}, the overpressure amplitude
p, (Pascals) isa purely real number (i.e. a constant). Depending on the physical quantity that

the time domain signal g (t) actually represents, the time domain signal §(t) has dimensionful
physical units associated with it — e.g. RMS Volts, Pascals, meters/second, etc.

Hence, note that the physical units associated with the frequency domain Fourier transform
of §(t), g(f)=F{g(t)}= [wg(t)e“z””dt will correspondingly be RMS Volt-sec, Pascal-
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sec, meters, etc. However, since frequencies ( f) are usually expressed in Hz (= cycles per
second = sec?), the dimensionful physical units of frequency domain g( f ) are more

commonly expressed as RMS Volts/Hz, Pascals/Hz, (meters/sec)/Hz, etc., respectively.

The angular frequency Fourier transform of §(t), §(w)= j-"{g(t)} = J-_m g(t)e'dt have
dimensionful physical units of RMS Volt-sec/rad, Pascal-sec/rad, meters/rad, etc., respectively.

If we now explicitly insert § (t) = p,e"" into the expression for the Fourier transform of the

time domain §(t) to the frequency domain:

g(a)) _ f{g(t)} _ J-+oo g (t)eqwtdt _ J‘+00 p0e+i(uote—iwtdt _ po J"HXJ e+i((uo—w)tdt — po . 27[5(6()0 _a))
—0 — —00
=275(w,—)
where the delta function & (@, —®)= ifm e =tdt | has the dimensionful physical units of the

inverse of its argument, i.e. /@ =1/2zf (= seconds/radian, or equivalently, 1/radian-Hz).

We insert the frequency domain §(w) = p, - 276 (@, — @) into the expression for the inverse

Fourier transform to obtain the time domain representation §(t):

g(t) =F*{d(w)}= z—l,rj-t: §(o)e'""dw= ?f: P, 275 (w, - w)e™do= p,e

where we have used the relations: [ &(x,—x)dx=1and: [ g(x)-8(x, —x)dx=g(x,).

Thus, we see that an infinitely long/continuous complex exponential time domain signal
g(t) = p,e"*" corresponds to an infinitely sharp/narrow “spike” in the frequency domain

§(w)=p, - 276 (w, —w), as shown graphically in the two figures below:

(t)=F {3 (o)} Time Domain §(w)=F{d(t)} | Frequency Domain
Po Po
g(t):f‘l{g(a))} g(a)) = po'2”5(w_a)o)
:j-"*l{p0 -27[5((0—(00)}
— p0e+iw0t
> > ©
o=,
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Conversely, an infinitely sharp/narrow time domain sound “spike™ §, (t) = p,(t) (Pascals/sec)

produces a flat frequency spectrum (a continuum of frequencies with equal amplitudes)
§(f)=3(w)=F{d(t)}=p, (Pascals), as shown graphically in the two figures below:

g(t)=F*{§(w) Time Domain (w)=F{d(t)} | Frequency Domain

g(t) = | Po(t) g(e)=F{9()

v
~—
v
e

t=0

There are many useful relations associated with Fourier transforms, which we summarize
below, for the most commonly used ones:

Time-Domain: Frequency Domain:

Linearity:  h(t)=af (t)+bd(t) =  h(w)=af (@)+b§ (o)

Translation: h(t)=f(t-t,) = h(w)=f(0)e™
Modulation: h(t)= f(t)e™ =  h(e)=f(0-w,)
Conjugation: h(t)=f"(t) =  h(e)=f"(-0)
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Discrete Fourier Transforms:

In an experimental/laboratory situation e.g. using modern data acquisition hardware such as a
digital oscilloscope/digital recorder, or a dedicated waveform acquisition system, where time

domain signals f(t) are digitized at a constant sampling rate of fs (samples/second)

{corresponding to a sampling time interval Ats =1/ fs} their frequency domain counterparts
() can be obtained using so-called discretized Fast-Fourier Transform {FFT} techniques.

For discretized complex time domain functions consisting of a uniformly time-sampled
sequence of N complex numbers §,, (tn) , the discrete Fourier transform of complex time domain

N-1 .
g, (t,) to the frequency domain is: §, (@)= §,(t,)e > withk=0, 1,2, ...N-1.
n=0

The inverse of the discrete Fourier transform of complex frequency domain §, (e, ) to the time
N-1

domain is: §,(t,)=%> 6, (a,)e
k=0

+

AN The e®/N) are known as the primitive N™ roots of

unity.

For the remainder of the discussion(s) here, we will work with continuous complex functions
G (t)and. We leave it to the interested reader to transcribe the following results to the discretized

versions, if needed, or, one can simply consult a good text book on digital signal processing...

Convolution:

We can convolute a complex time domain function f (t) with another §(t) by carrying out
the mathematical operation of convolution:

400 ~

hiee(t)= F()®G(t)=[ f(r)-g(t-7)dr

The ® symbol denotes the convolution operation. n.b. h(t) has units of f (t)-g(t)-sec.

The Fourier transform the above relation is: h,,, ()= j-"{ﬁf®g (t)} = J'jw hye, (t)edt, the
frequency domain representation of complex time domain convolution. It can be shown that:

Niog (@) = F{hiee ()] = F{T ()@ G ()] = F{T ()} F{a(1)} = () §(@)

The - symbol denotes simple multiplication. n.b. ﬁf®g () has physical units of f(a))g(a))

We see that convolution of two complex time domain function (t)@ 9] (t) is equivalent to

s f
simple multiplication of their frequency domain counterparts, f (®)-G(w)!
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Cross-Correlation:

The cross-correlation of a complex time domain function f (t) with another g(t) is a
specialized type of convolution, involving complex conjugation:

g ()= F()xG(1)= T (-)®g ()= " (-r) G(t-r)de=[ T (z)-g(t+7)dr

0

The * symbol denotes the cross-correlation operation. n.b. ﬁf*g (t) has units of f(t)~ g(t)-sec.

The Fourier transform of the cross-correlation relation is: h,,, (@)= { g ( } J‘ Ny, (t)edt,

the frequency domain representation of complex time domain cross-correlation. It can be shown that:

g (@)= F [y (0) = F (T (0@ 0(0) = F {7 (-0} FLa (0} = T (0) -G ()]

The - symbol denotes simple multiplication. n.b. ﬁf*g () has physical units of f(w)g(a))

Auto-Correlation (aka Self-Correlation):

Note that the auto-correlation of a complex time-domain function f(t) with itself is simply
a specialized type of cross-correlation, also involving complex conjugation:

hear ()= F(OXT ()= F ()@ F ()= [ (~2) F(t-r)de=]

—00

00

f~*(z')~ f~(t+z')dz'

The Fourier transform of the auto-correlation relation is: h,, , (@)= {f*f } j heey ()edt,

the frequency domain representation of complex time domain auto-correlation. It can be shown that:

Arar (0)= F (B ) = F{FOXF ()] = F{F ()@ F (t) = F[F (-0} F{T ()} = T () T ()

Note that h,,, (t) has physical units of f (t)- f (t)-sec; h;,, (@) has physical units of (@) f (®).

The Weiner-Khintchine Theorem:

The Weiner-Khintchine Theorem relates the time domain auto-correlation function h,, , (t)

to the frequency domain power spectral density function S~f*f (a)) (and vice versa) via the
following Fourier transforms:

Siwr ( J. Ay, (t)e dt| and: ﬁf*f(t):if:s”f*f(w)enwtdwl

These results can be generalized to:

f*g I hf*g -i(otdt and: ﬁf*g (t):LJ‘:‘)gf*g (a;)e““’tda),

2z |_
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Power Spectral Density Functions:

The power spectral density functions S, , (@) and S,,, (@) (n.b. complex scalar quantities)

associated with complex scalar pressure p(F,t) and vector particle velocity G (F,t) are respectively:

+00

S| j Mo, (1) ‘"”tdtzj Uj:ﬁ*(r)-f)(t+r)dr}e'i“’tdt:f)*(a)).p(a)):‘f)(a))‘

—00

2

—00 —00

and: Sy (@)= [ Ay (t)edt = [ [T (z)d (t+r)dr}e""tdt =0 (0)d() =|i (o)

Explicitly writing out the latter relation in terms of its x, y, and z-components:

~ 2 ~ ~ ~

Suwa (@) =]0(@) | =S e0, (@) 4, o, (@) 48, a0, ()=

y

d, (o))

The dimensionful physical units of S~p*p(f) and S,,, (f)arePa?Hz and (m/s)’/Hz, respectively.

d, (o) +[d, (o) +

The dimensionful physical units of S_, (@) and S,,, (@) are Pa*s/rad and (m/s)>-s/rad, respectively.

We also see that the 3-D vector power spectral density functions S, , (@) and Su*p (w) -

related to the frequency-domain complex 3-D vector acoustic intensity fa (0)=1p(w) 0 (o)
are:

Spea (@)= [y (Ve ct=[ [ [P (7) A ()7 e at = P (0) G )

and: Suxp ( I hu*p )e "t —I

—00

8
—
|
8 3
(a7
*
A
\_/
ol

p(ter)dr } e dt =" () p(w)

Note that: {:u*p (0)=0" (o) p(a))} ={§p*u ()= f)*(a))ﬁ(a))} :{ég*u () = f)(a))-ﬁ*(a))} |

Note also that for x,y = u,p: Re{Sx*y (a))} = Re{§x*y (—a))} whereas: [Im {Sx*y (a))} =-Im {Szx*y (—a))} :

The dimensionful physical units of S_,, (f) and S, (f) are Watts/m?/Hz.

The dimensionful physical units of S, (w) and S, , (@) are Watt-s/m?/rad.

Generically, the power spectral density functions S~X*y (a)) are defined for all positive and

negative frequencies, and as such, each §X*y (a)) can be represented by pairs of counter-rotating
phasors in the complex plane.
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For practical purposes, it is useful/convenient to redefine the complex power spectral density
functions as single-sided functions of frequency:

Guuy (@) =2S,,, (w) for >0
Guxy (0) = Sy (0) for =0

wy(@)= 0 for <0

ol

Thus fore >0 Gpup (0) =254, (@) =2] f)(a))‘2 {n.b. a purely real quantity!}

)=2fi(o)f =2 (o) |

=Gy u, (©)+G, 1, (@)+G, ., (@) {nb.apurely real quantity'}

j=d
*

o
—~
S
~
I1l
N
w

=y

*

=y

—~~
S

0, (o) +], (o) +

And foro=0: Gpup (0)=S,4,(0) =] [?)(O)‘2 {n.b. a purely real quantity!}

Guns (0)= $,0, (0)=[ (0 = 2[

0, (0)f +|a, (o) +

a, (o) |

_(0) {nb.in general, complex}

Andforw<0:  All G,,,(@)=0 for @<0, forx,y=u,p.

-20-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2002 - 2017. All rights reserved.



UIUC Physics 406 Acoustical Physics of Music

The frequency-domain complex 3-D vector acoustic intensity “amplitude” is:

Hence, at the space-point 1 :

[ (©) =15, (0) =350, (@) =T (0) =Gy, (@) = Gy ()| for 0>0.

where:

L(©)=Gy, (@) =G, ., (0)%+G, ,, () §+6, ,, ()2

-G.,,(0)=G.,, (0)%+G;

p*u,

(w)9+é*

p*xu,

—_
S
~—

N>

Note that the complex 3-D vector specific acoustic impedance fa (fa)) and admittance

¥, (7 0)= ]/fa (T, ) are time-independent quantities. {They are in fact manifestly/intrinsically
frequency domain quantities!}

Expressed in terms of their frequency domain definitions:

and:

Note also that:

3 (F,0) = p(F, o) ,U:(F’w))AH p(F,) .LT;(f,a))yJr p(F,0) .l]:(f,a))z
0 (Fe) O (Fe)  0,(Fe) 0(Fe) 0(Fe) d(F,e)
:2I~ax(f,a))§(_|_ZINaV(F,a))94_2|~az(r,a))2
0 (re) |6 e |6 (re)
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The k = x, y, z components of the frequency domain complex 3-D vector specific immittances at
the listener’s position T are:

Thus, we also see that:

~ ~ % ~ %

Gp*p (w)'éuk*uk (a)) = ép*uk (a))'Guk*p (a)) = Guk*p (w)'Gp*uk (a)) =

., ()

We can also define corresponding k = X, y, z vector components of the frequency-domain
complex 3-D vector sound field coherence function fp*uk () {n.b. essentially the normalized
(& dimensionless) complex 3-D vector acoustic intensity} as:

; Suso(@) G, 0 (0)
( (@

7/uk*p(a))5 \/§ a)) . (0)) _\/ ) Uy * Uy (a))

where: Ty (@)= Ty 5 (@) X+ Vuyrp (@) I+ 7 0p (@) 2

~ ‘2

3

Note that the magnitudes of the individual k = x, y, z components of the frequency-domain
complex 3-D vector sound field coherence function are constrained to lie within the range:

0<{7, %p (a))‘ <1, i.e. the individual k = X, y, z vector components are constrained to lie on, or
within the unit circle in the complex plane, centered at (0,0).

When

fully-coherent (e.g. at a listener’s position r some distance away from a point sound source),
whereas when |7, ., (a))‘ =0, the k™ component of a polyphonic complex sound field is

T o (a))‘ =1, the k™ component of a polyphonic complex sound field S(F,t; ) is

completely incoherent (e.g. at a listener’s position deep inside the reverberant portion of a
polyphonic complex sound field §(F,t;a)) associated with a large listening room and/or
auditorium, concert hall, etc.).
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Note further that when the {absolute value} of Re{ T o (a))} =1, the k™ component of a

polyphonic complex sound field §(F,t;a)) is fully-coherent, .and. is one that is associated with

propagating sound radiation, e.g. when a listener’s position is far from a point sound source, in
the so-called far-field region of a sound source, r > A1.

However, when the {absolute value} of Im{7, ., (@)} =1 the k™ component of a polyphonic

complex sound field §(F,t; a)) is {also} fully-coherent, but is instead associated with non-

propagating sound radiation — i.e. acoustic energy that is simply sloshing back and forth locally
at the listener’s point r during each cycle of oscillation, e.g. in the so-called near-field region of
a sound source, r < 4.

Thus, e.g. simultaneously exciting the 3 acoustic standing waves associated with the
[1,0,0]/[0,1,0]/[0,0,1] axial modes of a cubical 3-D enclosure of side d = 4/2, with 3-fold

degenerate modal frequency f = f,,, = f,,, = fyy =C/2d , we see that Re{fuk*p (a)res)} =0 and

Im{fuk*p (a)res)} =1 for each of the k = x, y, z components of this complex sound field.

We can additionally define the corresponding k = x, y, z vector components of the magnitude-

- 2
squared version of the frequency-domain sound field coherence function |7, , (a))‘ {n.b. a

purely real quantity}, as:

- 2 - 2
- 2 2w uxp uxp
7u* (a)) = ~u (a)).yu* (a)): s s i S
(O Fows (0) 7o (O) =5 s 1178 (0) G ()
- 2. 2 . 2 . 2
where: Vuxp (w)‘ = Vo xp (0))‘ T, %p (@) + Yu,xp ()

The individual k = X, y, z components of the frequency-domain the magnitude-squared
- 2 o 2
Fuxp (a))‘ <1.When |7, ., (a))‘ =1,a

polyphonic complex sound field §(f,t;a)) is fully-coherent (e.g. at a listener’s position some

. = 2
coherence function |7, , (a))‘ can range from 0 <

distance away from a single sound source), whereas when |7, ,, (a))‘z =0, the polyphonic

complex sound field is completely incoherent (e.g. at a listener’s position deep inside the
reverberant portion of a polyphonic complex sound field S (F,t; a)) associated with a large
listening room and/or auditorium, concert hall, etc.).

It can also be seen from the above discussion(s) that the complex 3-D vector coherence
function fuk*p (a)) contains more information (real and imaginary components) and is thus more
— 2
useful than its purely-real, magnitude-squared version |7, , (a))‘ :
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Legal Disclaimer:

The author specifically disclaims legal responsibility for any loss of profit, or any
consequential, incidental, and/or other damages resulting from the mis-use of information
contained in this document. The author has made every effort possible to ensure that the
information contained in this document is factually and technically accurate and correct.

Copyright Notice:

The contents of this document are protected under both United States of America and
International Copyright Laws. No portion of this document may be reproduced in any manner

for commercial use without prior written permission from the author of this document.
The author grants permission for the use of information contained in this document for private,

non-commercial purposes only.
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