UIUC Physics 406 Acoustical Physics of Music

The Fractal Nature of Human Music

At the very beginning of/first day’s lecture for this course, | posed the question:
What is human music? Is it “just” an aesthetically pleasing sequence of tones, with some kind of
rhythm/beat to it? If so, precisely why is a rhythmic sequence of musical tones aesthetically
pleasing to our ears? Or, is our human music just some kind of “auditory cheesecake”?

We have discussed some of the underlying aspects of human music over the course of the
semester — that our music is “anthropocentric” in nature (since we humans are primarily
interested in our own species — just as all creatures living on this planet are primarily interested
in their own species) — and that the sequences of musical notes associated with human music,
with its consonant {and dissonant} tonal combinations, our musical scale(s) with their associated
frequency intervals between successive notes do indeed reflect (and are derived from) the
integer-related f, = nf, harmonic content of the human voice, which, in turn arises from the 1-D

mechanical vibrational nature of the eigen-modes of the human vocal chords. The musical
instruments that we humans have developed over the millennia artistically mimic the human
voice (some instruments to a greater degree than others...); the temporal aspects of human music
anthropocentrically and artistically reflect our own internal human rhythms — e.g. heartbeat /
pulse, breathing, running/walking, etc. via artistic use of the percussion family of musical
instruments in our music...

However, the nature of human music goes even deeper than just these aspects...

Over ~ the past century or so, there has been a “quiet” (i.e. under-appreciated) revolution in
our understanding of the nature of a wide range of physical phenomena in our universe. There
currently exists an already lengthy and steadily-growing list of processes that exhibit non-trivial
temporal correlations — i.e. that the instantaneous state of a system in the here-and-now is
dependent on what happened in the past, and whatever happened in the past will also indeed
have an effect on the system in the future. However, such dynamical processes are not purely
deterministic, but instead have intrinsic “noise” fluctuations associated with them.

Some examples of physical systems exhibiting 1/f noise are numerous electrical components,
from vacuum tubes, carbon-composition resistors, op-amps, thin films, to giant magneto-
resistance sensors/transducers, as well as terrestrial weather patterns (e.g. rainfall, annual
flooding of the Nile River, ocean surface temperatures...), astrophysical phenomena (e.g.
sunspots, cosmic microwave background, x-ray emission from Seyfert galaxies (thought to
contain super-massive black holes at their centers), the interplanetary magnetic field), the
geophysical record of the earth, earthquakes, agriculture (e.g. fluctuations in annual crop yields),
chemical reactions, phase transitions, radioactive decays, optical systems (e.g. photon counting,
lasers), traffic flow, financial transactions, signals in myelinated nerves, heartbeat, EEG... as
well as 1/f noise — long-range temporal correlations in human music — in pitch (frequency),
amplitude (volume/loudness) as well as tempo/rhythm (phase)!
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Some Examples of Physical Systems Exhibiting 1/f Noise:
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{Novikov, et {McDonald, Ward, Concerto # 1 (Voss, estimation (Gilden
al., 1997) 1998) Clarke, 1975) et al, 1995)
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Fractional Brownian Motion, Fractional Brownian Noise
A dynamical system that obeys fractional Brownian noise (fBn), e.g. electrical noise in a
carbon composition resistor, is a single-valued function of time V (t) The increments of the

dynamical system from one moment to the next AV (At)=V (t,)-V (t,) obey a Gaussian
probability distribution function (PDF):

. 1 —AVZ(At)/Zzz'O'Z
f(AV (At); 0, J|=———¢ v
( (At) AV) NS -

The frequency-domain power spectral density (PSD) function S, ( f ) associated with the
time-domain fluctuating quantity V (t) is a measure of the mean squared variation (i.e. variance)
<V2 (t)> of V (t) in a unit bandwidth centered on the frequency f . Note that if the physical units
of V (t) are e.g. Volts, the units of the PSD function S, ( f) are Volts?/Hz.
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Another way to characterize the average behavior of V (t) is via the use of the time-domain
auto-correlation (aka self-correlation) function <V (t)V (t+ At)>, which is a measure of how the
fluctuating quantities V (t) and V (t+At) are related to each other as a function of the delay
time difference At =t, —t,. For a stationary (i.e. time-independent) process, the autocorrelation
function <V (t)V (t+At)> is independent of t and depends only on the time difference At.

The frequency-domain PSD function S, ( f ) and time-domain auto-correlation function
<V (t)V(t +At)> are related to each other by the Wiener-Khintchine relations:

(V(O)V (t+at)=[""s, (f)cos(2xf at)df

and:

At=00

S, (f)=4] (V(t)V(t+At))cos(2x f At)d(At)

At=0

Many (but by no means all) fluctuating quantities V (t) can be characterized by a single
correlation time constant z,. The classic example of Brownian “random walk” motion of pollen
grains in water is characterized by a single time constant z_, the mean time between successive
collisions. The fluctuating quantity V (t) is thus correlated with V (t+ At) for short time
differences At < 7, but is independent of V (t+At) for long time differences At>> _. This in
turn implies that the PSD function S, ( f ) is “white” (i.e. flat, independent of frequency) in the
frequency range over which V (t) is independent, i.e. f =1/At < 1/(27z7,). The PSD function
Sy ( f ) decreases rapidly with increasing frequency (typically as 1/ f %) in the frequency range

f =1/At>1/(27z7,) over which V (t) is correlated with V (t+At). Hence, a fluctuating
quantity V (t) withe.g. a 1/ f PSD function S, ( f) cannot be characterized by a single
correlation time constant—a 1/ f PSD function S, ( f) instead implies correlations in V (t) over
all time scales that correspond to the frequency range for which the PSD function S, (a))
exhibits the 1/ f behavior. Note that in general, the negative slope of S, ( f ) implies some
degree of correlation. A steep (shallow) slope of S, ( f) implies a strong (weak) degree of
correlation, respectively. Hence a fluctuating quantity V (t) with a Brownian 1/ f > PSD function
S, (f) is strongly correlated, whereas one with a “white noise” 1/ % (i.e. flat) PSD function

S, (f) has no temporal correlations.
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1/£% White Noise vs. 1/f! Pink Noise vs. 1/f2 Brown Noise:

Fluctuating Signal V (t) : Power Spectral Density S, (f):
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White Noise — flat frequency-domain spectral distribution — all frequencies equally probable per
unit time — fluctuations have no correlations in the time-domain (i.e. temporal correlations exist
only for/at infinite time intervals).

Pink 1/f Noise — spectral slope of S, ( f) vs. f graph is —1 on log-log graph (-10 dB/decade) —
1/f noise fluctuations have long-range temporal (time-domain) correlations.

Brown 1/f # Noise - spectral slope of S, ( f) vs. f graph is —2 on log-log graph (—20 dB/decade) —
1/f 2 noise fluctuations have short-range temporal (time-domain) correlations.
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Amplitude (Volume/Loudness) Fluctuations in Human Music:

The instantaneous acoustic power P, (t) output e.g. from a loudspeaker is related to the
instantaneous electrical power input to the loudspeaker P, (t)by P, (t)=¢,P,, (t) where &,

em
is the loudspeaker’s efficiency for converting electrical power into acoustical power, typically
~ O(1-few %). Using Ohm’s law, the instantaneous electrical power input to the loudspeaker is
proportional to the square of the instantaneous voltage V (t) across the terminals of the

loudspeaker: P, (t)=V?(t)/R,, where R, is the resistance of the loudspeaker.

The on-axis, direct sound pressure level associated with the sound coming from the
loudspeaker, heard by a listener located a distance r, away from, but along the axis of the

loudspeaker is:
SPLyyeee (1, 1) = L5 (1,,t) = Ly, (t) +10l0g,, (Q/47rrf) (dB)

where the loudness level L,,, (t)=10log,, (P, (t)/Ps) (dB), the reference acoustic power level

P, =107 Watts and Q is the directivity factor of the loudspeaker. Thus, we see that:

SPLyyeq (1, t) =10l0g,, (P, (t)/Pg ) +10l0g,, (Q/4xr?) (dB)
=10log,, (&P, (t)/Pg)+10log,, (Q/4xr?) (dB)
=10log,, (£,V* (t)/R,Ps ) +10log,, (Q/4xr?) (dB)

Recall that in a free-field acoustics situation, the Loudness = Sound Intensity Level:

L(Ijirect (rl,t) Elologlo( /I ) Ldlrect r t) 20|Oglo(p(ﬁ’t)/ po) to within ~ 0.1 dB.

Thus, we see that Loudness is proportional to {the base-10 log} of V2 (t) Hence, the
moment-to-moment fluctuations in the Loudness associated with human music can be obtained
e.g. by squaring the instantaneous electrical voltage associated with a music signal and obtaining
the corresponding PSD function S , ( f) associated with V?(t), as shown below in the bottom
left & right figures 2 & 3, taken from the seminal paper: “1/f Noise in Music: Music from 1/f
Noise”, R.F. Voss and J. Clarke, J. Acoust. Soc. Am. 63, p. 258-263 (1978). The instantaneous
music voltage signal V (t) was first band-pass filtered in the 100 — 10 KHz frequency range,
squared and then sent through a 20 Hz low-pass filter to observe the moment-to-moment
Loudness correlations in human music. The log-log plot of the audio PSD function S , (f)in
the bottom right-hand figure 3 clearly shows 1/f ! loudness fluctuations associated with Bach’s
1 Brandenburg Concerto. Figure 4 shows the audio PSD function S . (f) associated with

audio signals from different radio stations. Figure 5 shows the audio PSD function S , ( f )

associated with different musical pieces/musical composers, both plots clearly show 1/f
loudness fluctuations!
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FIG. 4. Spectral density of audio power fluctuations, Sy2(f) String Quartet number 3; (c) Jolas’ Quartet number 3; (d)
ve f for (a) Scott Joplin plano rags; (b} classical radio-station; Carter’s Piano concerto in two movements; and (e) Stock-
{c) rock station; and (d) news and talk station. hausen’s Momente. ;

-6-

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2002 - 2017. All rights reserved.



UIUC Physics 406 Acoustical Physics of Music

Frequency (Pitch) Fluctuations in Human Music:

A proxy for the instantaneous frequency/frequencies present in human music (and/or human
speech) is the instantaneous rate Z (t) (#/ s) of zero crossings associated with an audio signal

V (t). A low frequency signal will have a small number of zero crossings per second, whereas a
high frequency signal will have a large number of zero crossings per second associated with it.
For human music, Z (t) approximately follows the melody. Again, temporal correlations in
frequency arising from moment-to-moment fluctuations in the frequencies of successive notes of
the melody of a song can be obtained via the time-domain autocorrelation function

(Z(t)Z (t+At)), which via the Wiener-Khintchine theorem is related to the frequency-domain
PSD function S, (f)=4 At:w(z (t)Z (t+At))cos(27 f At)d (At). The PSD function(s) S, ( f)

At=0
associated with frequency/pitch fluctuations in various kinds/types of human music, as well as
for different composers & musical genres are shown below in the following four figures.
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Frequency (Pitch) Fluctuations in Music:

Different Composers: Different Types/Genres of Music:
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Tempo/Beat (Phase) Fluctuations in Music:

Analyzing the tempo/beat of human music for evidence of 1/f # fluctuations is more difficult
to achieve, however very recently an incredibly nice paper was published on this subject:
“Musical Rhythm Spectra from Bach to Joplin Obey a 1/f Power Law”, D.J. Levitin, P. Chordia,
V. Menon, Proc. Nat. Acad. Sci. 109 (10) p. 3716-3720 (2012). The tempo/beat/rhythmic
aspects of statistically large samples of human music were analyzed using the onset of notes
from {digitized} sheet music {in Humdrum kern data format files, see e.g. Kern Scores
http://kern.humdrum.org/}, rasterizing the rhythm as shown in the figure below:

Quartet No. 1(Dp.18 No. 1)
Ludwig van Eeethoven

Allegro con brio e
s = ] — T g
violin | e === irerimEE e SEs] e ==
by = — = - —
- s R = i T — -
Violin Il FEFFEE SE = _l!-'——l__?,l—_._,,'ﬁ" & —j
— — .
Vicla RSy ——r=— ===_S-I=z. i = .-'T..'".l"'
p e =co———="
W e . ="
Violoncello B4 8 e ————— = ? J _...‘i.. —r—
====== s = o === -
¥ l——— L

Rasterized |||||| ||I |”||I |I| I”” || ||I| ””[
Rhythm
The authors analyzed fluctuations in the tempo/rhythm of music written by several different
composers, and for many different musical genres. As shown in the figures below, the authors
discovered significant variation in the values of the exponent ~0.5< £ <~ 1.1 for tempo/rhythm

moment-to-moment fluctuations, whereas amplitude / loudness and/or frequency/pitch moment-
to-moment fluctuations in human music have considerably less variation, being centered close to

B~ 1.0.
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A Quartet No. 1 (0p.18 No. 1)
Allegro con brio Ludwig van Beethoven
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3 = - T—_—— |
Rasterized ||I||| ||I |II|II |I| ||”|| || ||I| ””I
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O
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[ Il [ B3 L m [C1m i E 50 v v
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= @ 30 :
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%] & 20 Criginal
& :
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_2 —2 ]
i : : 0 -
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Fig. 2. Musical rhythm spectra obey a 1/f power law. (A) Rasterized rhythm
representation (Lower) showing note onsets extracted from Beethoven's
Quartet Op. 18. No. 1 (score, Upper). The representation shown is schematic:
actual durations were extracted from the Humdrum kern format (Materials
and Methods). (B) (Left) The spectrum of the rhythm raster from A has
power that decays linearly (in a log-scale) with frequency as 1/f (gray dots).
The slope of the spectrum (spectral exponent or f§) is 0.8. Colored segments
show the sequence of durations (internote intervals). Black line represents
the linear fit to the spectrum in the frequency range of 0.01 to 1 Hz (de-
lineated by dotted vertical gray lines). Dashed line represents extrapolation
of the linear fit to other frequencies. (Right) The spectrum of a sequence
with the note onsets shuffled randomly, keeping durations intact. The
shuffled spectrum is flat (f = 0.0). Other conventions are as shown (Left). (C)
Distribution of rhythm spectral exponents pooled across genres (black)
obtained by linear fits to individual pieces across the population of 1,788
pieces analyzed. Gray: spectral exponent distribution for the corresponding
shuffled rhythms. Inverted triangles represent the distribution median.
Dashed vertical line: p = 0.
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Tempo/Beat Fluctuations — Different Types/Genres of Music:
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Fig. 3. The 1/frhythm spectra are ubiquitous across genres. (A) Rhythm spectra for quartets. Average spectra (dark blue points) and linear fit (dark blue) to
average spectrum in the frequency range of 0.01 to 1 Hz. Faded blue lines represent spectra of individual pieces. Gray data represent spectra of shuffled
rhythms. Other conventions are as in Fig. 2B. (B) Distribution of rhythm spectral exponents obtained by linear fits to individual pieces (blue), and for the
corresponding shuffled rhythms (gray). Inverted triangle represents median exponents. Dashed vertical line: f = 0. (C) Rhythm spectra for sonatas (red) and
corresponding shuffled rhythms (gray). Other conventions are as in A. (D) Distribution of rhythm spectral expenents for sonatas (red) and corresponding
shuffled rhythms (gray). Other conventions are as in B. (E) Distribution of rhythm spectral exponents for musical genres ordered from largest mean exponent
to smallest. Larger exponents indicate correlations over longer timescales, and hence more predictable rhythms (vertical gray arrow). Circles are mean
exponents, and error bars are 95% Cl. Disjoint intervals indicate significantly different mean exponents (Tukey-Kramer HSD).

Tempo/Beat Fluctuations — Different Composers of Music:
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Fig. 4. Composers exhibit distinct 1/f rhythm spectra. (A) Average rhythm spectra for Beethoven (dark green), Haydn (violet), and Mozart (olive green):
contemporary compeosers belonging to the Classical era (1750-1820). Other conventions are as in Fig. 3A. (B) Distribution of rhythm spectral exponents for
compositions of Beethoven, Haydn, and Mozart. Color conventions are as in A. Other conventions are as in Fig. 3B. (C) Average rhythm spectra for Monteverdi
(blue) and Joplin (green): composers separated by nearly three centuries of compositions. Other conventions are as in Fig. 3A. (D) Distribution of spectral
exponents for compositions of Monteverdi and Joplin. Color conventions are as in C. Other conventions are as in Fig. 3B. (E) Distribution of spectral exponents
for composers ordered from largest mean exponent to smallest. Spectral exponents of Haydn, for example (dotted vertical lines, 95% Cl), are significantly
different from those of Beethoven and Mozart (P < 0.05, Tukey-Kramer HSD). Other conventions are as in Fig. 3E.
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1/f# Noise in Drummer’s Timing of Beat!

>

A professional drummer
was asked to drum 180
beats per minute (At =1/3
=0.333 sec per beat) in sync
with a metronome, but
slightly anticipated the
metronome’s clicking by
{a mean value of}

<ét> = -16.4 ms.

Additionally, the drummer
had a Gaussian-distributed
width oat ~ 15.6 ms about
his mean time between
beats, with ~ 1/f type
fluctuations in the beat!

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Figure 1. Demonstration of the presence of temporal devia-
tions and LRC in a simple drum recording. A professional
drummer (inset) was recorded tapping with one hand on a drum
trying to synchronize with a metronome at 180 beats per minute (A)
An excerpt of the recorded audio signal is shown over the beat index g
at sampling rate 44.1 kHz. The beats detected at times 5, (green lines,
see Methods) are compared with the metronome beats (red dashed
lines). (B) The dewiations d, =%, — M, fluctuate around a mean of
16.4 ms, ie. on average the subject slightly anticipates the ensuing
metronome clicks. Inset: The probability density function of the time
series is well approximated by a Gaussian distribution (standard
deviation 13.6 ms). Our main focus is on more complex rhythmic tasks,
however [see Table 1), A detrended fluctuation analysis of {d,} is shown
in Fig. 2C (middle curve).
doin0.1371journal pone 0026457 001
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Thus, we see from the above example that our human music also has temporal 1/f noise
fluctuations intrinsic to the playing/performance of live music! Why? Because the nerve signals
associated with the totality of playing a musical instrument (whether alone/solo, or in a band /
ensemble, or whole orchestra) in going to/from our brains, traveling along myelinated nerve
fibers also intrinsically exhibit temporal 1/f noise fluctuations! Thus, in this sense, it is not at all
surprising that human music indeed reflects this fact, with its own temporal 1/f noise
fluctuations in amplitude/loudness, frequency/pitch and beat/tempo/rhythm!

Humans also do much appreciate/enjoy complexity and richness in music — e.g. vibrato, the
chorusing effect of superposing individual sounds from multiple identical instruments —as in an
orchestra — each with their own temporal 1/f noise fluctuations...

It has often been said that human music is “universal” in nature, in that it transcends all
human cultures; our music communicates something (i.e. emotions/feelings) to all humans.
The above offers another window/perspective on the “universal” nature of human music, with its
intrinsic forms of temporal 1/f noise fluctuations, which are manifest/operative in the everyday
world, all around us!
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Turn the Physics Around — Generate Music from 1/f # Noise!

It should be clear to the reader that since human music does have temporal 1/ f# “noise”

fluctuations in amplitude/loudness, frequency/pitch and beat/tempo/rhythm, that it is indeed
possible to generate a “new” kind of music — fractal music e.g. via computer programs using

1/ f# random “noise” generator(s) for these parameters!

We stumbled on this ourselves some years back, in the process of developing the Chaotic
Water Drop experiment for the UIUC Advanced/Modern Physics Lab:

__,_/" *\,_'

.r"

A “leaky” water faucet most of the time exhibits a periodic rate of water drops falling
from/dripping off of the faucet. A 2-D scatterplot of successive time differences between
adjacent water drops t,., —t.., vs. t.., —t  in the periodic regime exhibits a linear y vs. x
correlation in the scatterplot as the flow/leak rate in the precision needle valve is slowly changed,
or a 2-D Gaussian distribution for fixed flow/leak rate. However, for certain very specific flow
rates thru the precision needle valve, chaotic/strange attractor behavior in the scatterplot of
successive time differences between adjacent water drops t.,, -t , vs. t , —t occurs, as shown
below in the two scatterplot figures. The first scatterplot was obtained slowly scanning the flow
rate over a large range; the second scatterplot was obtained at a fixed flow rate.

n+1
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Experimentally, it is quite difficult, e.g. by using only the visual information of successive
water drop time differences t,,, —t., as displayed on an oscilloscope trace to “find”/locate the
flow-regimes of non-linear/chaotic dynamics associated with a “leaky”” water faucet. However,
we discovered that if we real-time converted the successive water drop time differences t,,, —t,

to audio musical frequencies via f =1/z =1/(t,,, —t, ) {i.e. low (high) pitches = long (short) time

differences, respectively}, that by listening to the sequence of notes (time differences), it became
extremely easy to “home” in/determine the chaotic drip regimes! For the periodic drip regime,
successive notes were the same pitch — the “music” of the periodic drip regime was thus very
boring — it didn’t go anywhere... On the other hand, in the chaotic drip regime, the sequence of
notes (time differences) amazingly sounded very musical — very much like jazz music! However,
from the above discussion(s), one can easily understand that this is indeed no accident — the

fractal 1/ f” “noise” nature of our music is indeed intimately related to the fractal 1/ f# nature
of a chaotically dripping/leaky water faucet! The PSD function S, ( f ) shows a ~ 1/ f' behavior

associated with the fluctuations in the leaky water faucet time differences, indicating that long-
range temporal correlations do indeed exist:

C LR | T LI LR L | T LI B LR | T T T Ty
10
A 102 E q
= : 3
7] [ ]
103 /V\ 5
: jod :
g - ]
1{]'4 ' i iaaul i i s aaanl L i i ki iil i id i wiail
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FIG. 4. Power spectra S(f) for the interval increments for the
time series presented in Fig. 1. A straight line corresponding to the
B=—1 curve is presented for comparison.
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One other important take-home lesson to be learned here is that human hearing is amazingly
astute at analyzing temporal correlations, whereas human vision is not very good at analyzing
temporal correlations, even when portrayed in a visual format — e.g. 1-D pulse trains on an
oscilloscope. On the other hand, human vision is amazingly good at analyzing 3-D spatial
correlations — enabling us to get around in the world...

Fractal music is a rapidly growing activity, and industry! The figure shown below indicates
the consequences of extremes in exponent 0< <2 for (a) ]/ f ® white noise (no correlations),

(b) ]/fl pink noise (some correlations) and (c) 1/ f 2 brown noise (strong correlations). For

human listeners, white noise music is found to be too random — very annoying to listen to after a
short while... Likewise, brown noise is found to be boring — it is too predictable, it doesn’t “go
anywhere”, musically. Pink noise is the most pleasing to our ears — it has some predictability, but
also some surprises too — we humans do like complexity in our music — but not too much!

Early attempts at creating fractal music on a computer, e.g. generated with just temporal
1/ f# “noise” fluctuations in amplitude/loudness and frequency/pitch (only) still sounded

non-human, or “artificial” (i.e. computer-generated) — the addition of temporal 1/ f# “noise”

fluctuations in tempo/beat/rhythm are also needed in order for the fractal computer music to fully
convincingly sound “human”.
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Fig. 5. Samples of stochastically composed {ractal music based
on the different types of noises shown in fig. 3. (a) “"White"” mu-
sic is too random; (b) **1/f " music is the closest to actual music
(and most pleasing) and (c) “brown™ or 1//* music is too
correlated.
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Benoit Mandelbrot, a mathematician who wrote the now famous book “The Fractal Geometry
of Nature” (1982) showed that the temporal 1/f # fluctuations observed in many physical
systems/many physical processes are but a special class of a broader, more general fractal, self-
similar behavior of nature/our universe — which also includes e.g. 1D, 2-D and 3-D spatial
“noise” fluctuations, such as the fractal nature of iterative, weathering/erosion processes
associated with coastlines, mountains, cloud formations, as well as living systems, such as trees...

The following pix show examples of computer-generated fractal images of such things:
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No generally recognized “universal” physical explanation of 1/f noise exists. Consequently,
the ubiquity of 1/f noise in nature is one of the oldest puzzles of contemporary physics and
science in general.

It would be very interesting to carry out spectral/correlation analyses e.g. on whale songs, to
see if their music also has 1/f # fluctuations... One can also ask the question, since 1/f #
fluctuations are widespread in nature/in the everyday world here on earth as well as extant
elsewhere in many physics processes out there in the cosmos, if intelligent life exists elsewhere
in the universe, and those life-forms had their own music, would their music also exhibit 1/f #
fluctuations?
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Legal Disclaimer and Copyright Notice:

Leqgal Disclaimer:

The author specifically disclaims legal responsibility for any loss of profit, or any
consequential, incidental, and/or other damages resulting from the mis-use of information
contained in this document. The author has made every effort possible to ensure that the
information contained in this document is factually and technically accurate and correct.

Copyright Notice:

The contents of this document are protected under both United States of America and
International Copyright Laws. No portion of this document may be reproduced in any manner for
commercial use without prior written permission from the author of this document. The author
grants permission for the use of information contained in this document for private, non-

commercial purposes only.

-21-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2002 - 2017. All rights reserved.



